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The magnetic resonance force microscope (MRFM) provides a
route to achieving scanned probe magnetic resonance imaging with
extremely high spatial resolution. Achieving this capability will
require understanding the force exerted on a microscopic mag-
netic probe by a spatially extended sample over which the probe
is scanned. Here we present a detailed analysis of this interaction
between probe and sample. We focus on understanding the situation
where the micromagnet mounted on the mechanical resonator gen-
erates a very inhomogeneous magnetic field and is scanned over a
sample with at least one spatial dimension much larger than that of
the micromagnet. This situation differs quite significantly from the
conditions under which most MRFM experiments have been car-
ried out where the sample is mounted on the mechanical resonator
and placed in a rather weak magnetic field gradient. In addition to
the concept of a sensitive slice (the spatial region where the mag-
netic resonance condition is met) it is valuable to map the forces
exerted on the probe by spins at various locations; this leads to the
concept of the force slice (the region in which spins exert force on
the resonator). Results of this analysis, obtained both analytically
and numerically, will be qualitatively compared with an initial ex-
perimental finding from an EPR-MRFM experiment carried out on
DPPH at 4 K. C© 2002 Elsevier Science (USA)

Key Words: MRFM, magnetic resonance force microscope; sen-
sitive slice; scanned probe microscopy.
1. INTRODUCTION

Improving the sensitivity of detection in electronic paramag-
netic resonance (EPR) and nuclear magnetic resonance (NMR)
has been an important focus of efforts to broaden the power
of magnetic resonance techniques. A remarkable variety of ap-
proaches have been taken including those exploiting optical
pumping and detection (1–3) or SQUID detection of NMR sig-
nals (4), to mention a few.

A very different approach has been proposed by Sidles (5,
6). He realized that a magnetic moment can be coupled to a
mechanical detector in the presence of a gradient of the magnetic
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induction:

F(r , t) = −[m(r , t) · ∇]Btot(r ) [1]

The force signal is proportional to the magnetic field gradient;
this can be made very large and provide very high detection sen-
sitivity and thus high spatial resolution. An instrument based on
this idea is referred to as a magnetic resonance force microscope
(MRFM) (6). A sketch of an MRFM employing a micromagnet
mounted on a mechanical resonator as the source of the mag-
netic gradient is shown in Fig. 1. Another approach is to place
the sample on the mechanical resonator, which is placed in an
inhomogeneous magnetic field.

The first magnetic resonance force signal was detected by
Rugar et al., in 1992 who mechanically detected the elec-
tron spin resonance signal (eMRFM) from a 30 ng crystal of
diphenylpicrylhydrazil (7). Two years later, Rugar et al. reported
the mechanical detection of 1H nuclear magnetic resonance
(nMRFM) in 12 ng of ammonium nitrate (8). These two pio-
neering experiments demonstrated that a microfabricated can-
tilever, similar to those developed for atomic force microscopy,
can detect the magnetic moment of a microscopic sample. In the
case of nuclear magnetic resonance (NMR) (8), the achieved
sensitivity of 1013 spins at room temperature and in a field of
2.4 T represents a substantial improvement over the standard
coil detection sensitivity.

Significant progress has been made in the past few years. In
1996, Zhang et al. mechanically detected ferromagnetic res-
onance signals (fMRFM) of yttrium iron garnet (9). Imag-
ing experiments with eMRFM (10, 11), nMRFM (12, 13), and
fMRFM (14) were performed. A magnetic resonance torque sig-
nal in a homogeneous magnetic field (15) was also detected. Im-
proved force sensitivity was demonstrated by operating at low
temperature (16–18). Force maps of a sample were obtained
with the magnetic probe placed on the mechanical resonator in
eMRFM (19) and fMRFM (14). The highest sensitivity reported
to date is∼200 electron spins in a 1 Hz bandwidth. The result was
obtained by operating an eMRFM at 77 K in a very large mag-
netic field gradient (20). In 1996, Wago et al. demonstrated that



E
PROBE–SAMPLE INT

FIG. 1. Sketch of an MRFM. The micromagnet on the mechanical resonator
produces an extremely inhomogeneous magnetic field that serves two purposes:
(i) It couples the mechanical resonator to the magnetic moments in the sample,
and (ii) it defines the spatial regions of the sample where the magnetic resonance
condition is met. Magnetic resonance techniques can be employed to manipulate
the magnetization m thus generating a force on the mechanical resonator at its
resonance frequency that will drive it into oscillation.

combining pulsed NMR techniques with fast adiabatic passage
enables measurement of the nuclear spin–lattice relaxation rate,
which they demonstrated for 19F nuclear moments in calcium
fluoride at low temperature (16). The same method was used
to measure the longitudinal spin relaxation of 1H rate in am-
monium sulfate at room temperature (21, 22). Klein et al. (23)
were able to demonstrate two different T1’s in a microscopic
crystallite of ammonium sulfate, one attributed to spins in the
surface layer of the crystal. They also measured the spin–spin
relaxation time T2 of protons. Recent eMRFM work in vitreous
silica at 5 K showed that the same principles can be also ap-
plied to study electron angular momentum dynamics of slowly
relaxing E’ centers (18).

In most of the work cited above the sample was placed on
the mechanical resonator and operated in an externally applied
magnetic field gradient of rather small magnitude. This situa-
tion corresponds to Fig. 1 except that the location of the sam-
ple and the gradient magnet are interchanged. The external
magnetic field gradient is generally produced by a permanent
magnet placed close the sample and its spatial dimensions are
typically much larger than the sample. This leads to a rather
simple probe–sample coupling since the sensitive slice, i.e., the
region (a surface of constant magnetic field) where the mag-
netic resonance condition is fulfilled, can be well approximated
by a paraboloid (24). The disadvantage of this setup is twofold:
(i) The strength of the magnetic field gradient and hence the
sensitivity is rather limited. (ii) The sample must be mounted
on the mechanical resonator; this dramatically limits the range
of samples that can be studied and reduces the quality factor
of the detector thereby limiting sensitivity. It further limits the
range of possible mechanical resonators which can be used, since
they must have spatial dimensions much larger than the sample.
Clearly the arrangement sketched in Fig. 1 is essential for a use-

ful microscope. However the price to be paid when working with
the micromagnet on the mechanical resonator is a significantly
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more complex interaction between the probe and sample; this
will be the subject of the present manuscript.

This complication arises because the force exerted on the
detector is proportional to the magnetic field gradient whose
magnitude and orientation varies dramatically throughout the
sensitive slice. A complete analytical analysis of the probe–
sample interaction for general experimental MRFM geometries
is quite complicated, however solutions to symmetric limiting
cases were found which prove to be valuable guides for under-
standing this interaction. For quantitative comparisons with the
experiment, numerical simulations of the probe–sample interac-
tion will be given. The main advantage of this approach is that the
analysis of an arbitrary probe sample geometry is possible, and
more realistic models of the micromagnet can be implemented.

The main body of the paper is organized as follows: In
Section 2 we introduce the model and subsequently derive the
analytical solutions for different limiting cases. Section 3 des-
cribes the algorithm used for the numerical evaluation for more
realistic parameters, and Sections 4 presents a brief description
of experimental measurements to test our modeling. These re-
sults are discussed in Section 5.

2. DESCRIPTION OF THE PROBE–SAMPLE INTERACTION

In the following we will derive our model of the probe–sample
interaction. This model is rather general and is capable of de-
scribing the probe–sample interaction in the limit of an extended
sample, i.e., where the sample is much larger then the micro-
magnet. Understanding this situation is essential if we are to use
the MRFM as a scanning tool. As will be demonstrated below
this situation leads to some counterintuitive results; these will be
thoroughly discussed in Section 5. A particularly important re-
sult is that the concept of the sensitive slice must be reexamined.
The slice width xsl is determined by the intrinsic homogeneous
line width δB and the magnitude of the field gradient |∇ B| (gen-
erated by the micromagnet) at the particular location of the spin
whose coupling is under consideration: xsl ≈ δB/|∇ B|; because
of the spatial variation of |∇ B|, the concept of a length scale
set by xsl breaks down under some conditions met in probe-on-
detector measurements.

In order to calculate the resonant response of the mechanical
resonator, we will proceed as follows: First we will derive for-
mulae for the local field, i.e., the superposition of all the involved
fields. This is necessary since its magnitude will determine the
spatial volume in which the resonance condition is met, or in
other words the spatial dependence of the resonance frequency.
Furthermore this allows us to determine the correct field compo-
nent relevant for the force coupling to the mechanical resonator
according to Eq. [1]. To do so we will use a dipolar approxima-
tion for the micromagnet. For most of the experimentally useful
geometries this should be a satisfactory approximation. Next,
we will determine the local magnetization, which together with

the field allows us to calculate the local force stemming from a
volume element d3x at an arbitrary position r . At this point we
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would like to stress that the sensitive slice (region in space where
the resonance condition is fulfilled) and the force slice (spatial
map of the force exerted the mechanical resonator at its reso-
nance frequency) are related by Eq. [1], however they are not
synonymous due to the variation of the magnitude and sign of
the relevant component of the field gradient. The consequences
of this distinction are striking and will be discussed in Section 5.
Finally, the total force acting on the mechanical resonator is the
integral of the local force over the entire sample.

It is not possible to carry out this spatial integration ana-
lytically for the most general case, so after generating general
expressions from the model we restrict our analysis to a few
specific cases, namely: In Section 2.1 we solve it in the case
where the magnetization is described by a homogeneous intrin-
sic Lorentzian line shape. To do so we restrict the sample geome-
try to a semi-infinite sample and apply some further restrictions.
In order to be able to treat more general sample geometries
and to loosen these further restrictions, we also calculate the
force response for a rectangular line shape; this is presented in
Section 2.2 and 2.3. Section 2.2 presents a semiinfinite sample
geometry, while Section 2.3 presents the force response from a
buried thin layer.

For all these cases we assume that the spin–lattice relaxation
time T1 is much shorter than the inverse frequency of the me-
chanical resonator 1/ωmr. Under these conditions we can em-
ploy rf-modulation schemes (amplitude and frequency modula-
tion) (25) which generate a time dependent magnetization with a
strong Fourier component at the resonance frequency of the me-
chanical resonator. Furthermore the magnetization can always be
assumed to be in dynamical equilibrium on the time scale 1/ωmr.

What about the opposite limit where T1 � 1/ωmr? In this situ-
ation one can manipulate the spin system utilizing fast adiabatic
inversion schemes resulting in an efficient coupling at the reso-
nance frequency of the mechanical resonator. We will not discuss
this limit here but the qualitative picture we are going to discuss
is not altered. This is true since the observed resonant displace-
ment of the mechanical resonator is still describable in a rather
similar fashion. Most of the features described below originate
from the coupling of a micromagnetic tip to a spin volume larger
then the micromagnet.

With this overview in mind, we now present our model. The
force originating at some point in space due to the presence
of a given magnetization interacting with an inhomogeneous
magnetic induction is given as

F(r , t) = −[m(r , t) · ∇]Btot(r )

= −∇′[m(r , t) · Btot(r )] [2]

where ∇′ acts only on Btot(r ) and the total magnetic induction
decomposes into
Btot(r ) = B0 + B(r ) + Blocal(r ) [3]
T AL.

where B0 is the external polarizing magnetic induction, B(r ) is
the magnetic induction due to the micromagnetic on the mechan-
ical resonator and Blocal(r ) induction resulting from any other
source experienced by the local magnetization, such as, e.g.,
magnetic dipole fields of spins within the sample. In the follow-
ing we will suppress Blocal(r ) assuming it to be much smaller
than B0 and B(r ).

In the following we will use the dipolar approximation for the
magnetic induction generated by the micromagnet

B(r ) = 2B(r ) cos(θ )er + B(r ) sin(θ )eθ [4]

with

B(r ) = Bm

(
Rs

r

)ξ

. [5]

In the case of a spherical, homogeneously magnetized sphere,
Bm = 4π

3 M0 with M0 the saturation magnetization, Rs the radius
of the sphere, and ξ = 3. Numerical simulations of a realistic
micromagnet suggest a ξ < 3, even though the real radial func-
tional dependence is no longer purely power-law.

For our calculations we will use the geometry shown in Fig. 2.
The total magnetic field is then given as

Btot = B0 + B(r )

= ex
3

2
B(r ) sin(2θ ) cos(φ) + ey

3

2
B(r ) sin(2θ ) sin(φ)

+ ez

[
B0 + B(r )

2
(3 cos(2θ ) + 1)

]
, [6]

so the spatial variation of the angular resonance frequency is

ωS(r, θ )

γ
= |Btot|

= B0

[
1 + B(r )

B0
(3 cos(2θ ) + 1) + 1

2

(
B(r )

B0

)2

× (3 cos(2θ ) + 5)

]1/2

= B0

[
1 + B(r )

2B0
(3 cos(2θ ) + 1)

]
+ O

(
B(r )

B0

)2

[7]

Because we assume 1/T1 � ωmr/2π , we can achieve an ef-
fective coupling to the mechanical resonator at its resonance
frequency by cyclic suppression of the magnetization. This can
experimentally be accomplished in at least three ways: (i) Am-
plitude modulation of B0; (ii) Amplitude Modulation of the

rf-field; or (iii) Frequency Modulation of the rf-field. For all
these cases the magnetization in the laboratory reference frame
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is approximately

m(r, t) = ezm0L(r , t) [8]

where m0 is the magnetization density and L(r , t) is the nor-
malized intrinsic magnetic resonance lineshape under consider-
ation. The time dependence of L and hence Fz is to be under-
stood in the following way. Since we only consider the situation
1/T1 � ωmr/2π , the magnetization density is always in dynami-
cal equilibrium with the rf-field and hence will accurately follow
variations in the rf-field (AM, FM) which are slow compared
to ωrf.

Since the mechanical resonator only couples to the z-compo-
nent of the force field Eq. [2] gets together with Eqs. [6] and [8].

Fz(r , t) = F(r , t) · ez

= −m0L(r , t)

[
∂ B(r )

∂r

1

2
(3 cos(2θ ) + 1) cos(θ )

+ B(r )

r
3 sin(2θ ) sin(θ )

]
. [9]

This is the force from the volume element d3x acting on the me-
chanical resonator. A key point is that the sign of this local force
depends on position r ; this is also sketched in Fig. 2. Starting
with Eqs. [5] and [9] one can find an analytical expression for
the angle θc at which the force vanishes, namely

θc = π − arccos

(√
6 + ξ

6 + 3ξ

)
. [10]

The total force from a semiinfinite sample experienced by the
mechanical resonator is

Ftot(t) =
∫ ∞

a
r2 dr

∫ π

ϑ(r )
sin(θ ) dθ

∫ 2π

0
dφFz(r , t). [11]

FIG. 2. Geometry used in the calculations. The sphere represents the mi-
cromagnet on the mechanical resonator. Since we use a dipole approximation

in our calculations, spherical coordinates are used. The dashed line separates
regions of negative and positive force coupling as indicated by � and ⊕.
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ϑ(r ) is the angle beyond which a radial line originating at the
probe magnet first intersects the sample. To calculate this integral
we use the variables

x ≡ 3 cos(2θ ) + 1
[12]

B ≡ Bm

(
Rs

r

)ξ

.

Equation [11] can then be written

Ftot(t) = 2πm0
R2

s

24ξ

∫ 4

−2
dx

∫ Bc(x)

0
d BL(B, x, t)

(
Bm

B

)2/ξ

× [8 − (2 + ξ )x]. [13]

Here Bc(x) is the magnetic induction at the point where a radial
line originating at the probe with angle θ intersects the surface
of the sample

Bc(x) = Bm

(
x + 2

6κc

)ξ/2

[14]

with κc = (a/Rs)2, where a is the distance from the centre of
the spherical probe magnet to the surface (see Fig. 2).

The displacement z(t) of the mechanical resonator is given
by

z(t) =
∫ t

0
dτ zG(t − τ )

Ftot(τ )

m
[15]

with m the mass of the mechanical resonator and

zG(t) = e−�t

ωmr
sin(ωmrt)

where � � ωmr/(2Q) where Q is the quality factor of the me-
chanical resonator. Since Q is typically very large the strongest
displacement response will stem from the ωmr-Fourier compo-
nent of z(t).

Given the solution for the total force acting on the mechanical
resonator, the displacement can be calculated from Eq. [15] and
z(ωmr) by Fourier transformation. However this leads to very
complex results, whose interpretation is not transparent. Sim-
plifications can be obtained by using approximate solutions and
noting that: (i) The mechanical resonators used in these exper-
iments have very high Q’s (of the order of 104), and (ii) the
displacement of the mechanical resonator is measured via inter-
ferometry and recorded with a lock-in amplifier (see Section 4).
As a consequence we are only interested in the ωmr Fourier
component of the steady state amplitude of z(t). This allows the
approximation [ ( )]
z(ωmr) � Q

mω2
mr

Ftot(t = 0) − Ftot t = π

ωmr
[16]
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where the time dependence of Ftot(t) is to be understood in the
following manner. Given that 1/T1 � ωmr/(2π ) the magnetiza-
tion is always in equilibrium on the time scale of interest 1/ωmr.
Therefore the parameters in Ftot can be assumed time dependent.
In the following we will discuss amplitude modulation of the rf-
field only; however we find that both frequency modulation of
the rf-field and modulation of B0 give very similar results. If
H1 is the amplitude of the rf-field and ω1 = γ H1; amplitude
modulation is described by

ω
(AM)
1 (t) = ω1

[
1 + ζ

1 + ζ
cos(ωmrt)

]
, [17]

where 0 ≤ ζ ≤ 1 describes the depth of amplitude modulation.
Using these results, we can calculate the total force under

different conditions. We integrate Eq. [13] for two different line
shapes: a Lorentzian line shape such as given by the standard
Bloch equations, and for a rectangular line shape. Obviously
the rectangular line shape is unphysical, however this limit has
the advantage of being more transparent, showing the physical
essence in the probe–sample interaction. The solution for a thin
magnetic layer will be presented for the rectangular line shape
approximation only.

2.1. Lorentzian Line Shape

We take 1/T1 � ωmr/(2π ), and are only interested in time
scales of order 1/ωmr, so we can use the steady state solution of
the Bloch equation

L(r, t) = 1 + [ωrf − ωS(r, θ )]2T 2
2

1 + [ωrf − ωS(r, θ )]2T 2
2 + ω2

1T1T2
, [18]

where ωrf is the frequency of the irradiating rf-field, T1 the spin–
lattice relaxation time, and T2 the spin–spin relaxation time, and
we may consider the lineshape parameters to be time dependent.

This description of the magnetization is appropriate under the
following conditions:

1. The relaxation rates are much faster than the angular reso-
nance frequency of the mechanical resonator ωmr. This ensures
that the magnetization is always in thermal equilibrium with the
applied magnetic fields.

2. The local spin–spin interactions must be weak enough to
allow the use of the Bloch equations.

3. The local field of the micromagnet B(r ) must be weak
enough, that the deviation of the magnetization from ez is neg-
ligible.

Equation [13] can only be integrated in a closed form in the
limit Bc(x) → Bm . This situation is shown in Fig. 3: the sample

has a small spherical dent of the size of the micromagnet and
the micromagnet is located within this dent; we set ξ = 2. This
T AL.

FIG. 3. Geometry used for calculating the case of a Lorentzian line shape.
The center of the micromagnet is located at the sample surface. This simplifies
the problem sufficiently that analytical solutions for the total force acting on the
mechanical resonator can be found.

situation is not fully realistic but provides accurate insight into
the magnetization dyanmics.

Under these highly symmetric conditions the solution of
Eq. [13] is

Ftot(t) = 2πm0 R2
s

[
α0 +

3∑
k=1

αk ln
[
1 + ω2

1T1T2

+ T 2
2 (�ω + (−1)k(k − 1)ωm)2

]
+ βk arctan

(
T2(�ω + (−1)k(k − 1)ωm)√

1 + ω2
1T1T2

)]
[19]

where ω0 = γ B0, ωm = γ Bm and the coefficients αk and βk are
given by

α0 = Bm
3ω2

1T1T2 − 2
(
1 + �ω2T 2

2

)
ln(Bm/1)

4
(
1 + ω2

1T1T2 + �ω2T 2
2

)
α1 = Bm

ω2
1T1T2

4
(
1 + ω2

1T1T2 + �ω2T 2
2

)
α2 = (−1)

H 2
1 T1

12Bm T2
· 1 + ω2

1T1T2 + (
�ω2 + 3ω2

m

)
T 2

2

1 + ω2
1T1T2 + �ω2T 2

2

α3 = H 2
1 T1

12Bm T2

β1 = Bm
ω2

1�ωT1T 2
2

2
√

1 + ω2
1T1T2

(
1 + ω2

1T1T2 + �ω2T 2
2

)
β2 = H 2

1

6Bm

· T1
(
1 + T1T2ω

2
1

)
(�ω − 2ωm) + T1T 2

2 �ω
[
(�ω − ωm)2 − 4ω2

m

]√

1 + ω2

1T1T2
(
1 + ω2

1T1T2 + �ω2T 2
2

)
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β3 = (−1)
H 2

1

6Bm
· (�ω − 2ωm)T1√

1 + ω2
1T1T2

with �ω = ωrf − ω0.
The implications of this result will be discussed in Section 5,

along with the results for a rectangular line shape, the results
of numerical simulations and comparisons with experimental
findings.

2.2. Rectangular Line Shape

To enable analytical solution for cases of lower symmetry, we
will use a model where the line shape is approximated by a rect-
angle whose width and depth are obtained from the Bloch Eqs.

L(x, B) =
{

1, |�ωS| > δω

Lr ≡ 1
1+ω2

1 T1T2
, |�ωS| ≤ δω

[20]

where �ωS (see Eqs. 7 and 12) is

�ωS = ωrf − ωS = ωrf − ω0

(
1 + Bx

2B0

)

and the natural line width δω =
√

1 + ω2
1T1T2/T2. The

boundary of the resonant region in the (B, x)-phase space is
therefore given by

Bx = 2B0

(
ωrf ± δω

ω0
− 1

)
︸ ︷︷ ︸

≡A±
[21]

The total force acting on the mechanical resonator is

Ftot = −2πm0
R2

s

24ξ

∫ ∫
R

dx d B

×
{
L(x, B)

(
Bm

B

)2/ξ

[8 −(2 + ξ )x]

}
[22]

where R is the volume of the sample where the resonance con-
dition is satisfied (sensitive slice). Different aspects of this arise
from various spatial relationships between the sensitive slice and
the sample. To keep the body of the paper compact, details of the
discussion of these different cases are given in Section 5 and Ap-
pendix A.1. In Fig. 4 the different regions are labeled 1 to 7. Their
physical meaning is as follows: In region 1 the external field is so
small that the sensitive slice is outside the sample and hence there

is no force coupling. In regions 2 and 3 the sensitive slice has just
entered the sample with an onion-shell like structure; in 3 the
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FIG. 4. The various regions of B-x space vs ω0 (labeled 1 to 7 describing the
evolution of the resonant region: At the border 1 → 2 the sensitive slice enters
the sample; at the boundary it leaves the sample 6 → 7 (see also Appendix A.1).

full width of the slice has entered the sample. In region 4 most of
the sample is going into resonance and the concept of a sensitive
slice must be handled cautiously (see Section 5). Regions 5 and
6 are analogous to 2 and 3 except that the shape of the sensitive
slice changes as we will discuss in Section 5. In region 7 the
external field is so large that no part of the sample is resonant.

If we define β ≡ 2/ξ , and

x∓± = −1 ∓
√

1 + κc
12B0 A±

Bm
, [23]

the force for the case ωm/(12κc) > 2δω is

F (1)
tot = 0

F (2)
tot = −2πm0 R2

sLr

ξ (ξ − 2)

{
− B0ξ

2

3 · 22+β

(
Bm

B0

)β

× A−(x+− − 4)

(
x+−
A−

)β

+ Bmκ1−1/β
c

×
[

6 − 2ξ − (12 − ξ x+−)(x+− + 2)1/β

21+1/β · 31/β

]}

F (3)
tot = −2πm0 R2

sLr

ξ (ξ − 2)

{
B0ξ

2

3 · 22+β

(
Bm

B0

)β

×
[

A+(x++ − 4)

(
x++
A+

)β

− A−(x+− − 4)

(
x+−
A−

)β]

+ Bmκ
1−1/β
c

21+β · 31/β

[
(12 − ξ x++)(x++ + 2)1/β

1/β
]}
− (12 − ξ x+−)(x+− + 2)
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F (4)
tot = −2πm0 R2

sLr

ξ (ξ − 2)

{
B0ξ

2

3 · 22+β

(
Bm

B0

)β

×
[

A−(x−− − 4)

(
x−−
A−

)β

− A−(x+− − 4)

(
x+−
A−

)β

+ A+(x++ − 4)

(
x++
A+

)β]
+ Bmκ

1−1/β
c

21+β · 31/β

× [
(12 − ξ x−−)(x−− + 2)1/β − (12 − ξ x+−)

× (x+− + 2)1/β + (12 − ξ x++)(x++ + 2)1/β
]}

[24]

F (5)
tot = −2πm0 R2

sLr

ξ (ξ − 2)

{
B0ξ

2

3 · 22+β

(
Bm

B0

)β

×
[

A−(x−− − 4)

(
x−−
A−

)β

− A−(x+− − 4)

(
x+−
A−

)β

+ A+(x++ − 4)

(
x++
A+

)β

− A+(x−+ − 4)

(
x−+
A+

)β]

+ Bmκ
1−1/β
c

21+1/β · 31/β

[
(12 − ξ x−−)(x−− + 2)1/β

− (12 − ξ x+−)(x+− + 2)1/β + (12 − ξ x++)

× (x++ + 2)1/β(12 − ξ x−+)(x−+ + 2)1/β
]}

F (6)
tot = −2πm0 R2

sLr

ξ (ξ − 2)

{
B0ξ

2

3 · 22+β

(
Bm

B0

)β

×
[

A+(x++ − 4)

(
x++
A+

)β

− A+(x−+ − 4)

(
x−+
A+

)β]

+ Bmκ
1−1/β
c

21+1/β · 31/β

[
(12 − x++ξ )(x++ + 2)1/β

− (12 − x−+ξ )(x−+ + 2)1/β
]}

F (7)
tot = 0

where the superscripts on Ftot correspond to the various regions
shown in Fig. 4. Details are given in Appendix A.1.

2.3. Thin Spin Layer—Rectangular Line Shape

The approximation of a rectangular line shape allows us to
treat this problem analytically. We assume the sample consists
of a thin layer of spins buried in an otherwise inert material as
shown in Fig. 5. This might correspond to, e.g., a layer of 31P

as thin as a few hundred nanometers ion implanted into silicon.
We explore the relationship between the intrinsic line shape and
T AL.

FIG. 5. Geometry for sample consisting of a thin layer of buried spins.
Notation is as in Fig. 2. This is an important geometry since buried interfaces
are often encountered in modern materials technologies. It also highlights a
strength of the MRFM relative to other scanned probe techniques which are
sensitive to surfaces only.

the mechanically detected spectrum z(B0). The lower boundary
to the spatial spin distribution introduces a second boundary for
the magnetic induction Bd (x)

Bd (x) =
(

κd

κc

)−ξ/2

Bc(x)
[25]

κd =
(

a + d

Rs

)2

so the region over which Eq. [22] is integrated is given by

x ∈ [−2, 4] and B ∈ [Bd (x), Bc(x)]

where Bc(x) is given by Eq. [14].
With this additional boundary line there will be two sets of

solutions (ξ ∼> 2) for the crossing points between B±(x) and
Bc,d (x) (see also Appendix A.5):

x (c)
∓± = −1 ∓

√
1 + κc

12B0 A±
Bm

x (d)
∓± = −1 ∓

√
1 + κd

12B0 A±
Bm

A typical situation for a particular value of the external mag-
netic induction B0 is shown in Fig. 6. The area between the
curves Bc and Bd corresponds to the spin layer, and the area
between the curves B+ and B− represents the sensitive slice, so
the resonant force signal arises from the region defined by the
intersection of these two sets of curves.

The structure of the resulting formulae for Ftot is similar to

that for the semiinfinite sample, though there are a larger number
of possible cases as a function of B0; we present only the general
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FIG. 6. Region of a buried spin layer meeting the resonance condition
using the variable representation given in Eq. [12]: x = 3 cos(2θ ) + 1 and
B = Bm (Rs/r )ξ . In this representation the area between the curves Bc and
Bd corresponds to the spin layer, and the area between the curves B+ and B−
represents the sensitive slice. The resonant force signal arises from the region
bounded by these four curves.

expression for the resulting force:

F (α)
tot = C0

{
C1

∑
{kα}

(−1)k0 Ak1

(
x (k3)

k2k1
− 4

)(
x (k3)

k2k1

Ak1

)β

+ C2

∑
{ jα}

(−1) j0κ
1− 1

β

j3

(
12 − ξ x ( j3)

j2 j1

)(
x ( j3)

j2 j1
+ 2

) 1
β

}

where {kα}, { jα} are sets of vectors involving k0 = 0, 1, k1,2 =
+, − and k3 = c, d (analogously for the j’s). The C’s are given
by

C0 = −2πm0 R2
sLr

ξ (ξ − 2)

C1 = B0ξ
2

3 · 22+β

(
Bm

B0

)β

C2 = Bm

21+1/β · 31/β

Detailed results are given in Appendix A.5, Eqs. A.6.

3. NUMERICAL SOLUTIONS

For the numerical analysis it is convenient to switch to cylin-
drical coordinates. The sample volume was broken into prisms
constituting unit cells of calculation. The appropriate compo-
nents of the magnetic field of the probe magnet and of its gradient
were calculated at the center of each prism, and the instantaneous
spin magnetization in each prism was also calculated taking into
account the frequency and amplitude of the applied rf-field and

the magnitude of the total magnetic induction Btot. All param-
eters are assumed constant over the volume of the prism. The
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cylindrical symmetry about ez allows the evaluation of all nec-
essary parameters only in the r z-plane. Thus, all samples are
considered to be cylinders with radius R and length Z .

The calculation time was reduced by employing an adaptive
grid size (in the r z-plane) method. The size of the unit cell
was determined by the requirement that it be N times narrower
than the thickness of the sensitive slice at the particular point in
the sample. The thickness of the sensitive slice is given by the
ratio of the magnetic resonance linewidth and the local gradient
of magnetic field δω(r, z)/|∇ωS(r, z)|. We found N = 2 to be
sufficient for the cases discussed here.

4. EXPERIMENT

The magnetic resonance force microscope apparatus is shown
schematically in Fig. 7. A detailed description will be published
elsewhere. The paramagnetic test sample consisted of 2,2-Di(4-
tert-octylphenyl)-1-picrylhydrazyl (DPPH) powder (26) with a
typical grain size of the order of 100 µm was fixed with vacuum
grease to a slot in semirigid coaxial 50 � transmission line.
A single crystal silicon cantilever with a length of 350 µm, a
spring constant k � 0.01 N/m and a typical resonance frequency
of ≈16 kHz (27) was used to detect the force. The tip mounted on
the end of the cantilever is coated with a 150 nm thick permalloy
film; the tip radius then is approximately this same size.

The electron spins in the sample are polarized by an external
magnetic induction B0 and experience in addition the very inho-
mogeneous field of the micromagnet. The spins are resonantly
excited by a microwave frequency field (9.9 GHz), which is ei-
ther frequency- or amplitude-modulated at the frequency of the
cantilever in order to generate a resonant force. The microwave-
field is delivered to the sample by means of a 50 � transmission
line as indicated in Fig. 7.

FIG. 7. Block diagram of the magnetic resonance force microscope. The
signal excitation component resembles standard continuous wave magnetic res-

onance; detection is by means of mechanical resonator incorporating a micro-
magnetic tip and its associated displacement detection equipment.
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5. DISCUSSION

The eventual goal of the MRFM is to achieve single spin sensi-
tivity; this raises important questions such as that of continuous
quantum measurement (28, 29). However, present sensitivity
does not enable detection of only a very few spins and hence
geometrical effects due to the coupling are of paramount im-
portance as we will discuss in some depth here. Naı̈vely one
would expect the strongly inhomogeneous magnetic field of the
micromagnet to produce a broad resonant response as a function
of the swept external field B0 with a width set by the field dis-
tribution of the micromagnet. Our quantitative analysis shows
that this does occur, however the magnitude of the displacement
response of the mechanical resonator varies strongly with B0

and hence this expected broadening can easily be hidden in a
real experiment, due to noise or other limitations. The dominant
response is found to occur for fields B0 � ωrf/γ (i.e., where
the magnetic field of the micromagnetic probe is very small,
that is, less than the linewidth); this response can be orders of
magnitude more intense than any other resonant response. For
B0 < ωrf/γ the sensitive slice is a thin shell of constant field,
however for B0 � ωrf/γ both the field and the field gradient of
the micromagnet are very weak causing quite a large volume of
the sample to be in resonance. This leads to a large signal in spite
of the weak coupling per spin. In this case the concept of the
sensitive slice must be extended. Furthermore, the sensitive slice
and the local force field are related but not synonymous, and ge-
ometrical coupling effects can have important effects. Keeping
these issues in mind, we will structure the discussion as follows:
The findings of the analytical calculations will be discussed
and then more realistic physical parameters will be discussed
based on the numerical results. Finally, our findings will be
compared with experimental results. Unless otherwise noted,
the figures shown below are calculated using the parameters in
Table 1.

Figures 8 and 9 show the magnitude of the displacement vs. the
external applied magnetic induction B0 as one would measure
in a typical field-swept experiment. Both figures are for samples
whose overall dimensions are much larger than the micromagnet.
Figure 8 is calculated from Eq. [19] whereas Figure 9 is derived
from Eq. [22].

TABLE 1

Relaxation times T1 = T2 60 ns
Mechanical resonator resonance frequency ωmr 2π · 10 kHz
Field at the surface of the micromagent Bm

4π
3 · 860 G

Spatial variation of probe field (Eq. [5]) ξ 2.005
Rf-field frequency ωrf/γ 1 T
Rf-field amplitude H1 1 G
Rf-field modulation (Eq. [17]) ζ 1

Note. Unless otherwise noted, the following parameters were used for the cal-

culations presented here. These parameters correspond to EPR either in DPPH,
or in phosphorus implanted silicon at a doping level of 8 × 1017 cm−3, both at
T = 4 K.
T AL.

FIG. 8. Response of a mechanical resonator vs B0 for amplitude modulation
(AM) in the case of a Lorentzian line shape and an extended semi-infinite sample
as calculated in Section 2.1 (ξ = 2, Bm = 350 G). The dashed line shows the
intrinsic line shape one would measure in a standard EPR experiment. The inset
is a blow-up of the center of the resonance, with intensity plotted on a linear
scale.

One finds a very strong response for B0 = ωrf/γ . Since this
feature will occur in later discussions we introduce the term
“zero-probe-field resonance” (ZPFR), referring to the situation
B0 = ωrf/γ . In this case broadening due to the field distribution
of the micromagnet is present, however it is much smaller than in
regions where the probe field is larger, that is where B0 deviates
from the ZPFR-value (ω0 <> ωrf ± δω). In the highly symmetric
case shown in Fig. 8 (Lorentzian line shape with micromagnet

FIG. 9. Response of a mechanical resonator vs B0 for AM in the case of
a rectangular line shape and an extended semi-infinite sample as calculated in
Section 2.2. Rs : a = 1 : 2. Notice that the response is similar to the Lorentzian
case in Fig. 8. The one clear difference, the much reduced extent of the high

field shoulder, is due to the fact that the micromagnet has been raised above the
sample surface, thus reducing the coupling range (θ is always greater than π/2).
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embedded in the sample surface as shown in Fig. 3) the full
broadening expected due to the dipole field of the micromagnet
is found as indicated by the arrows in the figure. Here ξ = 2
and Bm is set to 350 G to satisfy the constraint that the local
field of the micromagnet in the sample be much smaller than the
external field.

The response for the case of the rectangular line shape is sim-
ilar as can be seen from Fig. 9. Here the micromagnet is posi-
tioned above the sample (Rs : a = 1 : 2, see also Fig. 2). Because
the probe has been raised, the high field shoulder is much less
extended. To understand these features better, we consider the
concept of the sensitive slice and show that for some values of
ω0 it differs from that usually discussed (5). The sensitive slice
is defined as the resonant region of the sample. Since the micro-
magnet leads to a strong inhomogeneous magnetic induction in
its vicinity only part of the sample will resonate. An estimate of
the spatial width of the sensitive slice is xs1 ≈ δω/∇ωS , where
δω is the intrinsic homogeneous line width and ωS is given by
Eq. 7. This expression is similar to the one used in conven-
tional MRI. However, due to the large variation in the gradient
of the magnetic induction of the micromagnet this simple con-
cept must be taken with some caution. For fields ω0 ∼< ωrf the
sesnsitive slice is a constant-field shell whose width is indeed
approximately xsl. This situation, shown in Figs. 10a and 10b
is the situation usually considered in the context of the MRFM.
The right-hand side of Fig. 10 shows the resonant magnetiza-
tion, whereas the left-hand side shows the local coupling force
strength weighted by the volume of the sample exhibiting this
force; we will call this the force slice. Between (a) and (b) the
external field B0 is increasing resulting in a more extended sen-
sitive slice xsl since the gradient ∇ωS is decreasing.

It is also worth noting that the force slice shows a sign change
(green corresponds to negative force coupling, or a force whose
phase is shifted by 180◦ with respect to the excitation signal,
whereas red–yellow corresponds to positive, or in-phase, force
coupling). The purple line in Fig. 10 separates the regions of
positive and negative force coupling.

There are two additional cases to consider: (i) the ZPFR where
ωrf − δω ≤ ω0 ≤ ωrf + δω. In this situation, due to the finite
magnetic resonance line width and the very small field gradient
in this region of small field, the entire sample is in resonance
except for regions very close to the micromagnet where the mag-
nitude of the local field is too large. This is shown in Fig. 10c. In
this situation xsl is not a meaningful length scale since xsl changes
very rapidly as function of position. (ii) ω0 ∼> ωrf. Here one finds
a toroidal sensitive slice as shown in Fig. 10d with a width of
order xsl. We will focus on samples with overall spatial dimen-
sions much larger than the micromagnet (i.e., ∼> Rs = 150 nm
in our case) discussing other situations later on. The field-swept
response shown in Figs. 8 and 9 shows that the strongest signal
originates in the field range ω0 ≈ ωrf, i.e., the situation where a
large sample volume is resonant. For homogeneously broadened

lines (where there is a simple mapping between spectral and spa-
tial dimensions) the low field shoulder of the ZPFR accurately
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FIG. 10. Calculation of the sensitive slice shape (right hand panels) and
force slice (left hand panels) for different external field values B0. The force
slice is weighted by the volume element. The purple line on the left (force
slices) marks the angle at which the local force changes sign (see also Fig. 2):
(a) (B0 = 0.9965 T ) and (b) (B0 = 0.9985 T ) show typical sensitive slices as
shells of constant field for γ B0 < ωrf; (c) shows the situation for γ B0 = ωrf.
Since the gradient is very small in the regions where the resonance condition is
met the ratio of the line width to the gradient is very large, hence a large volume
of sample meets the resonance condition. The conventional concept of a typical
length scale xsl ≈ δω/∇ωs breaks down in this case. (d) γ B0 > ωrf (B0 =
1.0005 T ). Here the shape of the sensitive is approximately toroidal.

reproduces the intrinsic spectrum as can be seen from Figs. 8
and 9. In this low sensitivity regime valuable parameters like
the chemical shift can be directly read off of the spectrum, since
the shift and broadening of the line by the probe micromagnet

is very small. However, since a large volume of sample is in
resonance this information is not obtained from a particularly
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microscopic spatial region. The region of the sample contribut-
ing substantially to the resonant signal is of the order 100 Rs .

From this discussion it is also clear that the ZPFR will not
depend strongly on the distance separating the micromagnet and
the surface. The only effect is a gradual decrease of the signal
size. This is shown in Fig. 12. Instead, it is the low and high-
field shoulders of the spectrum that are (ω0 <> ωrf ± δω) strongly
influenced.

It is useful to study how the signal is influenced by struc-
tures whose dimensions are comparable to the size of the mi-
cromagnet. In Section 2.3 (see also Appendix A.5) we calcu-
late the force field stemming from a thin magnetic layer with
a thickness comparable to the size of the micromagnet. The
geometry used is presented in Fig. 5. Figure 11 shows the field-
swept response in the case of a signal excited by amplitude
modulation. The field-swept spectrum is quite different from
that produced by the semiinfinite sample discussed above. The
ZPFR line previously found at resonance is replaced by a sharp

FIG. 11. Response of the mechanical resonator vs B0 using AM for a thin
buried layer as described in Section 2.3 and Fig. 5. The thin sharp line at B0 =

1 T shows the intrinsic line. Rs : a : d = 1 : 2 : 1. The inset shows the discrepancy
between the analytical and numerical solution.
ET AL.

FIG. 12. Semiinfinite sample spectra for various micromagnet-sample sep-
arations. The primary effect of moving the micromagnet away from the surface
(increasing a/Rs ) is a reduction in the extent of the low- and high-field shoulders.

edge to the strong response whose peak appears at higher
field. This pronounced peak is shifted by approximately 35 G
relative to the intrinsic resonance for our chosen parameters.
The peak position is an indirect measure of the thickness of the
spin-layer; unfortunately it is difficult to derive an analytical
expression for the relation between thickness and the peak posi-
tion. Qualitatively one finds that they are reciprocal, i.e., as the
layer becomes thicker, the peak is shifted closer to the ZPFR.

On the low field side the force changes sign for the reasons
we have discussed (see Fig. 2). The sign change occurs near a
field of 0.962 T; the angle at which the local Fz-force coupling
is zero is given by Eq. [10]. At very low fields the onion-shell
like sensitive slice is entirely within the negative force coupling
region. With increasing field portions of the sensitive slice enter
the positive-force region and at some point (for the parameters
we consider) there is a cancellation.

The inset to Fig. 11 shows the difference between the an-
alytical and numerical solutions |zanalytic(B0) − znumerical(B0)|.
This deviation is of order 1%, except for the high field region
(B0 > ωrf/γ ) where it becomes larger. In this region the analyt-
ical solution involves an approximation for the point at which
the sensitive slice enters the sample; this leads to tangents be-
tween the surface of the sample and the sensitive slice with
very small differences and therefore to small systematic devi-
ations. Using the more realistic Lorentzian lineshape in place
of the rectangular in the numerical approach we find that the
field-swept spectrum in Fig. 11 is changed in amplitude but its
shape is unchanged (not shown here). The difference in ampli-
tude is π/2, the difference between the integrals of rectangular
and Lorentzian line shapes.

For the thin layer sample (Rs : a : d = 1 : 2 : 1, Fig. 5) we nu-
merically calculated the AM-response for more realistic param-

eters ξ = 3 and a Lorentzian line shape. The other parameters
are as given in Table 1. The result is shown in Fig. 13. As one can
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FIG. 13. Response of the mechanical resonator vs B0 using AM for a thin
buried layer as described in Section 2.3. The thin sharp line at B0 = 1 T
shows the intrinsic line. The response is calculated numerically for the same
parameters as shown in Fig. 11 (Rs : a : d = 1 : 2 : 1), except that a Lorentzian
line shape and a more realistic ξ = 3 was used. The inset shows the region close
to the ZPFR on a linear scale. The dashed curve represents the intrinsic EPR-line
shape.

FIG. 14. Bottom panel: Filled circles represent the signal from 2,2-Di(4-
tert-octylphenyl)-1-picrylhydrazyl (DPPH) powder at T = 4 K. The response
was obtained by amplitude modulation at a rf-frequency of ωrf = 2π · 9.9 GHz.
The colored curves show the response calculated from our model for specific
values of a/Rs . The experimental measurements were performed on a powder
sample, so we assume coupling to a single grain. We approximate the grain

geometry as a cylinder whose diameter is 20 Rs , and height is 10 Rs . The top
panel shows the calculated evolution of the signal with increasing a/Rs .
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see, the general character is not altered. Due to the Lorentzian
line shape all the features are broadened, as one would expect.
The more rapid drop off of the field of the micromagnet (ξ = 3)
causes all the observable features to fall in a narrower range of
field B0.

Comparison of these results show that the general features
are rather robust under variation of the parameters describing
the micromagnet and lineshape, so the solutions presented here
provide a general and reliable guide to further analysis.

We now provide a brief comparison with experimental data.
A typical field scan using amplitude modulation is shown in
Fig. 14. This spectrum appears to be a mixture between the
calculation for a semiinfinite sample (Fig. 8) and a thin-layer
sample (Fig. 13). We attribute this to the fact that the DPPH
powder sample is made up of crystallites of various sizes. The
distinctive features are present however, including the peak at
ZPFR (g = 2.0036) and the negative response below the reso-
nance field. Experiments that will provide quantitative compar-
ison with the calculations are underway.

6. SUMMARY

We have presented a detailed analysis of the interactions
which underlie the functionality of the magnetic resonance force
microscope (MRFM) for the important situation where a micro-
magnetic probe mounted on the force detector detects the signal
from an extended sample—the case encountered with a general
scanning probe microscope. In particular we have focused on
the implications of having at least one dimension of the sample
much larger than the micromagnet.

We have shown that in addition to the concept of a sensitive
slice (the spatial region where the magnetic resonance condition
is fulfilled) one should consider the concept of a force slice (vol-
ume of the sample that exerts force on the mechanical resonator
due to magnetic resonance manipulation of the magnetization).
This distinction is important because of the dipolar nature of
probe magnetic field which causes the magnitude and even the
sign of the force to vary throughout the force slice. (A negative
force means a 180◦ phase shift of the time-dependent force with
respect to the excitation signal.) Since the total driving force
is the integral over the entire force slice, this leads to cancel-
lation of forces, and for certain values of B0 the total driving
force is zero. This is notable given that we nonetheless have a
well-defined resonant sensitive slice.

We find that in a typical field-swept experiment the concept
of the sensitive slice must be taken with caution: (i) For fields
ω0 < ωrf −δω (ω0 = γ B0 with B0 the external magnetic induc-
tion, ωrf the rf-frequency and δω the homogeneous intrinsic line
width) the form of the sensitive slice resembles an ellipsoidal
shell, and the idea of a typical length scale xsl ≈ δω/(γ∇ B)
is useful. This situation is widely discussed in the literature.
(ii) |ω0 −ωrf| < δω: In this field regime virtually the entire sam-

ple is in resonance except for regions very close the micromagnet
where its large positive (below the magnet) or negative (to the
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side) field shifts spins out of resonance. Obviously in this situa-
tion the concept of a typical length scale is questionable. Due to
the rapid decrease of the gradient of the micromagnet, one can
estimate that portions of the sample separated from the micro-
magnet by less than approximately 100 times the radius of the
micromagnet will contribute to the force signal. Thus, the total
force stemming from this field regime is quite large if the overall
dimensions of the sample are much larger than the micromag-
net. This contribution will lead to the dominant peak in the field-
swept spectrum and can obscure the expected broadening due to
the inhomogeneous field of the micromagnet. (iii)ω0 > ωrf−δω:
The sensitive slice is a toroid-like structure to the side of the
micromagnet; here the concept of a typical length scale xsl

recovers.
The practical importance of these phenomena for scanned

probe experiments has been shown in experiments employing
DPPH powder samples having typical grain size of the order of
tens of microns. These spectra exhibit the change in sign of the
driving force field, and the cancellation of the total force for a
specific value of B0 discussed above.

APPENDIX

A.1. Rectangular Line Shape, Semi-infinite Sample,
ωm/(12κc) > 2δω

We will discuss the solution of Eq. [13] in (x, B)-parameter
space (see Eq. [12] for definitions of x and B). The resonant re-
gion of the sample is bounded by three curves. The first is Bc(x)
which is determined by the location of the sample surface; the
region above and to the left of Bc(x) is occupied by sample,
while below and to the right is empty space above the sample
surface. The other two curves B±(x) are boundaries of the reso-
nant region determined by the rectangular line shape. For conve-
nience we give these equations, even though some have appeared
earlier.

Bc(x) = Bm

(
x + 2

6κc

)ξ/2

[A.1]

B±(x) = 2B0 A±
x

[A.2]

In the following we will move freely between angular fre-
quency notation and field notation; throughout ωα = γ Bα . We
only take resonant regions into consideration and Ftot(t) does
not include time-dependent forces since we are only interested
in spectral weight around ωmr.

The relevant external parameter in the problem is ω0. The

volumes bounded by Bc(x) and B±(x) define resonant parts of
phase space; to define these boundaries we require the points at
ET AL.

which Bc(x) and B±(x) cross, this is given by:

Bm

(
x + 2

6κc

)ξ/2

= 2B0 A±
x

In the interest of simplicity we set ξ = 2 as an approximation.
Then

x∓± = −1 ∓
√

1 + κc
12B0 A±

Bm

i.e.,

x+− = −1 +
√

1 + κc
12B0 A−

Bm
.

The restriction to real solutions gives

ω0 ≤ ωrf ± δω + ωm

12κc

where δω = 1/T2

√
1 + ω2

1T1T2. The second restriction enters
through the requirement that the crossing point must be within
the parameter space, especially that x∓± ≤ 4. This yields

ω0 ≥ ωrf ± δω − 2ωm/κc

The evolution of this resonant volume with B0 depends on
experimental parameters; this evolution is depicted in Fig. 4 for
the case ωm/(12κc) > 2δω (which arises typically when the
separation between the micromagnet and the sample surface is
comparable to the size of the micromagnet). It is instructive to
sketch this situation graphically as shown in Fig. A1.

A.2. Rectangular Line Shape, Semi-infinite Sample,
ωm/(12κc) < 2δω < 2ωm/κc

The solution is similar to Eq. [24] except the ranges of validity
are given as in Fig. A2, and F (5)

tot is changed:

F (5)
tot = −2πm0 R2

sLr

ξ (ξ − 2)

[
B0ξ

2

3 · 21+β
A+(x++ − 4)

(
Bm x++
B0 A+

)β

(6κc)1−1/β
]

+
12

Bm(12 − ξ x++)(x++ + 2)1/β . [A.3]
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FIG. A1. Resonant region in (B, x)-space vs B0 for the case of a semi-infinite sample with ωm/(12κc) > 2δω. The situations 1–3 correspond to an onion-
shell-like sensitive slice (SSL). In 4 virtually the entire sample is in resonance, 5–7 corresponds to an approximately toroidally shaped sensitive slice to the side of
the micromagnet. 1: The external field is too small, hence the SSL is above the sample. 2: The SSL just enters the top surface of the sample. 3: The entire width of

the SSL has penetrated into the sample. 4: Most of the sample resonates. 5: The SSL forms a toroidally shaped structure. 6: The SSL partially leaves the sample.
7: B0 is too large and the SSL is again above the sample to the side. See also Fig. 10.
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FIG. A2. Regions of phase space vs ω0 for ωm/(12κc) < 2δω < 2ωm/κc .

A.3. Rectangular Line Shape, Semi-infinite Sample,
2ωm/κc < 2δω < (2ωm + ωm/12)/κc

The solution is similar to Eq. [24], except the ranges of validity
are as shown in Fig. A3 and F (3,5)

tot are given by

F (3)
tot = 2πm0 R2

sLr

ξ (ξ − 2)

{
2Bm(3 − ξ ) + B0ξ

2

3 · 22+β

(
Bm

B0

)β

×
[

A−(x−− − 4)

(
x−−
A−

)β

− A−(x+− − 4)

(
x+−
A−

)β]

− Bmκ
1−1/β
c

21+1/β · 31/β

[
(12 − ξ x+−)(x+− + 2)1/β

− (12 − ξ x−−)(x−− + 2)1/β
]}

[A.4]

FIG. A4. Regions of (B, x)-space vs ω0 for 2δω > (2ωm + ωm/12)/κc .

F (5)
tot = −2πm0 R2

sLr

ξ (ξ − 2)

[
B0ξ

2

3 · 21+β
A+(x++ − 4)

(
Bm x++
B0 A+

)β

+ (6κc)1−1/β

12
Bm(12 − ξ x++)(x++ + 2)1/β

]
.

A.4. Rectangular Line Shape, Semi-infinite Sample,
2δω > (2ωm + ωm/12)/κc

The solution is similar to Eq. [24], except the ranges of validity
are as shown in Fig. A4 and F (3,4,5)

tot are given by

F (3)
tot = 2πm0 R2

sLr

ξ (ξ − 2)

{
2Bm(3 − ξ ) + B0ξ

2

3 · 22+β

(
Bm

B0

)β

×
[

A−(x−− − 4)

(
x−−
A−

)β

− A−(x+− − 4)

(
x+−
A−

)β]

− Bmκ
1−1/β
c

21+1/β · 31/β

[
(12 − ξ x+−)(x+− + 2)1/β

[A.5]

− (12 − ξ x−−)(x−− + 2)1/β
]}

F (4)
tot = −2πm0 R2

sLr

ξ (ξ − 2)
2(ξ − 3)κ1−1/β

c

F (5)
tot = −2πm0 R2

sLr

ξ (ξ − 2)

[
B0ξ

2

3 · 21+β
A+(x++ − 4)

(
Bm x++
B0 A+

)β

+ (6κc)1−1/β

12
Bm(12 − ξ x++)(x++ + 2)1/β

]
.

A.5. Thin Spin-Layer
FIG. A3. Separation of the phase space vs ω0 for 2ωm/κc < 2δω < (2ωm +
ωm/12)/κc . F (1)

tot = 0
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FIG. A5. Regions of (B, x)-space vs ω0 for the case of a thin layer of spins.
ωm/(12κd ) > 2δω.

F (2)
tot = −2πm0 R2

sLr

ξ (ξ − 2)

{
− B0ξ

2

3 · 22+β

(
Bm

B0

)β

× A−
(
x (c)

+− − 4
)( x (c)

+−
A−

)β

+ Bmκ1−1/β
c

×
[

6 − 2ξ −
(
12 − ξ x (c)

+−
)(

x (c)
+− + 2

)1/β

21+1/β · 31/β

]}

F (3)
tot = −2πm0 R2

sLr

ξ (ξ − 2)

{
B0ξ

2

3 · 22+β

(
Bm

B0

)β

×
[

A+
(
x (c)

++ − 4
)( x (c)

++
A+

)β

− A−
(
x (c)

+− − 4
)( x (c)

+−
A−

)β]

+ Bmκ
1−1/β
c

21+1/β · 31/β

[(
12 − ξ x (c)

++
)(

2 + x (c)
++

)1/β

− (
12 − ξ x (c)

+−
)(

2 + x (c)
+−

)1/β]}

F (4)
tot = −2πm0 R2

sLr

ξ (ξ − 2)

{
B0ξ

2

3 · 22+β

(
Bm

B0

)β
[

A−
(
x (d)

+−−4
)( x (d)

+−
A−

)β

+ A+
(
x (c)

++ − 4
)( x (c)

++
A+

)β

− A−
(
x (c)

+− − 4
)( x (c)

+−
A−

)β]

+ Bmκ
1−1/β
c

21+1/β · 31/β

[(
2+x (c)

+−
)1/β−1(

2x (c)
+−

)
(ξ−6) + ξ

(
x (c)

+−
)2

− 24
) + (

2 + x (c)
++

)1/β(
12 − ξ x (c)

++
)] + Bmκ

1−1/β

d

21+1/β · 31/β

× [(
2 + x (d)

+−
)1/β(

12 − ξ x (d)
+−

) + 2 · 61/β(ξ − 3)
]}

F (5)
tot = −2πm0 R2

sLr

ξ (2 − ξ )

{
B0ξ

2

3 · 22+β

(
Bm

B0

)β
[

A+
(
x (c)

++−4
)( x (c)

++
A+

)β

( )( x (c)
)β ( )( x (d)

)β

− A+
(
x (d)

++ − 4
)( x (d)

++
A+

)β]
+ Bmκ

1−1/β
c

21+1/β · 31/β

[(
12−ξ x (c)

++
)

× (
x (c)

++ + 2
)1/β − (

12 − ξ x (c)
+−

)(
x (c)

+− + 2
)1/β]

+ Bmκ
1−1/β

d

21+1/β · 31/β

[(
12 − ξ x (d)

+−
)(

x (d)
+− + 2

)1/β

− (
12 − ξ x (d)

++
)(

x (d)
++ + 2

)1/β]}

F (6)
tot = −2πm0 R2

sLr

ξ (2 − ξ )

{
B0ξ

2

3 · 22+β

(
Bm

B0

)β
[

A−
(
x (c)

−−−4
)( x (c)

−−
A−

)β

− A−
(
x (c)

+− − 4
)( x (c)

+−
A−

)β

+ A+
(
x (c)

++ − 4
)( x (c)

++
A+

)β

+ A−
(
x (d)

+− − 4
)( x (d)

+−
A−

)β

− A−
(
x (d)

−− − 4
)( x (d)

−−
A−

)β

− A+
(
x (d)

++ − 4
)( x (d)

++
A+

)β]
+ Bmκ

1−1/β
c

21+1/β · 31/β

[(
12 − ξ x (c)

−−
)

× (
x (c)

−− + 2
)1/β − (

12 − ξ x (c)
+−

)(
x (c)

+− + 2
)1/β

+ (
12 − ξ x (c)

++
)(

x (c)
++ + 2

)1/β] + Bmκ
1−1/β

d

21+1/β · 31/β

× [(
12 − ξ x (d)

+−
)(

x (d)
+− + 2

)1/β − (
12 − ξ x (d)

−−
)

× (
x (d)

−− + 2
)1/β − (

12 − ξ x (d)
++

)(
x (d)

++ + 2
)1/β]}

F (7)
tot = −2πm0 R2

sLr

ξ (2 − ξ )

{
B0ξ

2

3 · 22+β

(
Bm

B0

)β
[

A−
(
x (c)

+− − 4
)

×
(

x (c)
+−
A−

)β

− A−
(
x (c)

−− − 4
)( x (c)

−−
A−

)β

+ A+
(
x (c)

++ − 4
)

×
(

x (c)
++
A+

)β

− A+
(
x (c)

−+ − 4
)( x (c)

−+
A+

)β

+ A−
(
x (d)

+− − 4
)

×
(

x (d)
+−
A−

)β

− A−
(
x (c)

−− − 4
)( x (c)

−−
A−

)β

− A+
(
x (d)

++ − 4
)

×
(

x (d)
++
A+

)β

+A+
(
x (d)

−+ − 4
)( x (d)

−+
A+

)β]
+ Bmκ

1−1/β
c

21+1/β · 31/β

× [(
12 − ξ x (c)

−−)(x (c)
−− + 2

)1/β − (
12 − ξ x (c)

+−
)

− A− x (c)
+− − 4 +−

A−
+A− x (d)

+− − 4 +−
A− × (

x (c)
+− + 2

)1/β + (
12 − ξ x (c)

++
)(

x (c)
++ + 2

)1/β
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− (
12 − ξ x (c)

−−
)(

x (c)
−− + 2

)1/β] + Bmκ
1−1/β

d

21+1/β · 31/β

× [(
12 − ξ x (d)

+−
)(

x (d)
+− + 2

)1/β − (
12 − ξ x (d)

−−
)

× (
x (d)

−− + 2
)1/β − (

12 − ξ x (d)
++

)(
x (d)

++ + 2
)1/β

( (d) )( (d) )1/β]}
+ 12 − ξ x−+ x−+ + 2 [A.6] × − A+ x−+ − 4 − A+ x++ − 4
TABLE A1
Table of Symbols

Expression Description Note

B0 External magnetic induction defining the axis of quantization and
the polarization of the magnetization at a given temperature.

Btot (r ) Total magnetic induction at r Section 2
F(r , t) Local force at r Eq. [1]

δB Intrinsic homogeneous line width Section 2

δω

√
1 + ω2

1T1T2/T2, natural line width

γ Gyromagnetic ratio
H1 Amplitude of the rf-field
L(r , t) Normalized intrinsic magnetic resonance line shape function Eq. [8]
T1 Spin-lattice relaxation time
T2 Spin-spin relaxation time
ωrf Angular frequency of the rf-field
ωS(r, θ ) Local angular resonance frequency of the spin system

|∇ B| Magnitude of the field gradient generated by the Eq. [2]
micromagnet mounted on the mechanical resonator

B(r ) Magnetic induction at r generated by the micromagnet Eq. [5]
Bm = 4π/3 · M0 M0 is the saturation magnetization of the micromagnet Eq. [5]
RS Radius of the micromagnet in the dipolar approximation Eq. [5]
ξ B(r ) = Bm (Rs/r )ξ Eq. [5]
β 2/ξ

x 3 cos(2θ ) + 1 Eq. [12]

a Distance from the center of the micromagnet Fig. 2
to the surface of the sample

d Thickness of a magnetic/spin layer Fig. 5
Blocal(r ) Local magnetic induction due to internal

sources such as dipolar fields

Bc,d (x) = Bm
( x + 2

6κc,d

)ξ/2

κc = (a/Rs )2

κd = (a + d)2/R2
S




Sample surface in the generalized
coordinate system (B, x)

Eqs. [14] and [25]

m0 Sample magnetization density Eq. [8]
m(r , t) Local magnetic moment at r Eq. [1]

Ftot Total force acting on the mechanical resonator Eq. [13]
k Spring constant of the mechanical resonator
Q Quality factor of the magnetic resonator
zG (t) Greens function of the mechanical resonator Eq. [15]
z(t) Displacement of the mechanical resonator Eq. [15]
ωmr Angular frequency of the mechanical resonator Section 2
� � ωmr/(2Q) Damping constant of the mechanical resonator Eq. [15]

A± = (ωrf ± δω/ω0) − 1 Eq. [21]
B±(x) = 2B0 A±/x Border of the sensitive slice Eq. [A.1]
xsl ≈ δB/|∇ B| Spatial width of the sensitive slice Section 5
x (α)
∓± = −1 ∓ √

1 + κα(12B0 A±/Bm ), α = c, d Eq. [23]

A+ A+
Note. Angular frequencies and fields are related via ωα = γ

interchangeably throughout the paper.
T AL.

F (8)
tot = −2πm0 R2

sLr

ξ (2 − ξ )

{
B0ξ

2

3 · 22+β

(
Bm

B0

)β[
A−

(
x (c)

−− − 4
)

×
(

x (c)
−−
A−

)β

− A−
(
x (c)

+− − 4
)( x (c)

+−
A−

)β

+ A+
(
x (c)

++ − 4
)

(
x (c)

++
)β ( (c) )( x (c)

−+
)β ( (d) )
Bα , where γ is the gyromagnetic ratio and these are used



PROBE–SAMPLE INTE

×
(

x (d)
++
A+

)β

+ A+
(
x (d)

−+ − 4
)( x (d)

−+
A+

)β]
+ Bmκ

1−1/β
c

21+1/β · 31/β

× [(
12 − ξ x (c)

−−
)(

x (c)
−− + 2

)1/β − (
12 − ξ x (c)

+−
)

× (
x (c)

+− + 2
)1/β + (

12 − ξ x (c)
++

)(
x (c)

++ + 2
)1/β

− (
12 − ξ x (c)

−+
)(

x (c)
−+ + 2

)1/β] − Bmκ
1−1/β

d

21+1/β · 31/β

× [(
12 − ξ x (d)

++
)(

x (d)
++ + 2

)1/β

− (
12 − ξ x (d)

+−
)(

x (d)
+− + 2

)1/β]}

F (9)
tot = −2πm0 R2

sLr

ξ (ξ − 2)

{
B0ξ

2

3 · 22+β

(
Bm

B0

)β

×
[

A−
(
4 − x (c)

+−
)( x (c)

+−
A−

)β

− A−
(
4 − x (c)

−−
)( x (c)

−−
A−

)β

− A+
(
4 − x (c)

++
)( x (c)

++
A+

)β

+ A+
(
4 − x (c)

−+
)( x (c)

−+
A+

)β]

+ Bmκ
1−1/β
c

21+1/β · 31/β

[−(
12 − ξ x (c)

+−
)(

x (c)
+− + 2

)1/β

+ (
12 − ξ x (c)

−−
)(

x (c)
−− + 2

)1/β + (
12 − ξ x (c)

++
)

× (
x (c)

++ + 2
)1/β − (

12 − ξ x (c)
−+

)(
x (c)

−+ + 2
)1/β]}

F (10)
tot = −2πm0 R2

sLr

ξ (ξ − 2)

{
B0ξ

2

3 · 22+β

(
Bm

B0

)β
[

A+
(
x (c)

++ − 4
)

×
(

x (c)
++
A+

)β

−A+
(
x (c)

−+ − 4
)( x (c)

−+
A+

)β]
+ Bmκ

1−1/β
c

21+1/β · 31/β

× [(
12 − ξ x (c)

++
)(

x (c)
++ + 2

)1/β − (
12 − ξ x (c)

−+
)

× (
x (c)

−+ + 2
)1/β]}

F (11)
tot = 0.
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