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A Quantum Computer (QC) is a device that utilizes the principles of Quantum Mechanics to
perform computations. Such a machine would be capable of accomplishing tasks not achievable
by means of any conventional digital computer, for instance factoring large numbers. Currently it
appears that the QC architecture based on an array of spin quantum bits (qubits) embedded in a
solid-state matrix is one of the most promising approaches to fabrication of a scalable QC. However,
the fabrication and operation of a Solid State Quantum Computer (SSQC) presents very formidable
challenges; primary amongst these are: (1) the characterization and control of the fabrication process
of the device during its construction and (2) the readout of the computational result. Magnetic
Resonance Force Microscopy (MRFM)—a novel scanning probe technique based on mechanical
detection of magnetic resonance–provides an attractive means of addressing these requirements. The
sensitivity of the MRFM significantly exceeds that of conventional magnetic resonance measurement
methods, and it has the potential for single electron spin detection. Moreover, the MRFM is
capable of true 3D subsurface imaging. These features will make MRFM an invaluable tool for the
implementation of a spin-based QC. Here we present the general principles of MRFM operation, the
current status of its development and indicate future directions for its improvement.

INTRODUCTION

The last several decades have seen outstanding
progress in development of conventional digital comput-
ing. A remarkable increase in processing power has been
accompanied by parallel reduction in the size of the tran-
sistors used in contemporary processors. However, in
spite of these advancements, there are significant tasks
that cannot be easily performed due to the inherent bi-
nary/linear method of calculations used in contemporary
computers; an example is factoring large numbers. This
is a problem of great interest for information security
and cryptography. For instance, it would take the fastest
existing supercomputer billions of years to factor a 400
digit number [1], thus rendering any encryption code
based factoring large numbers “unbreakable”. Another
problem that cannot be successfully solved by a conven-
tional computer is modeling large quantum-mechanical
systems. This problem is extremely interesting from the
scientific point of view for understanding the fundamen-
tal principles of nature which in turn will lead to the
development of materials with new properties and func-
tionalities. Because the number of variables needed to
describe a quantum mechanical system grows exponen-
tially with its size, the ability to model large quantum
mechanical systems using conventional computers is very
limited.

Fortunately, there is an approach alternative to the bi-
nary computational mechanism employed in the existing
computers. This method utilizes the principles of quan-
tum mechanics to perform computations. A computing
device based on such a method is called a Quantum Com-
puter (QC). In such a computer, conventional bits are
replaced with two level quantum systems, so-called quan-
tum bits or qubits. Unlike a conventional bit, which can
only assume one of its base values 0 and 1 at a time,

a two level qubit with base states |0〉 and |1〉 can exist
in a superposition of these base states with two complex
coefficients describing the relative probability and phase
of each of the base states. Thus, in order to describe an
N qubit quantum system, one would need 2N parame-
ters (compared to N parameters in the case of a classical
system). This intrinsic feature of a quantum computer
allows performance of massively parallel computations on
a single computer. A QC opens new avenues in informa-
tion processing unavailable to conventional computers.
However, exploiting this massive parallelism is a signif-
icant challenge, and this approach does not lend itself
to application to arbitrary computational problems. The
invention by P.W. Shor [2, 3] of an algorithm for fac-
toring large numbers using a quantum computer was an
important breakthrough that demonstrated the impor-
tance of the QC for the future of information process-
ing. He demonstrated that with such a machine this
task can be completed within a manageable time thus
potentially making it possible to decode otherwise “un-
breakable” codes. There have also been very promising
developments in the field of modeling quantum mechan-
ical systems. Recently, G. Ortiz et al., demonstrated an
approach to simulation of fermionic systems on a quan-
tum computer [4].

However, a practical quantum computer has yet to be
developed. There are several major difficulties to be
overcome in order to build a QC. An issue of central
importance is that of decoherence in quantum systems.
The delicate phase relationships between the qubits ex-
isting in quantum superpositional states must be main-
tained over the time span required to complete a com-
putation in order for it to function; to achieve this the
qubits must be effectively isolated from the environment
of the computer. Uncontrolled external influence will
cause the superposition to decohere leading to collapse of



2

the states, thus rendering computation impossible. Be-
cause of the fragility of these states, decoherence imposes
a strong constraint on the development of a QC. Never-
theless several approaches to quantum computation that
incorporate acceptably slow decoherence processes have
been proposed, and there have been notable successes in
demonstrating the quantum manipulations that will be
essential for a quantum computer using, e.g., trapped
ions [5, 6]. However, to be useful for problems such as
factorization, a quantum computer design must be in-
trinsically scalable up to very large numbers of qubits;
solid state implementations are very attractive from this
point of view.

A very promising design for a scalable quantum com-
puter was proposed by B.E. Kane in 1998 [7]. This design
is based on using the nuclear spins of phosphorus atoms
embedded in a silicon matrix as the qubits whose states
are defined by the two quantum states of the nuclear
spin. As shown in Fig. 1, these atoms will be fabricated
with atomic precision into an array buried at a depth of
approximately 100–200 Å beneath the surface and with
a well-controlled separation of approximately 200 Å be-
tween the atoms. Interactions between the qubits will
be mediated by the electrons bound to the phosphorus
atoms at the low temperatures at which the computer
will operate. A second essential feature of the architec-
ture is placement of control gates on the surface of the
silicon; their location must be precisely registered to the
underlying phosphorus qubit array. Controlled electro-
static potentials on metallic control gates will enable con-
trol of single and multi-qubit operations when applied in
conjunction with conventional NMR techniques (Fig. 1a).

Clearly, fabrication of such a device is an extremely
challenging task. The atoms must be precisely located
in an ordered array with a pattern of metallic gates in-
dexed relative to the array with atomic-scale precision.
Any error in this process will result in gate misalignment
(Fig. 1b). The SSQC will be fabricated out of ultra pure
materials with a low density of defects, since any un-
wanted perturbation, such as an extra phosphorus atom
or defects in the silicon crystal lattice (Fig. 1c) in the
vicinity of a qubit can render the device useless for quan-
tum computation. This makes clear that successful fab-
rication of a solid state quantum computer (SSQC) will
require a characterization instrument that is capable of
very high resolution subsurface imaging of both qubits
and defects.

Once the SSQC has been created the process of its
operation is equally challenging. One of the challenges
is the readout of the result of a calculation. Although
the quantum calculation is performed on a nuclear spin
of a phosphorus atom, as a consequence of the hyperfine
interaction between the nuclear spin and the bound elec-
tron, the result of the calculation can be read out via
detection of a spin state of the bound electron. Read-out
mechanisms exploiting the coupling between the spin and

FIG. 1: Schematic diagram of the Solid State Quantum
Computer[7]. a) A buried array of qubits (phosphorus atoms)
with registered metallic control gates. Potential problems in
a fabricated device might include b) misaligned gates, and c)
unintentional defects.

orbital wavefunction of the electronic have led to propos-
als for electron spin readout using single electron devices
[7, 8], however, it will be essential to have direct spin
probes to complement these charge based techniques.

MAGNETIC RESONANCE FORCE
MICROSCOPY AS A TOOL FOR QUANTUM

COMPUTING

The drive to improve the sensitivity of magnetic res-
onance measurements have led to a variety of inventive
approaches. All of them involve development of detec-
tion techniques alternative to the conventional inductive
method, including optical [9–11] and SQUID detection
[12]. Another approach has been proposed by J.A. Si-
dles [13, 14] who introduced the concept of the Magnetic
Resonance Force Microscope (MRFM). This is a novel
scanning probe method based on mechanical detection
of magnetic resonance. This method is much more sen-
sitive than the conventional methods of detection. It ap-
pears that its ultimate limit is detection of the signal
from a single electron spin. The MRFM is a hybrid of
the Atomic Force Microscope (AFM) and Magnetic Res-
onance Imaging (MRI) and thus is capable of fully three
dimensional (3D) subsurface imaging [14, 15]. Its po-
tential single electron spin sensitivity combined with the
subsurface imaging capability makes MRFM exception-
ally well situated to provide both characterization of the
QC during its fabrication and serve as a readout mecha-
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nism during its operation.

MAGNETIC RESONANCE FORCE
MICROSCOPY: GENERAL PRINCIPLES

The method is based on coupling of a sample magnetic
moment m to a probe magnet via the force of magnetic
interaction:

F (x, t) = −[m(x, t) · ∇]Bprobe(x) (1)

The strength of this interaction is proportional to
the gradient of the inhomogeneous magnetic field of the
probe magnet, which can be made very high. This
force of interaction is measured through detection of the
displacement of a compliant micro-mechanical resonator
that is deflected by the applied force. The sensitivity
of this approach is ultimately limited by the thermome-
chanical noise of the resonator. If the magnetic moments
under study are manipulated at the resonant frequency of
the mechanical resonator, its displacement is magnified
by the quality factor Q of the resonator, which can be
as high as 105, compared to the displacement resulting
from a DC force of the same magnitude. The combi-
nation of high magnetic field gradients from microscopic
magnetic probes and high quality factors makes detection
of a single electron spin resonance theoretically possible.
Because spatial resolution is limited by the ability to de-
tect the signal from a the volume element to be imaged
this high sensitivity holds the key to obtaining extremely
high spatial resolution.

FIG. 2: Schematic diagram of the geometry of an MRFM.
The micromagnet on the mechanical resonator produces an
extremely inhomogeneous magnetic field that serves two pur-
poses: (i) It couples the mechanical resonator to the magnetic
moments in the sample, and (ii) it defines the spatial regions
of the sample where the magnetic resonance condition is met.
Magnetic resonance techniques can be employed to manipu-
late the magnetization m thus generating a force on the me-
chanical resonator at its resonance frequency that will drive
it into oscillation.

The general concept of the method allows two major
MRFM architectures. One places the sample on the me-
chanical resonator which is then coupled to an external
probe magnet. This approach allows use of a relatively
large probe magnet with well known magnetic properties.
However the requirement that samples be placed on the
resonator severely limits the applicability and usefulness
of microscope based on this design. The approach we are
currently pursuing in our research involves a micromag-
netic probe mounted directly on the mechanical resonator
brought in the close vicinity of the sample. This will
allow true scanning operation on a sample of arbitrary
size, however the fabrication of a micromagnet with well
known magnetic properties is more challenging. For this
reason accurate mapping of the magnetic field of a probe
micromagnet is very important for the development of
the MRFM.

Scanning mode magnetic resonance force microscopy
has several significant advantages over conventional scan-
ning probe techniques. These techniques usually provide
information limited to the surface of a sample and cannot
unequivocally identify chemical elements on this surface.
On the contrary, the nonuniform magnetic field of the
probe magnet gives the MRFM a unique ability to se-
lect a subsurface slice of a sample for study; it is only in
this region defined by the externally applied rf field, that
the magnetic resonance condition is satisfied. Moreover,
magnetic resonance delivers material specific information
thus enabling MRFM to study chemical content of var-
ious substances. All these features make the MRFM a
potentially extremely powerful subsurface characteriza-
tion tool which can find a wide application in various
fields of science and technology.

Reliable interpretation of MRFM signals is requires
thorough and detailed understanding of the interaction
between the micromagnetic probe and the sample. Here
we address this problem is some detail.

THEORETICAL ANALYSIS

In order to perform both analytical and numerical
analysis we introduce a geometrical model representing
a typical scanning MRFM geometry (Fig. 2). The probe
magnet, mounted on a mechanical resonator with reso-
nant frequency fc = ωc/2π, is modeled as a sphere of a
radius RS uniformly magnetized along the direction of
the external magnetic field B0. The sample magnetiza-
tion m = {0, 0, mz} is assumed to be uniform throughout
the volume of the sample. The in-plane components of
magnetization are ignored because they presses at fre-
quency ωL � ωc. The resonator can oscillate only along
ẑ direction, therefore the important component of the
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total force of probe-sample interaction is given by

Fz = −ez ·
∫

d3x [m(x) · ∇]Btot(x), (2)

where Btot(x) = Bprobe(x) + B0. To further sim-
plify calculations the high-field approximation |B0| �
|Bprobe(x)| is used, hence Btot(r)‖ez.

Various rf-modulation techniques are used to manip-
ulate the magnetic moments in the sample to create an
alternating force on the mechanical magnetic resonance
detector. The simplest modulation method is amplitude
modulation (AM) of the rf power at the resonant fre-
quency of the mechanical resonator. To simplify the
evaluation of the change in magnetization of the sample
under the influence of rf radiation we assume that the
spin-lattice relaxation time T1 of the sample material is
much shorter than the oscillation period of the mechan-
ical resonator. Under this assumption the spins in the
sample are always in dynamical equilibrium.

Amplitude modulation generates a time dependent
magnetization of the sample with a strong Fourier com-
ponent at the resonance frequency of the mechanical res-
onator with an amplitude given by

F fc
z = −ez ·

∫
d3x [δm(x) · ∇]Btot(x), (3)

where δm(x) is the local change of sample magnetization
during a single cycle of rf-modulation.

Analytical integration of Eq. 3 for a general experi-
mental MRFM geometry is quite complicated, however
we have done this for a few symmetric limiting cases, and
these prove to be valuable guides for understanding this
interaction [16]. However, due to the limiting nature of
these analytical solutions, quantitative comparisons with
experiment can be achieved only by numerical integra-
tion of Eq. 3. The main advantage of this approach is
that the analysis of an arbitrary probe sample geometry
is possible, and more realistic models of the probe micro-
magnet can be implemented. The detailed description
of both analytical and numerical approaches is given in
[16].

The result of the numerical analysis of the probe sam-
ple interaction is presented in Fig. 3. This shows the evo-
lution of the sensitive slice and of the force slice under
typical experimental conditions that include continuous
sweep of the external magnetic field B0 as the frequency
of the rf field ωrf is kept constant. The term “sensi-
tive slice” refers to the sample volume in which magnetic
moments interact resonantly with the rf field: that is,
the region where ωrf = γBtot(x) is satisfied. The right
hand panel of Fig. 3 shows the change in the sample spin
magnetization due to suppression by the rf field as a
function of spatial position within the sample. The con-
cept of the force slice describes coupling of the magnetic
moments in the sample to the probe magnet on the me-
chanical resonator. This is the volume of the sample that

FIG. 3: Calculation of the sensitive slice shape (right hand
panels) and the force slice (left hand panels) for different val-
ues of the external field B0. For all panels ωrf/γ = 10000
Gauss. The force slice is weighted by the volume element.
The purple line on the left (force slices) marks the angle
at which the local force changes sign (see also Fig. 2). a)
(B0 = 9985 Gauss) show typical sensitive slices as shells of
constant field for γB0 < ωrf . b) shows the situation for
γB0 = ωrf . Since the gradient is very small in the regions
where the resonance condition is met the ratio of the line
width to the gradient is very large, hence a large volume of
sample meets the resonance condition. The conventional con-
cept of a typical length scale set by the width xsl of the sen-
sitive slice (xsl ≈ δBlinewidth/∇B) breaks down in this case.
c) γB0 > ωrf (B0 = 10005 Gauss). Here the shape of the
sensitive slice is approximately toroidal.

actually contributes to the alternating force driving the
mechanical resonator, that is, it is the volume where the
integrand of Eq. 3 is nonzero. The left hand panel of
Fig. 3 shows the local force contribution as a function of
spatial position within the sample. Note that the sign of
the local force contribution is defined by the sign of the
appropriate component of the gradient of magnetic field
of the probe. Due to the dipolar nature of the probe
magnetic field this sign depends on the position of the
point of interest relative to the probe magnet. The line
on the left hand panel of Fig. 3 shows where this gradi-
ent turns passes through zero and changes sign. Clearly,
force contributions from different parts of the sample can
have opposite signs Fig. 3a thus cancelling each other.

The model developed in Ref. 16 allows us to predict
the evolution of the MRFM signal as experimental pa-
rameters are changed. Fig. 4 shows the MRFM signal
calculated for various probe sample separations. It can
be seen that, independent of the magnitude of the probe-
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FIG. 4: Numerically calculated MRFM signal vs. external
magnetic field calculated for various sample-probe separations
a measured in units of the radius of the probe magnet RS .
This calculation was performed for a semi-infinite bulk sample
assuming that the resonant field in the absence of the probe
magnet is 10000 Gauss. The inset shows an expanded view
of the main peak of the resonance.

sample separation, each curve exhibits a strong peak near
the resonant field. However the leading edge of the sig-
nal shifts to lower values of external magnetic field as
the probe is brought closer to the surface of the sample.
The offset of the leading edge of the signal relative to the
main peak is equal to the magnitude of the probe mag-
netic field at the surface of the sample directly below the
probe; this field increases as the probe-sample separation
is decreased.

The main peak of the sample corresponds to the condi-
tion when the majority of the sample is resonant and the
concept of a well defined sensitive slice has broken down
Fig. 3c. The region of interest for the MRFM operat-
ing as a high spatial resolution subsurface imaging tool
is near the leading edge of the signal where the sensitive
slice is well defined and the number of spins contributing
to the signal, and thus the signal itself, is small.

EXPERIMENTAL RESULTS

We have experimentally studied the evolution of the
leading edge of MRFM signal. For this the Electron Spin
Resonance (ESR) signal from a 100 nm thick DPPH film
was used. Because amplitude modulation of the applied
microwave radiation creates undesirable excitation of the
mechanical resonator complicating detection of weak sig-
nals we chose to perform our experiments using frequency
modulation (FM). The power of the rf radiation was kept
constant as its frequency was modulated at fc. This re-
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edge of the signal. The inset shows the leading edge signal
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mechanical noise of the mechanical resonator.

duces the coupling of rf field to the resonator, however
FM changes the shape of MRFM signal; instead a deriva-
tive of the AM signal is detected. In this case the leading
edge of the signal appears as a peak that shifts its posi-
tion as the probe is moved toward the sample.

Fig. 5 shows several MRFM signals recorded at various
probe-sample separations and demonstrates the behavior
predicted by the model. All the curves exhibit a large
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probe position independent signal at the resonant field
(where the probe field is zero) and a much smaller lead-
ing edge feature corresponding the sensitive slice entering
the sample. The latter shifts to lower values of the ex-
ternal magnetic field as the probe approaches the sample
surface. As it has been mentioned above, the relative po-
sition of this feature is a direct measure of the magnetic
field of the probe magnet at the sample surface;this fea-
ture provides a means of experimentally measuring the
probe field. The filled squares in Fig. 6 show the de-
crease of the field of the probe magnet with increasing
separation from the probe. The solid curve presents the
results of micromagnetic simulations of magnetic field of
a micromagnet with the same parameters as those of the
probe magnet used in the experiment. The experimental
data is in excellent agreement with the theoretical curve.

Precise understanding of the field of a particular probe
magnet enables us, using the model of probe-sample in-
teraction described above, to predict the shape of the sen-
sitive slice for a scanning probe-sample geometry. This
ability is extremely important for development of a sub-
surface 3D MRFM imaging technique similar to conven-
tional Magnetic Resonance Imaging (MRI). In practice
this method will be based on a data processing tech-
nique which extracts 3D image from a collection of in-
tersecting subsurface sensitive slices obtained at various
spatial probe positions and values of external magnetic
field. Precise knowledge of the field profile of the probe
magnet will be crucial input for such a technique.

Knowledge of the of the field of the probe magnet has
also enabled us to estimate the number of spins contribut-
ing to the measured signal at various values of external
magnetic field and probe sample separation. The leading
edge feature observed at a probe-sample separation of 2.1
µm corresponds to a signal from approximately 104 fully
polarized electron spins. As can be seen in the inset to
Fig. 5 the force sensitivity of our apparatus is not yet
limited by the thermomechanical noise of the cantilever,
which is estimated to set our detection limit at approxi-
mately 103 fully polarized electron spins. Therefore, im-
provements in noise-rejection techniques are expected to
improve the sensitivity of our microscope by an order of
magnitude in the near future.

IMAGE DECONVOLUTION

The detailed understanding of the probe-sample in-
teraction described in the previous sections enables us
to proceed toward the development of special imaging
techniques that will unable subsurface imaging of sin-
gle electron qubits with MRFM. The pioneering steps
in this direction were made by O. Züger and D. Rugar
who successfully demonstrated mapping of the sensitive
slice from a large magnet using ESR measurements on a
sample much smaller than the gradient magnet [17]. Sub-

sequently, O. Züger, et al., demonstrated MRFM imag-
ing of the nuclear spin density in a ∼ 10µm irregularly-
shaped particle [18].

However, as our analysis of probe-sample interaction
shows, any attempt at subsurface inhomogeneous spin
density imaging in sample with characteristic dimensions
much larger than those of the probe magnet will be com-
plicated by the position dependence of the probe-sample
interaction forces originating from the dipolar nature of
the magnetic field of the probe magnet. The situation
will be complicated even further by the presence of two or
more spin species with relatively close but still different
gyromagnetic ratios, which means there will be several
sensitive slices in the sample. It is clear that the detailed
analysis of image deconvolution from MRFM data has
yet to be done. In this section we will outline our di-
rections for developing subsurface single spin imaging for
quantum computing.

In general, the problem of extraction of the spin den-
sity profile from the signal measured by a cantilever is
related to the image deconvolution problems encountered
in MRI and digital image processing. As such, it can be
addressed using the similar techniques and algorithms.

In the most general case, the AC signal, F (r), mea-
sured by the cantilever, which can be the amplitude, fre-
quency or phase shift of the mechanical oscillation, is
given by the integral over the spin density, m(r′),

F (r) =
∫

f(r, r′)m(r′)dr′. (4)

Here, the kernel f(r, r′) is related to the specific form of
the magnetic field gradient generated by the tip, the form
of the sensitive slice, effects of the sample boundaries
on the cantilever (e.g., modification of the Q-factor), ex-
ternal magnetic and rf/microwave field inhomogeneities.
Such a form for the signal implies that the scanning over
real space r is performed while keeping the external ex-
perimental parameters, external magnetic field and rf or
microwave frequency constant. Depending on a partic-
ular technique, the vector nature of the magnetization
m(r) can be either unimportant (if the probe tip field is
weaker than the external field), or important (zero ex-
ternal field). The two cases are conceptually similar and
hence we will focus here on the scalar case.

Eq. 4 is the Fredholm integral equation of the first
kind, which is notoriously ill-conditioned. Even small er-
ror in the measurement of the cantilever response F (r)
can cause a large change in the deduced spin density
m(r). This is easy to understand since integration is a
smoothing operation and any integrable local singular-
ity in m can cause only a small change in F . To tackle
such problems, one has to make assumptions about the
properties of the function m. Formally, this is achieved
by filtering or regularization techniques. The most com-
mon implicit assumption is that the function m(r) be
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smooth. This is a valid approximation if only coarse-
grained polarization densities are of interest, however,
hardly adequate for the single spin detection case. As a
practical issue, the highest achievable spatial resolution
under any circumstances is given by the spatial resolution
of the scanning probe, however, measurement noise may
further reduce it. Probing the polarization distribution
with single spin resolution is therefore a hard problem
since the individual spin distribution is inherently point-
like. Moreover, it is not the sensitive slice that is imaging
the spin distribution, but rather individual spins imaging
the sensitive slice.

There are two main techniques that can be applied to
deduce the spin density from the measured signal, which
should be applicable both in the smooth and the single-
spin cases. These are: (a) Fourier transform-based de-
convolution with filtering, and (b) regularized numeri-
cal solution of Eq. (4). The deconvolution technique is
relatively fast, but is only applicable for homogeneous
kernels, f(r, r′) = f(r − r′), which is the case when the
spurious effects of sample boundaries and other inhomo-
geneities are either negligible, or can be removed. The
direct solution technique is more general, but computa-
tionally intensive and also requires assumptions about
the properties of the solution.

Fourier deconvolution

In the special case when the kernel of Eq. 4 is homo-
geneous,

F (r) =
∫

f(r − r′)m(r′)dr′, (5)

the magnetic polarization m(r) can be obtained using the
Fourier deconvolution technique. Formally,

m̃(k) =
F̃ (k)
f̃(k)

, (6)

m(r) =
∫

eikrm̃(k). (7)

In reality however, directly applying the deconvolu-
tion technique to the noisy data F is likely to amplify
the noise in m, particularly at short wave lengths, since
the instrument function f̃ vanishes for large enough k
(greater than the inverse width of the sensitive slice). To
avoid this problem, heuristically, one may introduce the
cutoff in the denominator, that will effectively suppress
the short-wave length noise, but also at the same time
limit the spatial resolution [18]:

m̃(k) =
F̃ (k)f̃∗(k)
|f̃(k)|2 + C

, (8)

where f̃∗ is the complex conjugate of f̃ , and C is a posi-
tive constant that is related to the noise.

Alternatively, the optimal (Wiener) filter [19] can be
applied,

m̃(k) =
F̃ (k)
f̃(k)

(
1 − |N(k)|2

|F (k)|2
)

. (9)

The Wiener filter implies knowledge of the measurement
noise power spectrum, |N(k)|2, the noise in the measure-
ment of F (r). It is optimal in the sense of the m(r)
error-squared integrated over the volume of the sample.
The main challenge in applying the optimal filter is in
determining the noise spectrum. We will approach this
problem by fitting and modeling the experimentally mea-
sured spectrum of F (r).

Computationally, the deconvolution technique is best
implemented using the multidimensional Fast Fourier
Transforms (FFT). Fig. 7 demonstrates application of
the 3D FFT to a set of data obtained from numerical
simulation of interaction of spherical MRFM probe mag-
net with a point 3D spin distribution buried in a zero spin
substance. The geometry of the simulation has been de-
scribed earlier in the paper. It can be seen in Fig. 7b,
that the recovered image of the spin distribution is in
good agreement with the original data.

Discretized solution of the signal Integral equation

In some cases, the homogeneity approximation needed
to apply the Fourier deconvolution techniques is not
valid, for instance when the translational symmetry of
the kernel f is broken due to the surface effects or inho-
mogeneity of the external magnetic field or rf/microwave
radiation. In this case, the kernel cannot be reduced to

FIG. 7: An example of numerical image deconvolution using
a 3D Fast Fourier Transform. a) A 2D slice through the 3D
spin distribution pattern input into the numerical experiment.
b)A 2D slice through the recovered 3D image of the original
spin distribution.
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the homogeneous form, and other numerical techniques
for the solution of the integral Eq. 4 have to be applied.

Assume that the MRFM signal has been measured on a
3D grid, Fi, and the signal is related to the magnetization
on the same or some other related grid, mi. To find the
magnetization one needs to solve the system of linear
equations,

∑
j

fijmj = Fi, (10)

which is simply a discretized form of the original inte-
gral Eq. 4. While it is relatively straightforward to solve
such a system of equations for matrix dimensions up to a
few thousand, the problem is that the matrix fij is likely
to be ill-conditioned and hence the solution may have
little if anything to do with the actual spin distribution.
To rectify this problem, various regularization techniques
are often used. All of them rely on procedures for mini-
mization of a functional that can be tuned to incorporate
the expected properties of the actual underlying function
m(r), such as smoothness, stability, or likelihood. An ex-
ample of such functional that favors smooth functions is

∑
i

(Fi −
∑

j

fijmj)2 + λ
∑
i,j

Hijmimj , (11)

where Hij is a positive semidefinite matrix that has a zero
eigenvalue that corresponds to constant mi [19]. By tun-
ing the parameter λ, from 0 to infinity, one can manage
the trade-off between the agreement with the measured
data and the expected behavior of the unknown function.
Similarly, functionals can be constructed that reflect es-
sentially any a priori knowledge of the spin distribution.

While computationally significantly more intensive
than the fast-Fourier transform deconvolution techniques
described in the previous subsection, the direct regular-
ized method represents a viable alternative for the ex-
perimental situations when the extraneous effects make
the application of the FFT-based methods impossible.
Where possible, the two described methods can be used
for cross-check purposes.

CONCLUSIONS

We have experimentally verified the validity of our
model describing the probe sample interaction in Mag-

netic Resonance Force Microscopy. This enables us to
characterize the sensitivity of our scanning probe MRFM
and provides the basis for development of data deconvo-
lution that will enable 3D subsurface imaging of single
electron qubits of a silicon-based quantum computer us-
ing the MRFM.
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