Journal of Magnetic Resonance 154, 210-227 (2002)

doi:10.1006/jmre.2001.2472, available online at http://www.idealibrary.com on I DE Ll

Probe—Sample Coupling in the Magnetic Resonance Force Microscope

A. Suter,*! D. V. Pelekhov,* M. L. Roukes,t and P. C. Hammel*

*Condensed Matter and Thermal Physics, Los Alamos National Laboratory, Los Alamos, New Mexico 87545;
and tCondensed Matter Physics, Caltech, Pasadena, California

E-mail: andreas.suter@psi.ch, pch@lanl.gov

Received April 30, 2001; revised October 30, 2001

The magnetic resonance force microscope (MRFM) provides a
route to achieving scanned probe magnetic resonance imaging with
extremely high spatial resolution. Achieving this capability will
require understanding the force exerted on a microscopic mag-
netic probe by a spatially extended sample over which the probe
is scanned. Here we present a detailed analysis of this interaction
between probe and sample. We focus on understanding the situation
where the micromagnet mounted on the mechanical resonator gen-
erates a very inhomogeneous magnetic field and is scanned over a
sample with at least one spatial dimension much larger than that of
the micromagnet. This situation differs quite significantly from the
conditions under which most MRFM experiments have been car-
ried out where the sample is mounted on the mechanical resonator
and placed in a rather weak magnetic field gradient. In addition to
the concept of a sensitive slice (the spatial region where the mag-
netic resonance condition is met) it is valuable to map the forces
exerted on the probe by spins at various locations; this leads to the
concept of the force slice (the region in which spins exert force on
the resonator). Results of this analysis, obtained both analytically
and numerically, will be qualitatively compared with an initial ex-
perimental finding from an EPR-MRFM experiment carried out on
DPPH at 4 K. © 2002 Elsevier Science (USA)

Key Words: MRFM, magnetic resonance force microscope; sen-
sitive slice; scanned probe microscopy.

1. INTRODUCTION

Improving the sensitivity of detection in electronic paramag-
netic resonance (EPR) and nuclear magnetic resonance (NMR)
has been an important focus of efforts to broaden the power
of magnetic resonance techniques. A remarkable variety of ap-
proaches have been taken including those exploiting optical
pumping and detection (1-3) or SQUID detection of NMR sig-
nals (4), to mention afew.

A very different approach has been proposed by Sidles (5,
6). He realized that a magnetic moment can be coupled to a
mechanical detector inthe presence of agradient of the magnetic
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induction:
F(r,t) = —[m(r,t) - V]Bia(r) [1]

The force signal is proportional to the magnetic field gradient;
this can be made very large and provide very high detection sen-
sitivity and thus high spatia resolution. An instrument based on
thisideaisreferred to asamagnetic resonance force microscope
(MRFM) (6). A sketch of an MRFM employing a micromagnet
mounted on a mechanical resonator as the source of the mag-
netic gradient is shown in Fig. 1. Another approach isto place
the sample on the mechanica resonator, which is placed in an
inhomogeneous magnetic field.

The first magnetic resonance force signal was detected by
Rugar et al., in 1992 who mechanically detected the elec-
tron spin resonance signal (eMRFM) from a 30 ng crystal of
diphenylpicrylhydrazil (7). Twoyearslater, Rugar et al. reported
the mechanical detection of *H nuclear magnetic resonance
(nMRFM) in 12 ng of ammonium nitrate (8). These two pio-
neering experiments demonstrated that a microfabricated can-
tilever, similar to those developed for atomic force microscopy,
can detect the magnetic moment of amicroscopic sample. Inthe
case of nuclear magnetic resonance (NMR) (8), the achieved
sensitivity of 10 spins at room temperature and in a field of
2.4 T represents a substantial improvement over the standard
coil detection sensitivity.

Significant progress has been made in the past few years. In
1996, Zhang et al. mechanically detected ferromagnetic res-
onance signals (fMRFM) of yttrium iron garnet (9). Imag-
ing experiments with eMRFM (10, 11), nMRFM (12, 13), and
fMRFM (14) were performed. A magnetic resonancetorquesig-
nal in ahomogeneous magnetic field (15) was also detected. Im-
proved force sensitivity was demonstrated by operating at low
temperature (16-18). Force maps of a sample were obtained
with the magnetic probe placed on the mechanical resonator in
eMRFM (19) and fMRFM (14). The highest sensitivity reported
todateis~200€lectron spinsinal Hz bandwidth. Theresult was
obtained by operating an eMRFM at 77 K in avery large mag-
netic field gradient (20). In 1996, Wago et al. demonstrated that



PROBE-SAMPLE INTERACTIONS IN MRFM

Fi,
Mi cromagn\eti%{/;

e L

— 77ﬁ ey
/ Resonant Spin:
o(r) = vB(1)

N

H (1) cos{m(t) t)

FIG.1. Sketchof an MRFM. Themicromagnet onthe mechanical resonator
produces an extremely inhomogeneous magnetic field that servestwo purposes:
(i) It couples the mechanical resonator to the magnetic moments in the sample,
and (ii) it definesthe spatial regions of the sample where the magnetic resonance
conditionismet. Magnetic resonance techniques can be employed to manipulate
the magnetization m thus generating a force on the mechanical resonator at its
resonance frequency that will drive it into oscillation.

combining pulsed NMR techniques with fast adiabatic passage
enables measurement of the nuclear spin-attice relaxation rate,
which they demonstrated for °F nuclear moments in calcium
fluoride at low temperature (16). The same method was used
to measure the longitudinal spin relaxation of *H rate in am-
monium sulfate at room temperature (21, 22). Klein et al. (23)
were able to demonstrate two different T,'s in a microscopic
crystallite of ammonium sulfate, one attributed to spinsin the
surface layer of the crystal. They aso measured the spin—spin
relaxation time T, of protons. Recent eMRFM work in vitreous
silica at 5 K showed that the same principles can be also ap-
plied to study electron angular momentum dynamics of slowly
relaxing E’ centers (18).

In most of the work cited above the sample was placed on
the mechanical resonator and operated in an externally applied
magnetic field gradient of rather small magnitude. This situa-
tion corresponds to Fig. 1 except that the location of the sam-
ple and the gradient magnet are interchanged. The external
magnetic field gradient is generally produced by a permanent
magnet placed close the sample and its spatial dimensions are
typically much larger than the sample. This leads to a rather
simple probe-sample coupling since the sensitive dice, i.e., the
region (a surface of constant magnetic field) where the mag-
netic resonance condition is fulfilled, can be well approximated
by a paraboloid (24). The disadvantage of this setup is twofold:
(i) The strength of the magnetic field gradient and hence the
sensitivity is rather limited. (ii) The sample must be mounted
on the mechanical resonator; this dramatically limits the range
of samples that can be studied and reduces the quality factor
of the detector thereby limiting sensitivity. It further limits the
range of possiblemechanical resonatorswhich can beused, since
they must have spatial dimensions much larger than the sample.
Clearly the arrangement sketched in Fig. 1 isessential for ause-
ful microscope. However the priceto be paid when working with
the micromagnet on the mechanical resonator is a significantly
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more complex interaction between the probe and sample; this
will be the subject of the present manuscript.

This complication arises because the force exerted on the
detector is proportional to the magnetic field gradient whose
magnitude and orientation varies dramatically throughout the
sensitive dlice. A complete analytical analysis of the probe—
sample interaction for general experimental MRFM geometries
is quite complicated, however solutions to symmetric limiting
cases were found which prove to be valuable guides for under-
standing this interaction. For quantitative comparisons with the
experiment, numerical simulations of the probe-sampleinterac-
tionwill begiven. Themain advantage of thisapproachisthat the
analysis of an arbitrary probe sample geometry is possible, and
more realistic models of the micromagnet can be implemented.

The main body of the paper is organized as follows: In
Section 2 we introduce the model and subsequently derive the
analytical solutions for different limiting cases. Section 3 des-
cribes the algorithm used for the numerical evaluation for more
realistic parameters, and Sections 4 presents a brief description
of experimental measurements to test our modeling. These re-
sults are discussed in Section 5.

2. DESCRIPTION OF THE PROBE-SAMPLE INTERACTION

Inthefollowing wewill derive our model of the probe-sample
interaction. This model is rather general and is capable of de-
scribing the probe—sampleinteractionin thelimit of an extended
sample, i.e., where the sample is much larger then the micro-
magnet. Understanding thissituation isessential if weareto use
the MRFM as a scanning tool. As will be demonstrated below
thissituation leadsto some counterintuitiveresults; thesewill be
thoroughly discussed in Section 5. A particularly important re-
sult isthat the concept of the sensitive slice must be reexamined.
The dice width Xy is determined by the intrinsic homogeneous
linewidth § B and the magnitude of thefield gradient |V B| (gen-
erated by the micromagnet) at the particular location of the spin
whose coupling isunder consideration: X4 ~ 5 B/|V B|; because
of the spatial variation of |V B|, the concept of a length scale
set by Xy breaks down under some conditions met in probe-on-
detector measurements.

In order to calculate the resonant response of the mechanical
resonator, we will proceed as follows: First we will derive for-
mulaefor thelocadl field, i.e., the superposition of all theinvolved
fields. Thisis necessary since its magnitude will determine the
spatial volume in which the resonance condition is met, or in
other words the spatial dependence of the resonance frequency.
Furthermore thisallows usto determinethe correct field compo-
nent relevant for the force coupling to the mechanical resonator
according to Eq. [1]. To do so we will use adipolar approxima
tion for the micromagnet. For most of the experimentally useful
geometries this should be a satisfactory approximation. Next,
we will determine the local magnetization, which together with
the field allows us to calculate the local force stemming from a
volume element d3x at an arbitrary position r. At this point we
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would liketo stressthat the sensitive slice (regionin spacewhere
the resonance condition is fulfilled) and the force dlice (spatia
map of the force exerted the mechanical resonator at its reso-
nance frequency) are related by Eq. [1], however they are not
synonymous due to the variation of the magnitude and sign of
the relevant component of the field gradient. The consequences
of thisdistinction are striking and will be discussed in Section 5.
Finally, the total force acting on the mechanical resonator isthe
integral of the local force over the entire sample.

It is not possible to carry out this spatial integration ana-
lytically for the most genera case, so after generating general
expressions from the model we restrict our analysis to a few
specific cases, namely: In Section 2.1 we solve it in the case
where the magnetization is described by a homogeneous intrin-
sic Lorentzian line shape. To do so werestrict the sample geome-
try to asemi-infinite sample and apply some further restrictions.
In order to be able to treat more general sample geometries
and to loosen these further restrictions, we aso calculate the
force response for a rectangular line shape; thisis presented in
Section 2.2 and 2.3. Section 2.2 presents a semiinfinite sample
geometry, while Section 2.3 presents the force response from a
buried thin layer.

For all these cases we assume that the spin- attice relaxation
time Ty is much shorter than the inverse frequency of the me-
chanical resonator 1/wmy. Under these conditions we can em-
ploy rf-modulation schemes (amplitude and frequency modula-
tion) (25) which generate atime dependent magnetization with a
strong Fourier component at the resonance frequency of the me-
chanical resonator. Furthermorethemagnetization can alwaysbe
assumed to bein dynamical equilibrium onthetimescale 1/ wny.

What about the oppositelimit where Ty >> 1/wm? Inthissitu-
ation one can manipul ate the spin system utilizing fast adiabatic
inversion schemes resulting in an efficient coupling at the reso-
nancefrequency of themechanical resonator. Wewill not discuss
thislimit here but the qualitative picture we are going to discuss
isnot atered. Thisistrue since the observed resonant displace-
ment of the mechanical resonator is still describable in arather
similar fashion. Most of the features described below originate
from the coupling of amicromagnetic tip to aspin volumelarger
then the micromagnet.

With this overview in mind, we now present our model. The
force originating at some point in space due to the presence
of a given magnetization interacting with an inhomogeneous
magnetic induction is given as

F(r.t) = —[m(r,t) - V] Bt(r)
= —V'[m(r,t) - Biot(r)] (2]

where V' acts only on By (r) and the total magnetic induction
decomposesinto

Btot(r) =Bo+ B(I’) + Bioca (I’) [3]
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where By isthe external polarizing magnetic induction, B(r) is
the magneticinduction dueto the micromagnetic on the mechan-
ical resonator and By (r) induction resulting from any other
source experienced by the local magnetization, such as, e.g.,
magnetic dipolefields of spinswithin the sample. In thefollow-
ing we will suppress Bjoeq () assuming it to be much smaller
than Bg and B(r).

Inthefollowing wewill use the dipolar approximation for the
magnetic induction generated by the micromagnet

B() = 2B()cos)e, + BO)sn@)er (4
with
§
B0 = B () - 5

In the case of a spherical, homogeneously magnetized sphere,
Bn = %” Mo with Mg the saturation magnetization, Rs theradius
of the sphere, and &€ = 3. Numerical simulations of a realistic
micromagnet suggest a¢ < 3, even though thereal radial func-
tional dependenceisno longer purely power-law.
For our calculationswewill usethe geometry showninFig. 2.
The total magnetic field isthen given as

Biot = Bo + B(r)
= exg B(r) sin(29) cos(¢) + eyg B(r) sin(29) sin(¢)

B(r) }

te, [Bo + =~ (3cos(20) +1) [6]

so the spatial variation of the angular resonance frequency is

a)s(l’, 9)

= | Biatl

B(r)

2
?0(3cos(20) +1)+ %(w)

= Bo|:1+ 5
0

1/2
x (3cos(20) + 5)]

g1+ BO B0\’
- Bo|:1+ 26, (3005(29)+1)} +O< By ) (7]

Because we assume 1/ Ty > wm/27, We can achieve an ef-
fective coupling to the mechanical resonator at its resonance
frequency by cyclic suppression of the magnetization. This can
experimentally be accomplished in at |east three ways: (i) Am-
plitude modulation of By; (ii) Amplitude Modulation of the
rf-field; or (iii) Frequency Modulation of the rf-field. For all
these cases the magnetization in the laboratory reference frame
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is approximately
m(r, t) = e;moL(r, t) [8]

where mg is the magnetization density and £(r, t) is the nor-
malized intrinsic magnetic resonance lineshape under consider-
ation. The time dependence of £ and hence F; is to be under-
stood in the following way. Since we only consider the situation
1/T1 > wme /27, the magneti zation density isalwaysin dynami-
cal equilibriumwith therf-field and hencewill accurately follow
variations in the rf-field (AM, FM) which are dow compared
1o wyt.

Since the mechanical resonator only couplesto the z-compo-
nent of theforcefield Eq. [2] getstogether with Egs. [6] and [8].

F(r,t) = F(r,t) - e

= —mpL(r, t) [%r(r) %(3 cos(20) + 1) cos(h)

+ @3%(2@) sin(e)}. [9]

Thisistheforce from the volume element d®x acting on the me-
chanical resonator. A key point isthat the sign of thislocal force
depends on position r; this is also sketched in Fig. 2. Starting
with Egs. [5] and [9] one can find an analytical expression for
the angle 6. at which the force vanishes, namely

. [ 6+&
Qc_n—arccos< —6—1—3&)'

The total force from a semiinfinite sample experienced by the
mechanical resonator is

[10]

Ftot(t)zfoorzdr /:)sin(e)de /Ozn doF,(r,t). [11]

/e

FIG. 2. Geometry used in the calculations. The sphere represents the mi-
cromagnet on the mechanical resonator. Since we use a dipole approximation
in our calculations, spherical coordinates are used. The dashed line separates
regions of negative and positive force coupling as indicated by © and &.

213
9 (r) is the angle beyond which aradia line originating at the
probemagnet first intersectsthe sample. To calcul atethisintegral
we use the variables

x = 3c0s(20) + 1

R £
B= Bm<75) .

Equation [11] can then be written

Rsz 4 Be(x) Bm 2/§
F[ot(t) = ZﬂmOE [de/o dBE(B, X,t)<E>

x[8— (24 £)x].

[12]

[13]

Here B.(x) isthe magnetic induction at the point where aradial
line originating at the probe with angle 6 intersects the surface
of the sample

£/2
x+2> [14]

6x¢

B.(x) = Bm<

with k. = (a/Rs)?, where a is the distance from the centre of
the spherical probe magnet to the surface (see Fig. 2).
The displacement z(t) of the mechanical resonator is given

by

Frot(7)
m

2(t) = /Ot dr z5(t — 1) [15]

with m the mass of the mechanical resonator and

efl“t
z6(t) =

Sin(@mt)
mr

where I' >~ wm/(2Q) where Q is the quality factor of the me-
chanical resonator. Since Q istypicaly very large the strongest
displacement response will stem from the wy,-Fourier compo-
nent of z(t).

Given the solution for the total force acting on the mechanical
resonator, the displacement can be calculated from Eq. [15] and
Z(ewmr) by Fourier transformation. However this leads to very
complex results, whose interpretation is not transparent. Sim-
plifications can be obtained by using approximate solutions and
noting that: (i) The mechanical resonators used in these exper-
iments have very high Q’s (of the order of 10%), and (ii) the
displacement of the mechanical resonator is measured viainter-
ferometry and recorded with alock-in amplifier (see Section 4).
As a consequence we are only interested in the wn, Fourier
component of the steady state amplitude of z(t). Thisallowsthe
approximation

Heom) ~ %[th(t —0)- Fmt<t - wl)} [16]

mr mr
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where the time dependence of F(t) isto be understood in the
following manner. Giventhat 1/ T; > wmr/(27) the magnetiza-
tionisawaysin equilibrium on the time scale of interest 1/wm,.
Thereforethe parametersin Fy; can be assumed time dependent.
Inthefollowing we will discuss amplitude modulation of the rf-
field only; however we find that both frequency modulation of
the rf-field and modulation of By give very similar results. If
H; is the amplitude of the rf-field and w; = y Hi; amplitude
modulation is described by

WMty = wl[l + 1i—§ Cos(wmrt)}, [17]

where 0 < ¢ < 1 describes the depth of amplitude modulation.

Using these results, we can calculate the total force under
different conditions. We integrate Eq. [13] for two different line
shapes: a Lorentzian line shape such as given by the standard
Bloch equations, and for a rectangular line shape. Obviously
the rectangular line shape is unphysical, however this limit has
the advantage of being more transparent, showing the physical
essence in the probe-sample interaction. The solution for athin
magnetic layer will be presented for the rectangular line shape
approximation only.

2.1. Lorentzian Line Shape

We take 1/T; > wn/(27), and are only interested in time
scales of order 1/wn,, SO We can use the steady state solution of
the Bloch equation

1+ [wrg — ws(r, 9)]2T22
1+ [a)rf — ws(r, 9)]21—22 + CL)%T]_TZ ’

L, t) = [18]

where wys isthefrequency of theirradiating rf-field, T, the spin—
| attice relaxation time, and T, the spin—spin relaxation time, and
wemay consider the lineshape parametersto be time dependent.

This description of the magnetization is appropriate under the
following conditions:

1. Therelaxation rates are much faster than the angular reso-
nance frequency of the mechanical resonator wy,. This ensures
that the magnetization isalwaysin thermal equilibrium with the
applied magnetic fields.

2. The local spin—spin interactions must be weak enough to
alow the use of the Bloch equations.

3. The local field of the micromagnet B(r) must be weak
enough, that the deviation of the magnetization from e, is neg-
ligible.

Equation [13] can only be integrated in a closed form in the
limit B¢(X) — Bp. ThissituationisshowninFig. 3: the sample
has a small spherical dent of the size of the micromagnet and
the micromagnet is located within this dent; we set £ = 2. This
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FIG. 3. Geometry used for calculating the case of a Lorentzian line shape.
The center of the micromagnet is located at the sample surface. This simplifies
the problem sufficiently that analytical solutionsfor thetotal force acting on the
mechanical resonator can be found.

situation is not fully realistic but provides accurate insight into
the magnetization dyanmics.
Under these highly symmetric conditions the solution of
Eq. [13] is
3
Frot(t) = 2rmoR2 |:ozo +) aIn[14 T T,
k=1

+ TH(Aw + (=¥~ Dom)’]
Twa+(—an—nwm)} (191

J1+ 02T,

where wg = y By, wm = y By and the coefficients a and By are
given by

+ Bk arctan <

30iTiT, — 2(1+ Aw?TZ) In(Br/1)
41+ 2TiTy + Aw?TH)
a)leTz
"4(1+ Wiy Tz + Aw?TR)

Qo = Bm

(¥1=B

_ 1) H2T1 14 0fTiTo 4 (Aw? + 303) T2
2TVV0BT, T 1+ T+ A?TZ
e — H2T,
12B,, T,
W2 AT, T2
1= Bm e
2‘ /1+ wasz(l + wasz + AO)ZT22)
H?
Bo = 6B,

T1(1+ TaiTo0f)(Aw — 20m) + Ti T Aw[(Aw — on)? — 40?]

J1+ 0T (1+ 02T To + Aw?T2)
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fs = (_1)H_12 ' (Aw — 20m) Ty

6Bn 1+ 02T,
with Aw = o — wo.

The implications of this result will be discussed in Section 5,
along with the results for a rectangular line shape, the results
of numerical simulations and comparisons with experimental
findings.

2.2. Rectangular Line Shape

To enable analytical solution for cases of lower symmetry, we
will use amodel wherethe line shapeis approximated by arect-
angle whose width and depth are obtained from the Bloch Egs.

1, |Aws| > Sw
LGB =0 p o 2 |Aws| < Sw

= LTy’

[20]

where Aws (see Egs. 7 and 12) is

Aws = - 14 2
Ws = Wrf — WS = Wrf — @ 2B,

and the natural line width o = ,/1+ w?TiTo/To. The

boundary of the resonant region in the (B, x)-phase space is
therefore given by

+s
Bx = 2|30<°"rf @_ 1)
wo

—_——
=A;

[21]

Thetotal force acting on the mechanical resonator is

RS
Fiot = —2nrmg—— dxdB
5
2/¢
x {L(x, B) (%) [8—(2+$)x]} [22]

where R is the volume of the sample where the resonance con-
dition is satisfied (sensitive slice). Different aspects of thisarise
from various spatial relationshi psbetween the sensitivesliceand
the sample. To keep the body of the paper compact, detailsof the
discussion of these different casesare givenin Section 5 and Ap-
pendix A.1.InFig. 4thedifferent regionsarelabeled 1to 7. Their
physical meaningisasfollows: Inregion 1 theexternal fieldisso
small that the sensitive sliceisoutsidethe sampleand hencethere
isnoforcecoupling. Inregions2 and 3 the sensitive slice hasjust
entered the sample with an onion-shell like structure; in 3 the
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FIG.4. Thevariousregionsof B-x spacevswy (labeled 1to 7 describing the
evolution of the resonant region: At the border 1 — 2 the sensitive slice enters
the sample; at theboundary it leavesthe sample6 — 7 (seeaso Appendix A.1).

full width of the dlice has entered the sample. In region 4 most of

the sampleisgoing into resonance and the concept of asensitive

slice must be handled cautiously (see Section 5). Regions 5 and

6 are analogous to 2 and 3 except that the shape of the sensitive

slice changes as we will discuss in Section 5. In region 7 the

external field is so large that no part of the sample is resonant.
If wedefine g8 = 2/¢, and

12BoA
X$:t:_1:|: 14 «e 0 i7 [23]
\ Bm
the force for the case wm/(12«¢) > 28w is
FtE)lt) =0
£@ _ _2TMoREL, [ Bot” (Bnm P
“TEE-2 | 322\ B
X\ 1-1/p
X A,(X+, —4) A— + BmKC
(12— &x, ) (x - 4 2)%#
X [6 —% - S1+1/f . 3P
£ _ _ZﬂmoRszﬁr Bo&? % g
d -2 |3-27\ By
B B
Xy Xyo
—H( ) - A -9 ==
<At - (%) - A -a() |

B /{éi /B

1
t oLs . 3R [(12 — &x1 1) (x4 + 27

— (12— x4 )(x4— + Y] }
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Y EE-2 |32\ B

B B
X__ Xy
AXe_ =4 — ) —A_(Xe_ — 4| —
<|aee-a(’e) Ao -a(%e)
B 1-1/8
X4 Bch
+ AL Xy — 4)<A—+) :| + 21+p . 31/

x [(12— ex_)(x_— +2)"F — (12— £x..)

X (Ko + 2P 4+ (12 — Ex44) (Xt + 2)1/5]} [24]

F(5)=_27TmoRSZEr Bos® (Bm /
© £E-2 |3-22t#\ By

X |:A(x - 4)(%‘)5 SA (X, — 4)<):___)ﬂ

Xt )
+ AL (X =D
As
Bng—l/ﬂ
21+1/8 . 3P

— (12— EX. ) (X4 + 2P + (12— Exiy)

[(12 — Ex__)(x_— + 2)%#

X (Kot +2)YP(12 — Ex_ )Xy + 2)1/ﬂ]}
£ _ _27MoRSL | Bog? (&)ﬂ
*TEE-2) |32\ B

x [A+(X++ - 4)(“—*)'3 — AL - 4)(X—*)ﬂ}

Ar Ar

Bmkc

1/8
+ 51176 . 31/P [(12 — x4 8)(X+ 4+ 2) /

—(12 = x4 &)X+ + 2)1//3]}
Ft(o? =0

where the superscripts on Fi; correspond to the various regions
shown in Fig. 4. Details are given in Appendix A.L.

2.3. Thin Spin Layer—Rectangular Line Shape

The approximation of a rectangular line shape alows us to
treat this problem analytically. We assume the sample consists
of athin layer of spinsburied in an otherwise inert material as
shown in Fig. 5. This might correspond to, e.g., a layer of 3P
asthin as afew hundred nanometers ion implanted into silicon.
We explore the relationship between the intrinsic line shape and
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z L_
y e
F, Magnetic Tip

Thin Layer of Spins

FIG. 5. Geometry for sample consisting of a thin layer of buried spins.
Notation isasin Fig. 2. Thisis an important geometry since buried interfaces
are often encountered in modern materials technologies. It aso highlights a
strength of the MRFM relative to other scanned probe techniques which are
sengitive to surfaces only.

the mechanically detected spectrum z(By). The lower boundary
to the spatial spin distribution introduces a second boundary for
the magnetic induction Bgy(X)

—§/2
B0 = () B0

C

[25]

so the region over which Eq. [22] isintegrated is given by

where B¢(x) is given by Eq. [14].

With this additional boundary line there will be two sets of
solutions (& = 2) for the crossing points between B.(x) and
Bc.a(X) (see aso Appendix A.5):

| 12By AL
XZ(!S)i =-1F |1+« B,

/ 12ByA.
X9 = -1F [1+«kq B,

A typical situation for a particular value of the external mag-
netic induction By is shown in Fig. 6. The area between the
curves B, and By corresponds to the spin layer, and the area
between the curves B, and B_ representsthe sensitive slice, so
the resonant force signal arises from the region defined by the
intersection of these two sets of curves.

The structure of the resulting formulae for F is similar to
that for the semiinfinite sample, though thereare alarger number
of possible casesasafunction of By; wepresent only thegenera
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Sample

Sensitive Slice

0 B B,

FIG. 6. Region of a buried spin layer meeting the resonance condition
using the variable representation given in Eq. [12]: x = 3cos(2) + 1 and
B = Bm(Rs/r)%. In this representation the area between the curves B, and
By corresponds to the spin layer, and the area between the curves B, and B_
represents the sensitive slice. The resonant force signal arises from the region
bounded by these four curves.

expression for the resulting force:
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where {k,}, {j,} are sets of vectorsinvolving ko = 0,1, ky » =
+, — and ks = ¢, d (analogously for thej’s). The C'sare given
by
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Detailed results are given in Appendix A.5, Egs. A.6.

3. NUMERICAL SOLUTIONS

For the numerical analysisit is convenient to switch to cylin-
drical coordinates. The sample volume was broken into prisms
constituting unit cells of calculation. The appropriate compo-
nentsof themagnetic field of the probe magnet and of itsgradient
werecal cul ated at the center of each prism, and theinstantaneous
Spin magnetization in each prism was al so calculated taking into
account the frequency and amplitude of the applied rf-field and
the magnitude of the total magnetic induction Byy. All param-
eters are assumed constant over the volume of the prism. The
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cylindrical symmetry about e, allows the evaluation of all nec-
essary parameters only in the r z-plane. Thus, all samples are
considered to be cylinders with radius R and length Z.

The calculation time was reduced by employing an adaptive
grid size (in the r z-plane) method. The size of the unit cell
was determined by the requirement that it be N times narrower
than the thickness of the sensitive dlice at the particular point in
the sample. The thickness of the sensitive slice is given by the
ratio of the magnetic resonance linewidth and the local gradient
of magnetic field sw(r, 2)/|Vws(r, Z)|. We found N = 2 to be
sufficient for the cases discussed here.

4. EXPERIMENT

The magnetic resonance force microscope apparatusis shown
schematically inFig. 7. A detailed description will be published
elsewhere. The paramagnetic test sample consisted of 2,2-Di(4-
tert-octylphenyl)-1-picrylhydrazyl (DPPH) powder (26) with a
typical grain size of the order of 100 nm was fixed with vacuum
grease to a slot in semirigid coaxial 50 © transmission line.
A single crystal silicon cantilever with a length of 350 um, a
spring constant k ~ 0.01 N/mand atypical resonance frequency
of ~16 kHz (27) wasused to detect theforce. Thetip mounted on
the end of the cantilever iscoated with a150 nm thick permalloy
film; the tip radius then is approximately this same size.

The electron spinsin the sample are polarized by an external
magnetic induction By and experiencein addition the very inho-
mogeneous field of the micromagnet. The spins are resonantly
excited by amicrowave frequency field (9.9 GHz), which isei-
ther frequency- or amplitude-modulated at the frequency of the
cantilever in order to generate aresonant force. The microwave-
field isdelivered to the sample by means of a50 2 transmission
lineasindicated in Fig. 7.

e s H, (0 50Q
Micromagnet \E & i
Fiber optical | [> < Sample sog
interferometer Transmission

> e

Mechanical
resonator |_—| High power
rf fi amplifier
2 o
£
g_ A T 3
s Lock fi in Signal c
5 amplifier generator £
@ () Ref. Synch. with AM or FM °©
1] at =
=) l . )
Force signal
FIG. 7. Block diagram of the magnetic resonance force microscope. The

signal excitation component resembles standard continuous wave magnetic res-
onance; detection is by means of mechanical resonator incorporating a micro-
meagnetic tip and its associated displacement detection equipment.
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5. DISCUSSION

Theeventual goal of theMRFM istoachievesinglespin sensi-
tivity; this raisesimportant questions such asthat of continuous
guantum measurement (28, 29). However, present sensitivity
does not enable detection of only a very few spins and hence
geometrical effects due to the coupling are of paramount im-
portance as we will discuss in some depth here. Naively one
would expect the strongly inhomogeneous magnetic field of the
micromagnet to produce abroad resonant response asafunction
of the swept external field By with awidth set by the field dis-
tribution of the micromagnet. Our quantitative analysis shows
that this does occur, however the magnitude of the displacement
response of the mechanical resonator varies strongly with By
and hence this expected broadening can easily be hidden in a
real experiment, dueto noise or other limitations. The dominant
response is found to occur for fields By >~ wy/y (i.e., where
the magnetic field of the micromagnetic probe is very small,
that is, less than the linewidth); this response can be orders of
magnitude more intense than any other resonant response. For
By < wy/y the sensitive dice is a thin shell of constant field,
however for By >~ wy;/y both the field and the field gradient of
the micromagnet are very weak causing quite alarge volume of
the sampleto beinresonance. Thisleadsto alargesignal in spite
of the weak coupling per spin. In this case the concept of the
sensitive slice must be extended. Furthermore, the sensitiveslice
and thelocal forcefield are related but not synonymous, and ge-
ometrical coupling effects can have important effects. Keeping
theseissuesin mind, wewill structure the discussion asfollows:
The findings of the anaytical calculations will be discussed
and then more redlistic physical parameters will be discussed
based on the numerical results. Finally, our findings will be
compared with experimental results. Unless otherwise noted,
the figures shown below are calculated using the parametersin
Table 1.

Figures8and 9 show themagnitude of thedisplacement vs. the
external applied magnetic induction By as one would measure
inatypical field-swept experiment. Both figures are for samples
whoseoverall dimensionsaremuch larger than themicromagnet.
Figure 8 iscalculated from Eq. [19] whereas Figure 9 is derived
from Eq. [22].

TABLE 1
Relaxation times Ti=To 60 ns
Mechanical resonator resonance frequency wmr 27 - 10kHz
Field at the surface of the micromagent Bm %" - 860G
Spatial variation of probe field (Eqg. [5]) & 2.005
Rf-field frequency wrif/y 1T
Rf-field amplitude Hy 1G
Rf-field modulation (Eq. [17]) ¢ 1

Note. Unless otherwise noted, the following parameterswere used for the cal-
culations presented here. These parameters correspond to EPR either in DPPH,
or in phosphorus implanted silicon at a doping level of 8 x 1017 cm~3, both at
T =4K.
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FIG.8. Responseof amechanical resonator vs Bg for amplitude modulation
(AM) inthecase of aL orentzian line shape and an extended semi-infinite sample
ascalculated in Section 2.1 (¢ = 2, By, = 350 G). The dashed line shows the
intrinsic line shape one would measure in a standard EPR experiment. Theinset
is a blow-up of the center of the resonance, with intensity plotted on a linear
scale.

One finds a very strong response for By = wy¢/y . Since this
feature will occur in later discussions we introduce the term
“zero-probe-field resonance”’ (ZPFR), referring to the situation
Bo = wrf/y . Inthis case broadening dueto thefield distribution
of themicromagnet ispresent, however itismuch smaller thanin
regionswherethe probefield islarger, that iswhere By deviates
from the ZPFR-value (wg 2 wyt £ dw). In the highly symmetric
case shown in Fig. 8 (Lorentzian line shape with micromagnet
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FIG. 9. Response of a mechanical resonator vs By for AM in the case of
arectangular line shape and an extended semi-infinite sample as calculated in
Section 2.2. Rs:a = 1: 2. Notice that the response is similar to the Lorentzian
case in Fig. 8. The one clear difference, the much reduced extent of the high
field shoulder, is due to the fact that the micromagnet has been raised above the
sample surface, thus reducing the coupling range (6 is always greater than 7 /2).
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embedded in the sample surface as shown in Fig. 3) the full
broadening expected due to the dipole field of the micromagnet
is found as indicated by the arrows in the figure. Here ¢ = 2
and By, is set to 350 G to satisfy the constraint that the local
field of the micromagnet in the sample be much smaller than the
externa field.

Theresponsefor the case of the rectangular line shapeissim-
ilar as can be seen from Fig. 9. Here the micromagnet is posi-
tioned abovethesample(Rs:a = 1: 2, seealso Fig. 2). Because
the probe has been raised, the high field shoulder is much less
extended. To understand these features better, we consider the
concept of the sensitive slice and show that for some values of
wp it differs from that usually discussed (5). The sensitive slice
is defined as the resonant region of the sample. Since the micro-
magnet |eads to a strong inhomogeneous magnetic induction in
itsvicinity only part of the sample will resonate. An estimate of
the spatial width of the sensitive sliceis xgq ~ §w/Vws, where
dw is the intrinsic homogeneous line width and wg is given by
Eqg. 7. This expression is similar to the one used in conven-
tional MRI. However, due to the large variation in the gradient
of the magnetic induction of the micromagnet this simple con-
cept must be taken with some caution. For fields wg < wys the
sesnsitive dice is a constant-field shell whose width is indeed
approximately xg. This situation, shown in Figs. 10a and 10b
isthe situation usually considered in the context of the MRFM.
The right-hand side of Fig. 10 shows the resonant magnetiza-
tion, whereas the left-hand side shows the local coupling force
strength weighted by the volume of the sample exhibiting this
force; we will call this the force slice. Between (a) and (b) the
external field By isincreasing resulting in amore extended sen-
sitive slice X4 since the gradient Vws is decreasing.

It isalso worth noting that the force slice shows asign change
(green corresponds to negative force coupling, or aforce whose
phase is shifted by 180° with respect to the excitation signal,
whereas red—yellow corresponds to positive, or in-phase, force
coupling). The purple line in Fig. 10 separates the regions of
positive and negative force coupling.

Therearetwo additional casesto consider: (i) theZPFR where
wf — 8w < wg < w +dw. In this situation, due to the finite
magnetic resonance line width and the very small field gradient
in this region of small field, the entire sample is in resonance
except for regionsvery closeto the micromagnet wherethe mag-
nitude of thelocal field istoo large. ThisisshowninFig. 10c. In
thissituation xg isnot ameaningful length scalesince xg changes
very rapidly asfunction of position. (ii) wg = w. Hereonefinds
atoroida sensitive dlice as shown in Fig. 10d with a width of
order xg. We will focus on samples with overall spatial dimen-
sions much larger than the micromagnet (i.e.,, > Rs =150 nm
in our case) discussing other situationslater on. The fiel d-swept
response shown in Figs. 8 and 9 shows that the strongest signal
originatesin thefield range wg ~ wy, i.€., the situation where a
large samplevolumeisresonant. For homogeneously broadened
lines (wherethereisasimple mapping between spectral and spa-
tial dimensions) the low field shoulder of the ZPFR accurately
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FIG. 10. Calculation of the sensitive dlice shape (right hand panels) and
force dlice (left hand panels) for different external field values By. The force
dlice is weighted by the volume element. The purple line on the left (force
dlices) marks the angle at which the local force changes sign (see aso Fig. 2):
(a) (Bp = 0.9965 T) and (b) (By = 0.9985 T) show typical sensitive slices as
shells of constant field for y By < wyf; (€) shows the situation for y By = wys.
Since the gradient is very small in the regions where the resonance condition is
met theratio of the line width to the gradient isvery large, hence alarge volume
of sample meets the resonance condition. The conventional concept of atypical
length scale xg ~ dw/Vws breaks down in this case. (d) By > wyf (Bp =
1.0005 T). Here the shape of the sensitive is approximately toroidal.

reproduces the intrinsic spectrum as can be seen from Figs. 8
and 9. In this low sensitivity regime valuable parameters like
the chemical shift can be directly read off of the spectrum, since
the shift and broadening of the line by the probe micromagnet
is very small. However, since a large volume of sample isin
resonance this information is not obtained from a particularly
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microscopic spatial region. The region of the sample contribut-
ing substantially to the resonant signal is of the order 100 Rs.

From this discussion it is also clear that the ZPFR will not
depend strongly on the distance separating the micromagnet and
the surface. The only effect is a gradual decrease of the signal
size. Thisis shown in Fig. 12. Instead, it is the low and high-
field shoulders of the spectrum that are (wp = wyt 4= dw) strongly
influenced.

It is useful to study how the signal is influenced by struc-
tures whose dimensions are comparable to the size of the mi-
cromagnet. In Section 2.3 (see also Appendix A.5) we calcu-
late the force field stemming from a thin magnetic layer with
a thickness comparable to the size of the micromagnet. The
geometry used is presented in Fig. 5. Figure 11 showsthefield-
swept response in the case of a signal excited by amplitude
modulation. The field-swept spectrum is quite different from
that produced by the semiinfinite sample discussed above. The
ZPFR line previously found at resonance is replaced by a sharp
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FIG. 11. Response of the mechanical resonator vs By using AM for athin
buried layer as described in Section 2.3 and Fig. 5. The thin sharp lineat By =
1 T showstheintrinsicline. Rs:a:d=1:2: 1. Theinset showsthediscrepancy
between the analytical and numerical solution.
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FIG. 12. Semiinfinite sample spectrafor various micromagnet-sampl e sep-
arations. The primary effect of moving the micromagnet away from the surface
(increasing a/ Rs) isareductionintheextent of thelow- and high-field shoulders.

edge to the strong response whose peak appears at higher
field. This pronounced peak is shifted by approximately 35 G
relative to the intrinsic resonance for our chosen parameters.
The peak position is an indirect measure of the thickness of the
spin-layer; unfortunately it is difficult to derive an analytical
expression for the relation between thickness and the peak posi-
tion. Qualitatively one finds that they are reciprocal, i.e., asthe
layer becomes thicker, the peak is shifted closer to the ZPFR.

On the low field side the force changes sign for the reasons
we have discussed (see Fig. 2). The sign change occurs near a
field of 0.962 T; the angle at which the local F,-force coupling
is zero is given by Eq. [10]. At very low fields the onion-shell
like sensitive diceis entirely within the negative force coupling
region. With increasing field portions of the sensitive slice enter
the positive-force region and at some point (for the parameters
we consider) thereis a cancellation.

The inset to Fig. 11 shows the difference between the an-
alytical and numerical solutions |Zanaytic(Bo) — Znumerica (Bo)l-
This deviation is of order 1%, except for the high field region
(Bo > wyi/y) whereit becomeslarger. In thisregion the analyt-
ical solution involves an approximation for the point at which
the sensitive dice enters the sample; this leads to tangents be-
tween the surface of the sample and the sensitive slice with
very small differences and therefore to small systematic devi-
ations. Using the more realistic Lorentzian lineshape in place
of the rectangular in the numerical approach we find that the
field-swept spectrum in Fig. 11 is changed in amplitude but its
shape is unchanged (not shown here). The difference in ampli-
tude is r/2, the difference between the integrals of rectangular
and Lorentzian line shapes.

For the thin layer sample (Rs:a:d=1:2:1, Fig. 5) we nu-
merically calculated the AM-response for more realistic param-
eters ¢ = 3 and a Lorentzian line shape. The other parameters
areasgivenin Table1. TheresultisshowninFig. 13. Asonecan
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FIG. 13. Response of the mechanical resonator vs By using AM for athin

buried layer as described in Section 2.3. The thin sharp lineat Bp = 1 T
shows the intrinsic line. The response is calculated numerically for the same
parameters as shown in Fig. 11 (Rs:a:d = 1:2:1), except that a Lorentzian
line shape and amoreredistic ¢ = 3wasused. Theinset showstheregion close
tothe ZPFR on alinear scale. The dashed curverepresentstheintrinsic EPR-line

shape.
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FIG. 14. Bottom panel: Filled circles represent the signal from 2,2-Di(4-
tert-octylphenyl)-1-picrylhydrazyl (DPPH) powder at T = 4 K. The response
was obtained by amplitude modulation at arf-frequency of wif = 27 - 9.9 GHz.
The colored curves show the response calculated from our model for specific
values of a/Rs. The experimental measurements were performed on a powder
sample, so we assume coupling to a single grain. We approximate the grain
geometry as a cylinder whose diameter is 20 Rs, and height is 10 Rs. The top
panel shows the calculated evolution of the signal with increasing a/ Rs.
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see, the general character is not altered. Due to the Lorentzian
line shape all the features are broadened, as one would expect.
The morerapid drop off of the field of the micromagnet (¢ = 3)
causes all the observable features to fall in a narrower range of
field Bo.

Comparison of these results show that the general features
are rather robust under variation of the parameters describing
the micromagnet and lineshape, so the solutions presented here
provide ageneral and reliable guide to further analysis.

We now provide a brief comparison with experimental data.
A typical field scan using amplitude modulation is shown in
Fig. 14. This spectrum appears to be a mixture between the
calculation for a semiinfinite sample (Fig. 8) and a thin-layer
sample (Fig. 13). We attribute this to the fact that the DPPH
powder sample is made up of crystallites of various sizes. The
distinctive features are present however, including the peak at
ZPFR (g = 2.0036) and the negative response below the reso-
nance field. Experiments that will provide quantitative compar-
ison with the calculations are underway.

6. SUMMARY

We have presented a detailed analysis of the interactions
which underliethefunctionality of the magnetic resonanceforce
microscope (MRFM) for the important situation where amicro-
magnetic probe mounted on the force detector detectsthe signal
from an extended sample—the case encountered with a general
scanning probe microscope. In particular we have focused on
the implications of having at least one dimension of the sample
much larger than the micromagnet.

We have shown that in addition to the concept of a sensitive
dlice (the spatial region where the magnetic resonance condition
isfulfilled) one should consider the concept of aforcedice (vol-
ume of the samplethat exerts force on the mechanical resonator
due to magnetic resonance manipulation of the magnetization).
This distinction is important because of the dipolar nature of
probe magnetic field which causes the magnitude and even the
sign of the force to vary throughout the force slice. (A negative
forcemeans a180° phase shift of the time-dependent force with
respect to the excitation signal.) Since the total driving force
is the integral over the entire force dlice, this leads to cancel-
lation of forces, and for certain values of By the tota driving
force is zero. Thisis notable given that we nonetheless have a
well-defined resonant sensitive slice.

We find that in a typical field-swept experiment the concept
of the sensitive slice must be taken with caution: (i) For fields
wo < wf — 8w (wo = y By with By the external magnetic induc-
tion, wys the rf-frequency and sw the homogeneousintrinsic line
width) the form of the sensitive slice resembles an ellipsoidal
shell, and the idea of a typical length scale xy ~ Sw/(yVB)
is useful. This situation is widely discussed in the literature.
(i) |wg — wyf| < dw: Inthisfield regimevirtually the entire sam-
pleisinresonanceexcept for regionsvery closethe micromagnet
where its large positive (below the magnet) or negative (to the
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side) field shifts spins out of resonance. Obviously in this situa-
tion the concept of atypical length scaleis questionable. Dueto
the rapid decrease of the gradient of the micromagnet, one can
estimate that portions of the sample separated from the micro-
magnet by less than approximately 100 times the radius of the
micromagnet will contribute to the force signal. Thus, the total
force stemming from thisfield regimeisquitelargeif the overall
dimensions of the sample are much larger than the micromag-
net. Thiscontributionwill lead to the dominant peak in thefield-
swept spectrum and can obscure the expected broadening dueto
theinhomogeneousfield of themicromagnet. (iii) wg > wi—dw:
The sensitive dlice is a toroid-like structure to the side of the
micromagnet; here the concept of a typical length scale xg
recovers.

The practical importance of these phenomena for scanned
probe experiments has been shown in experiments employing
DPPH powder samples having typical grain size of the order of
tens of microns. These spectra exhibit the change in sign of the
driving force field, and the cancellation of the total force for a
specific value of By discussed above.

APPENDIX

A.1. Rectangular Line Shape, Semi-infinite Sample,
om/(12x¢) > 28w

We will discuss the solution of Eq. [13] in (X, B)-parameter
space (see Eq. [12] for definitions of x and B). The resonant re-
gion of the sample isbounded by three curves. Thefirstis B¢(x)
which is determined by the location of the sample surface; the
region above and to the left of B¢(x) is occupied by sample,
while below and to the right is empty space above the sample
surface. The other two curves B..(x) are boundaries of the reso-
nant region determined by the rectangular line shape. For conve-
niencewe givethese equations, even though somehave appeared
earlier.

£/2
Bu(x) = Bm(xetf) (A1)
Bi(x) = ZB?(A* [A.2]

In the following we will move freely between angular fre-
guency notation and field notation; throughout w, = y B,. We
only take resonant regions into consideration and F(t) does
not include time-dependent forces since we are only interested
in spectral weight around .

The relevant external parameter in the problem is wg. The
volumes bounded by B.(x) and B..(x) define resonant parts of
phase space; to define these boundaries we reguire the points at
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which B¢(x) and B.(x) cross, thisis given by:

(x + 2)5/2 2BoAL
Bm =
6K ¢ X

In the interest of simplicity we set € = 2 as an approximation.
Then

12By A,

m

Xgt = —1F 14k

12BgA_

m

X+_=—1+ 1+KC

A

Therestriction to real solutions gives

Wm

< o £ éw+
wo = Wrf « 124,

where §w = 1/Tp,/1+ a)leTz. The second restriction enters
through the requirement that the crossing point must be within
the parameter space, especially that X+ < 4. Thisyields

wo > wif £ dw — 2wm /K¢

The evolution of this resonant volume with By depends on
experimental parameters; this evolution is depicted in Fig. 4 for
the case wm/(12«¢c) > 25w (which arises typicaly when the
separation between the micromagnet and the sample surface is
comparable to the size of the micromagnet). It is instructive to
sketch this situation graphically as shown in Fig. Al.

A.2. Rectangular Line Shape, Semi-infinite Sample,
om/(12xc) < 28w < 2wm/K¢

Thesolutionissimilar to Eq.£)24] except therangesof validity

aregivenasin Fig. A2, and Ft(ot is changed:
£6) _ _ 2nmoREL, [ Bot? A(xes — 4) BmXit \?
tot — g(g _2) 3.21+/3 ++ BoA+
6K 1_1/13
* % Bm(12 — £x44) (X4 4 + 2)1/‘3}- [A.3]
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FIG. Al. Resonant region in (B, x)-space vs By for the case of a semi-infinite sample with wm/(12«c) > 2§w. The situations 1-3 correspond to an onion-
shell-like sensitive slice (SSL). In 4 virtually the entire sampleisin resonance, 57 corresponds to an approximately toroidally shaped sensitive dice to the side of
the micromagnet. 1: The external field istoo small, hence the SSL is above the sample. 2: The SSL just enters the top surface of the sample. 3: The entire width of
the SSL has penetrated into the sample. 4: Most of the sample resonates. 5: The SSL forms atoroidally shaped structure. 6: The SSL partially leaves the sample.
7: Bp istoo large and the SSL is again above the sample to the side. See also Fig. 10.
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Table of Symbols
Expression Description Note
Bo External magnetic induction defining the axis of quantization and
the polarization of the magnetization at a given temperature.
Biot (r) Total magnetic induction at r Section 2
F(r,t) Local forceat r Eq. [1]
5B Intrinsic homogeneous line width Section 2
Sw 14 w?T1Tp/ To, natural line width
y Gyromagnetic ratio
Hi Amplitude of the rf-field
L(r,t) Normalized intrinsic magnetic resonance line shape function Eq. [8]
Ty Spin-lattice relaxation time
T Spin-spin relaxation time
wrf Angular frequency of the rf-field
ws(r, 0) Local angular resonance frequency of the spin system
|VB]| Magnitude of the field gradient generated by the Eq. [2]
micromagnet mounted on the mechanical resonator
B(r) Magnetic induction at r generated by the micromagnet Eq. [5]
Bm = 47/3- Mo Mo is the saturation magnetization of the micromagnet Eq. [5]
Rs Radius of the micromagnet in the dipolar approximation Eq. [5]
§ B(r) = Bm(Rs/r)* Eq. [5]
B 2/§
X 3cos(20) + 1 Eqg. [12]
a Distance from the center of the micromagnet Fig. 2
to the surface of the sample
d Thickness of amagnetic/spin layer Fig. 5
Bioca (r) Local magnetic induction due to internal
sources such as dipolar fields
Bc,d (X) = Bm( é,(tj)é/z
, Sample surface in the generalized Egs. [14] and [25]
«c = (a/Rs) coordinate system (B, x)
kg = (a+d)?/R2
mo Sample magnetization density Eq. [8]
m(r, t) L ocal magnetic moment at r Eq. [1]
Frot Total force acting on the mechanical resonator Eq. [13]
k Spring constant of the mechanical resonator
Q Quality factor of the magnetic resonator
zg(t) Greens function of the mechanical resonator Eq. [15]
Z(t) Displacement of the mechanical resonator Eq. [15]
Omr Angular frequency of the mechanical resonator Section 2
I >~ onr/(2Q) Damping constant of the mechanical resonator Eq. [15]
As = (ot £ 8w/wo) — 1 Eq. [21]
Bi(X) = 2BpAL/x Border of the sensitive slice Eq. [A.1]
Xg ~ §B/|VB| Spatial width of the sensitive dlice Section 5
x4 = —1F ITF 5o (12BoA:/Bm), ¢ =, d Eq. [23]

Note. Angular frequencies and fields are related viaw, = y B,, where y isthe gyromagnetic ratio and these are used
interchangeably throughout the paper.



PROBE-SAMPLE INTERACTIONS IN MRFM

1-1,
ke /B

XN @ (Y
“\a, ) T (= —4) A, ) | T e g
x [(12 = exQ) (x9 + 2)"F —

( (c) _|_2)1/ﬂ

(12— £x9)

12— £x9) (x, + 2)"°
++
BmK;'_l/ P

© ) (x© 4 p\VP
—(R-e5) 05 +2) ] - o5y mm

x [(12 - ex9) (X +2)""

— (12— &exP) (x4 2)"] }
3. 22+ )

F (9) 27'[ Mg RSZ,Cr {

Bo&2 < Bm
e E(E—2)

0

)]

© X(+°)+ x© x©
SAa—O) (T ) + A (T

Bmlcl /B
21+1/8 . 318

+ (12— ex9)(x9 + Z)W

[~ (12— ) 62 +2)"

+ (12— £x19)

@ﬂ+aW—azfébuﬂ+3Wﬂ

2rmoR2L: [ Bog? [ Bm\’
(100 __ 0 r 0 m (c)
Fo =— {3_ 77\ By AL (X —4)

£ -2
e
() )

% X_(S_ —A+( (c)
A, -t
< [(12 - 6x9) (< +2) -

< +2)

11
F& = 0.

B, L1/
21+1/8 . 31/p

(12— £x9)

ACKNOWLEDGMENTS

Thiswork was supported by the U.S. Department of Energy through the Office
of Basic Energy Sciences and the Los Alamos National Laboratory Directed

227

Research and Development. One of us (A.S.) isgrateful for the partial financial
support of the Swiss National Science Foundation.

o A w

o

15.

16.

17.

18.

19.

28.

29.

REFERENCES

G. Navon, Y.-Q. Song, T. Room, S. Appelt, R. E. Taylor, and A. Pines,
Science 271, 1848 (1996).

. R. Tycko, S. Barrett, G. Dabbagh, L. Pfeiffer, and K. West, Science 268,

1460 (1995).

. J. M. Kikkawa and D. D. Awschalom, Science 287, 473 (2000).

Y. S. Greenberg, Rev. Mod. Phys. 70, 175 (1998).

. J. A. Sidles, Appl. Phys. Lett. 58, 2854 (1991).
. J. A. Sidles, J. L. Garbini, K. J. Bruland, D. Rugar, O. Ziger, S. Hoen, and

C. S. Yannoni, Rev. Mod. Phys. 67, 249 (1995).

. D. Rugar, C. S. Yannoni, and J. A. Sidles, Nature 360, 563 (1992).
. D.Rugar, O. Zuger, S. T. Hoen, C. S. Yannoni, H.-M. Vieth, and R. Kendrick,

Science 264, 1560 (1994).

. Z.Zhang, P. C. Hammel, and P. E. Wigen, Appl. Phys. Lett. 68, 2005 (1996).
. O. Zuger and D. Rugar, Appl. Phys. Lett. 63, 2496 (1993).
. P.C. Hammel, Z. Zhang, G. J. Moore, and M. L. Roukes, J. Low Temp.

Phys. 101, 59 (1995).

. O. Zuger and D. Rugar, Appl. Phys. Lett. 68, 2005 (1996).
. A Schaff and W. S. Veeman, Appl. Phys. Lett. 70, 2598 (1997).
. B.J. Suh, P.C. Hammel, Z. Zhang, M. M. Midzor, M. L. Roukes, and J. R.

Childress, J. Vac. ci. Technol. 16, 2275 (1998).

M. Ascoli, P. Baschieri, C. Frediani, L. Lenci, M. Martinelli, G. Alzetta,
R. M. Celli, and L. Pardi, Appl. Phys. Lett. 69, 3920 (1996).

K. Wago, O. Ziiger, R. Kendrick, C. S. Yannoni, and D. Rugar, J. Vac. ci.
Technol. B 14, 1197 (1996).

K. Wago, O. Ziiger, J. Wegener, R. Kendrick, C. S. Yannoni, and D. Rugar,
Rev. i Instrum. 68, 1823 (1997).

K. Wago, D. Botkin, C. S. Yannoni, and D. Rugar, Phys. Rev. B 57, 1108
(1998).

K. Wago, D. Botkin, C. S. Yannoni, and D. Rugar, Appl. Phys. Lett. 72, 2757
(1998).

. K. J. Bruland, W. G. Dougherty, J. L. Garbini, J. A. Sidles, and S. H. Chao,

Appl. Phys. Lett. 73, 3159 (1998).

. A. Schaff and W. S. Veeman, J. Magn. Res. 126, 200 (1997).
22. R. Verhagen, C. W. Hilbers, A. P M. Kentgens, L. Lenci, R.

Groeneveld, A. Wittli, and H. van Kempen, Phys. Chem. Chem. Phys. 1,
4025 (1999).

. O. Klein, V. V. Naletov, and H. Alloul, Eur. Phys. J. B 17, 57 (2000).
. O. Zuger and D. Rugar, J. Appl. Phys. 75, 6211 (1994).
. A. Abragam, “The Principles of Nuclear Magnetism,” Clarendon, Oxford

(1961).

. From Sigma-Aldrich, Product Number: 257621.
. Thecantileversarecommercially availablefrom Silicon-MDT Ltd., POB 50,

103305, Moscow, Russia; http://www.siliconmdt.com/, Product Number:
SC12 cont. E.

J. A. Sidles, J. L. Garbini, and G. P. Drobny, Rev. Sci. Instrum. 63, 3881
(1992).

G. P. Berman, F. Borgonovi, G. Chapline, S. A. Gurvitz, P. C. Hammel,
D. V. Pelekhov, A. Suter, and V. |. Tsifrinovich, http: //xxx.lanl.gov/abs/
quant-ph/0101035 (2001).



	1. INTRODUCTION
	FIG. 1.

	2. DESCRIPTION OF THE PROBE–SAMPLE INTERACTION
	FIG. 2.
	FIG. 3.
	FIG. 4.
	FIG. 5.
	FIG. 6.

	3. NUMERICAL SOLUTIONS
	4. EXPERIMENT
	FIG. 7.

	5. DISCUSSION
	TABLE 1
	FIG. 8.
	FIG. 9.
	FIG. 10.
	FIG. 11.
	FIG. 12.
	FIG. 13.
	FIG. 14.

	6. SUMMARY
	APPENDIX
	FIG. A1.
	FIG. A2.
	FIG. A3.
	FIG. A4.
	FIG. A5.
	TABLE A1

	ACKNOWLEDGMENTS
	REFERENCES

