NMR study of U(Be, B)₁₃ in the normal and superconducting states

E. T. Ahrens,* R. H. Heffner, P. C. Hammel, A. P. Reyes,[†] J. D. Thompson, and J. L. Smith Los Alamos National Laboratory, Los Alamos, New Mexico 87545

W. G. Clark

Department of Physics and Astronomy, University of California, Los Angeles, California 90095-1547

(Received 1 July 1998)

We report extensive ¹¹B and ⁹Be nuclear magnetic resonance (NMR) spin-lattice relaxation time (T_1) and Knight shift measurements in the heavy-fermion superconductor $UBe_{13-x}B_x$ (x=0.030, 0.067). Data were acquired over a broad temperature (T) range spanning 0.096-300 K in both the normal and superconducting states. In the normal state, the ¹¹B T dependence of T_1 displayed several energy scales. In a narrow T range, between 1 and 2 K, $1/T_1T$ was roughly constant. At lower temperatures and in a magnetic field exceeding the upper critical field, $1/T_1T$ exhibited a monotonic decrease down to approximately 0.18 K. Above roughly 4 K, $1/T_1$ exhibited a weak T dependence until ~60 K. At higher temperatures, additional relaxation mechanisms were present. The $1/T_1$ values for both ⁹Be and ¹¹B for all B concentrations were indistinguishable above ~4 K; however, at temperatures of the order of 1 K, the x = 0.067 sample had values roughly twice that of the x=0.030 sample for either nuclei. The x=0.030 sample had essentially the same $1/T_1$ magnitude and T dependence as undoped UBe₁₃. From the linear plot of the Knight shift $(K_{\rm B})$ versus the static magnetic susceptibility (χ), the ¹¹B hyperfine field coupling constant was calculated to be $-361.1 \text{ Oe}/\mu_B$. An approximate analysis of the U moment electronic fluctuation rate (Γ) was performed using the measured values of $1/T_1, K_B$, and χ . We observed a $\Gamma \propto \sqrt{T}$ dependence between 8 and 70 K, which is consistent with the existence of isolated local moment fluctuations. For T > 70 K, the Γ analysis breaks down due to the presence of crystal field excitations. Measurements of $1/T_1$ indicated a moderate decrease in Γ with the addition of boron at low temperatures, where $\Gamma(x=0.030)/\Gamma(x=0.067)\approx 2$. At lower temperatures, Γ approached a constant value of the order of 1 meV at $T \approx 2$ K. In the superconducting state, the T dependence of $1/T_1$ exhibited an absence of power-law behavior and a strong B concentration dependence for both nuclei. This behavior is consistent with gapless superconductivity induced by the B impurities. The ratio of the ⁹Be to ¹¹B $1/T_1$ increased with decreasing T below T_c . This indicates additional contributions to the ⁹Be $1/T_1$ at low temperatures that we attribute to spin diffusion processes that have negligible impact on the dilute ¹¹B. Below T_c , the ¹¹B Knight shift was measured to be $-0.08 \ (\pm 0.01)\%$ and was independent of both x and T. [S0163-1829(99)03602-4]

I. INTRODUCTION

The superconducting properties of heavy-fermion materials are extremely sensitive to the substitution of chemical impurities regardless of whether or not the dopant possesses a magnetic moment. In UBe₁₃, a few tenths of a percent of Cu substituted for Be completely eliminates its superconductivity.1 Most impurities depress the superconducting transition temperature (T_c) presumably due to pair breaking. Other dopants, such as Th-alloyed UBe₁₃, can induce multiple superconducting phases² and provide insight into the exotic nature of the superconducting state. Boron substituted for Be is another case that results in a remarkable change in the superconducting properties.³ Some of these changes include (i) a large enhancement in the specific heat discontinuity ΔC at T_c , which can reach values nearly twice that of pure UBe₁₃ and exceeds the Bardeen-Cooper-Shreiffer theoretical value by a wide margin,³ (ii) a relatively small depression of T_c with B doping, which is in sharp contrast to the behavior of other nonmagnetic impurities (e.g., Cu) added at comparable doping levels, and (iii) evidence for a reduction in the coherence temperature⁴ T^* with increasing B concentration.⁵

In this paper we report results of a nuclear magnetic resonance (NMR) investigation into the peculiar behavior of $UBe_{13-x}B_x$. In this system, as in many other heavy fermions, many of the low-temperature thermodynamic properties can be interpreted as resulting from a narrow feature in the density of states in proximity to the Fermi energy that is presumably due to low-energy magnetic fluctuations. NMR is well suited to probe this low-energy response because of the weak coupling of the nuclei to the metallic environment and the exceedingly small energy carried by the Larmor frequency photon.

We describe measurements of the spin-lattice relaxation time (T_1) and the Knight shift (K_B) in UBe_{13-x}B_x for x = 0.030 and 0.067 at temperatures (T) ranging from 0.096 to 300 K. Both the ⁹Be and ¹¹B signals were investigated. In the normal state, ¹¹B measurements were made between 0.192 and 300 K. At the lowest temperatures, we applied a magnetic field exceeding the upper critical field (H_{c2}). The ¹¹B NMR signal is particularly useful because its spectrum exhibits a relatively narrow, symmetric line shape, as shown in Fig. 1. Consequently, the resonance position can be accurately determined for Knight shift measurements. We have

1432

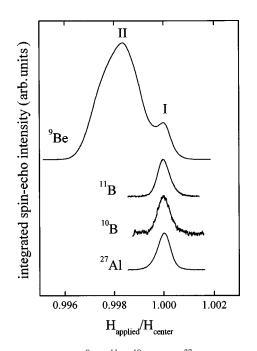


FIG. 1. Spectra of ${}^{9}Be$, ${}^{11}B$, ${}^{10}B$, and ${}^{27}Al$ in the x = 0.030sample taken at 4 K. (The Al is mixed into the powdered sample as a local field reference.) The labels I and II denote the approximate positions of the inequivalent Be(I) and Be(II) site locations. For each spectra, the field axis is normalized to the centroid field position, except for the ⁹Be spectrum, which is normalized to the approximate position of the Be(I) feature. The spectral linewidth is field dependent (Ref. 6) and is virtually temperature independent (at constant field) from ~ 2 K down to the lowest temperatures investigated. The B dopant resides exclusively on the m3 or cubic Be(I) site of the UBe₁₃ lattice (Ref. 6). The Be(II) site has lower symmetry. The ¹¹B signal is particularly useful because its spectrum exhibits a relatively narrow, symmetric, line shape, which permits accurate Knight shift measurements. The spectra were taken at spectrometer frequencies of 52 MHz for ⁹Be and ¹⁰B and 95 and 63 MHz for ¹¹B and ²⁷Al, respectively. These spectra were measured using conventional spin-echo spectroscopy, where the height of the echo was monitored using a gated boxcar integrator as the field was swept through the resonance.

previously shown that the B dopant resides exclusively in the m3 or cubic Be(I) site of the UBe₁₃ lattice.⁶ The inequivalent Be(II) site has lower symmetry. A preliminary account of the T_1 results in the superconducting state has been presented earlier.⁷

Our results show that in the normal state, the *T* dependence of the magnetic response probed by $1/T_1$ displays several energy scales. At low temperatures, $1/T_1T$ was roughly constant over a narrow temperature range of roughly 1 to 2 K; below these temperatures $1/T_1T$ exhibited a monotonic decrease down to the lowest temperature investigated. Above approximately 4 K, $1/T_1$ exhibited a weak temperature dependence until ~60 K. At higher temperatures, additional relaxation mechanisms were present, presumably due to low-lying crystal field excitations.

The ¹¹B hyperfine field coupling constant was extracted from a plot of the measured $K_{\rm B}$ as a function of the static magnetic susceptibility (χ). From the measured hyperfine field T_1 and χ , we estimated the *T* dependence of the electronic fluctuation rate (Γ) associated with the U moments. In the superconducting state ($T_c \sim 0.8$ K), we investigated the *T* dependence of T_1 for both the ⁹Be and ¹¹B nuclei. Below T_c , $1/T_1$ exhibited a strong B concentration dependence, especially at the lowest temperatures. We interpret this behavior as consistent with gapless superconductivity induced by the B impurities. The ratio of the ⁹Be to ¹¹B $1/T_1$ increased with decreasing temperature below T_c . This observation indicates that there are additional contributions to the ⁹Be relaxation rate that we attribute to processes involving nuclear spin diffusion that are less effective at relaxing the dilute ¹¹B. Below T_c , the ¹¹B Knight shift was independent of *x* and *T* within experimental uncertainties.

There are several previous studies utilizing ⁹Be NMR to investigate pure and alloyed UBe₁₃.⁸⁻¹² MacLaughlin *et al.*⁸ investigated $U_{1-x}Th_xBe_{13}$ (x=0 and 0.033) in the superconducting state. An approximate $1/T_1 \propto T^3$ dependence was observed well below T_c , suggesting an anisotropic superconducting gap and an unconventional pairing mechanism. In the normal state, $1/T_1T \sim \text{const}$ was observed in a narrow temperature range just above T_c . Clark *et al.*^{10,11} investigated the normal state Knight shift and quadrupolar interactions in single-crystal UBe₁₃ (Ref. 10) and high-temperature (T < 1000 K) T_1 behavior in powdered samples.¹¹ Also, normal state electronic spin fluctuation rates have been studied in the undoped material.¹²

II. EXPERIMENTAL DETAILS

Polycrystalline samples of $UBe_{13-x}B_x$ for x = 0.030 and 0.067 were prepared using standard arc melting techniques. For each concentration, powdered samples with particle diameters ranging from 38 to 128 μ m were prepared. For both samples, $T_c \approx 0.9$ K and varied by less than 15% between samples.⁵ To confirm that the B concentrations were equal to the nominal values, we measured the ratio of ¹¹B to ⁹Be nuclei in each sample using the intensity of their NMR signals. From this ratio, the B concentrations were calculated and they agreed with the nominal values to better than 12%. This measurement confirmed that the observed ¹¹B resonance originated from a single phase containing all of the dopant. The $UBe_{13-x}B_x$ samples used in this NMR study were the same ones used in resistivity, magnetic susceptibility, specific heat, and muon spin relaxation (μ SR) experiments.5

Within the temperature range between 2 and 300 K, sample cooling was achieved using a commercial helium gas-flow cryostat. It was mounted inside a 9-T magnet connected to a variable current supply. Powdered samples (\sim 250 mg) were loosely packed into cylindrical tubes that were surrounded by a copper solenoid. A conventional laboratory-built wideband pulsed NMR spectrometer was used for all measurements.

A laboratory-built dilution refrigerator was used for sample cooling below 2 K. The experimental samples, NMR coils, and resistance thermometers were located inside the mixing chamber in direct contact with the liquid ³He-⁴He mixture in order to maximize thermal contact to the sample. The mixing chamber was fabricated from nonmetallic epoxy resin (Stycast 1266, Emerson & Cuming Inc., Woburn, MA) in order to minimize Joule heating from the rf pulses. Sample access was via a resealable conical plug in the bottom of the mixing chamber. Several NMR samples were mounted in separate coils inside the mixing chamber. They included both of the UBe_{13-x}B_x concentrations and a Pt powder NMR thermometer. Each UBe_{13-x}B_x sample consisted of ~75 mg of loosely packed powder in a cylindrical epoxy tube; cotton wads plugged both ends allowing the ³He-⁴He mixture to bathe the powder grains. Copper NMR coils were wound around each sample tube and soldered to a twisted-pair transmission line that passed to the exterior of the mixing chamber. The twisted pairs were soldered to a 50- Ω CuNi coax that provided the rf connection to the laboratory.

For ease of use with the dilution refrigerator, we employed a coil impedance matching and frequency tuning system that required no variable components inside the refrigerator ("top tuning"). In the mixing chamber, the transmission line was terminated solely by the NMR coil, whose reactance was in the range 50–100 Ω , depending on frequency. At the top of the refrigerator, two adjustments were used to adjust the real part of the input impedance of the terminated line to the 50- Ω impedance of the NMR spectrometer and to cancel its imaginary part. This was accomplished by adding a variable length transmission line ("trombone" plus a fixed length of cable, if necessary) to the connector at the top of the refrigerator and a variable capacitor at the other end of the transmission line. By adjusting these two components while measuring the input impedance with a network analyzer, the system was easily tuned and matched to 50 Ω . By using this scheme we obtained an operating quality factor (Q) on the order of 30 and good sensitivity for the measurements.

For low-temperature thermometry we used pulsed ¹⁹⁵Pt NMR as the absolute reference thermometer.¹³ Several RuO₂ (2-k Ω) thin-film chip resistance thermometers (Dale Electronics Inc., Columbus, NE) were calibrated in temperature and magnetic field using the ¹⁹⁵Pt NMR thermometer. The RuO₂ thermometers were used for regulating temperature during the UBe_{13-x}B_x experiments in conjunction with a four-wire ac resistance bridge/temperature controller (LR400/LR130 Linear Research Inc., San Diego, CA) that powered a resistance heater located inside the mixing chamber.

All NMR data were acquired using two-channel (in-phase and quadrature phase) detection of the spin echo signals. For T_1 measurements, the pulse sequence comb-t- $\pi/2$ - τ - π - τ acquire-recycle was used,¹⁴ where the comb consisted a series of one to fifteen $\pi/2$ pulses. The delay time t was varied in logarithmic steps (≥ 12) and the magnetization recovery was monitored by measuring the height of the spin echo. The recycle time was set to of order of $5T_1$. The spectra were obtained by taking the Fourier transform of the second half of the spin echo.

We employed several strategies to avoid and evaluate heating of the sample and/or mixing chamber by the rf pulses. Two of these strategies were to use a plastic mixing chamber to avoid eddy current heating from a metal source and to encourage good thermal contact between the grains of the sample and the liquid He mixture. On the basis of an approximate analysis,¹⁵ we estimated that the time constant for thermal equilibration of the sample to the bath after a rf pulse was on the order of 0.01 s at 100 mK. Because this value is about four orders of magnitude less than typical

values of T_1 , we assumed that rf heating should not degrade the T_1 measurements. As a check, nevertheless, we often tested the possibility that heating might affect the measurements by adding progressively more rf pulses to the saturating train, effectively increasing the rf duty factor, until a corresponding change in the apparent value of T_1 was observed. All measurements were taken with numbers of saturating pulses that were well below the number needed to exhibit rf heating effects.

Another important consideration for measurements of the Knight shift is the change in magnetic field associated with the magnetic susceptibility of the granular sample. In an applied magnetic field, the large paramagnetic susceptibility of UBe_{13-x}B_x generates a substantial demagnetization field that contributes to the local field at a powder particle. This effect dominates the ¹¹B spectral linewidth at high fields⁶ and skews the spectrum centroid position towards higher frequency.¹⁶ As a way of evaluating the local field, we mixed a small amount (~10% of the volume) of high-purity (99.9%) Al powder with each powdered UBe_{13-x}B_x sample. The Al powder was used as a local field reference for the K_B measurements.

By using the ²⁷Al NMR reference signal and the analysis presented below, we evaluated the correction needed to obtain accurate values of $K_{\rm B}$. The advantage of using the ²⁷Al reference is that it avoids the need to calculate the samplegeometry-dependent demagnetization field. In our measurements on loosely packed powder samples, we assumed that the average field measured by the ²⁷Al powder is the same as the average field experienced by the UBe_{13-x}B_x particles. An implicit (and reasonable) assumption of this approach is that the average particle geometry is spherical and that the magnetic susceptibility of Al is negligible compared to UBe_{13-x}B_x. With these assumptions, the mean NMR frequency ($f_{\rm Al}$ and $f_{\rm B}$) for ²⁷Al and ¹¹B at constant applied field can be expressed as

and

$$f_{\rm B} = \gamma_{\rm B}(1+K_{\rm B})(B_0+\Delta B), \qquad (2)$$

(1)

respectively, where γ_{Al} and γ_B are the nuclear gyromagnetic ratios, K_{Al} and K_B are the ²⁷Al and ¹¹B Knight shifts, respectively, B_0 is the applied field strength, and ΔB is the field correction due to bulk demagnetization. By combining Eqs. (1) and (2), we have

 $f_{\rm Al} = \gamma_{\rm Al} (1 + K_{\rm Al}) (B_0 + \Delta B)$

$$K_{\rm B} = \frac{f_{\rm B} \gamma_{\rm Al}}{f_{\rm Al} \gamma_{\rm B}} \left(1 + K_{\rm Al}\right) - 1 = \left[0.813 \ 39 \frac{f_{\rm B}}{f_{\rm Al}} - 1\right], \qquad (3)$$

where we have used the accepted values for γ and the slightly temperature-dependent values for the Knight shift of ²⁷Al.¹⁶ An important advantage of using this method to compensate for the bulk demagnetization field is that Eq. (3) is independent of both B_0 and the sample dimensions.

III. EXPERIMENTAL RESULTS

In this section we present results for the temperaturedependent behavior of T_1 and K_B in the normal and superconducting states.

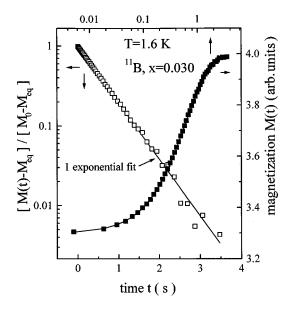


FIG. 2. Typical magnetization recovery measured by the combsaturation-recovery method in the normal state in the x=0.030sample at 1.6 K. The recovery is accurately fit to a single exponential recovery [Eq. (4), solid line]. These data were taken at 1.47 T.

A. Normal state

Figure 2 shows a typical ¹¹B magnetization recovery as a function of time after the magnetization has been destroyed by the comb. The recovery was fit to a single exponential of the form

$$M(t) = (M_0 - M_{eq})e^{-t/T_1} + M_{eq}, \qquad (4)$$

where M_0 , M_{eq} , and T_1 are the fit parameters. The accuracy in the T_1 fit was typically better than $\pm 2\%$ at all temperatures. The results of the normal state ¹¹B $1/T_1$ as a function of *T* spanning more than three orders of magnitude in temperature are shown in Fig. 3 for the x = 0.030 sample. These data, along with the results for the x = 0.067 sample, are plotted as $1/T_1T$ versus *T* in Fig. 4.

The data below ~0.6 K were taken in a field of 8.1 T (110.6 MHz), which exceeds H_{c2} in this temperature range $(H_{c2}=10.2 \text{ T at } T=0)$.¹⁷ The remaining data were acquired at 1.47 T between 0.7 and 1.0 K and 7 T for T>1 K. The spin-lattice relaxation rate in the normal state is field independent at least up to 9 T; this was investigated at 0.4, 1.7, and 5 K over a wide range of fields in both sample concentrations.

Several energy scales affecting the spin-lattice relaxation T dependence are evident from Fig. 3. The most striking is the rapid downturn in $1/T_1$ occurring below ~ 4 K and $1/T_1$ appears to approach a constant value at the lowest temperatures (T < 0.6 K). Also, an additional relaxation mechanism is evident above ~ 60 K.

Figure 4 shows the effect of B concentration on $1/T_1T$. At high temperatures there is virtually no difference between the two B concentrations; however, at temperatures of ~1 K, there is significant sample variation. In this temperature regime, T_1 for the x=0.030 sample is approximately twice that of the x=0.067 sample. [This same ratio $T_1(x$ $=0.030)/T_1(x=0.067)\sim 2$ is also seen in Fig. 7 for the ⁹Be at comparable temperatures.] A prominent feature of the nor-

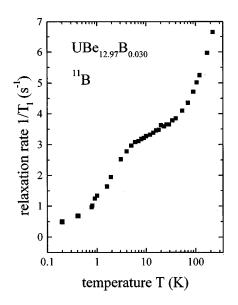


FIG. 3. Temperature dependence of $1/T_1$ for the x=0.030 sample. Several energy scales affecting the relaxation rate *T* dependence are evident. A rapid downturn in $1/T_1$ occurs below ~4 K, an additional relaxation mechanism is evident above ~60 K, and $1/T_1$ appears to approach a constant value at the lowest temperatures (T<0.6 K). The data below ~0.6 K were taken at a field high enough (8.1 T) to exceed H_{c2} . The remaining data were acquired at 1.47 T between 0.7 and 1.0 K and 7 T for T>1 K.

mal state data at low *T* is a distinct broad maximum and monotonic decrease in $1/T_1T$ with decreasing *T*. This is one of the most surprising features of the normal state T_1 results. Above ~1 K, the overall temperature dependence of the ¹¹B T_1 looks qualitatively similar to what is observed for ⁹Be in undoped UBe₁₃.^{11,12} The undoped material shows a nar-

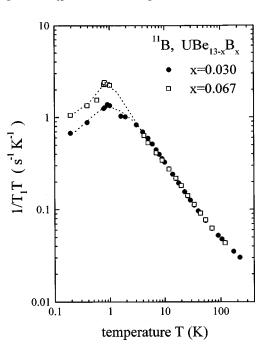


FIG. 4. Temperature dependence of $1/T_1T$ for x=0.030 (solid circles) and 0.067 (open squares). At low temperatures $1/T_1T$ differs by ~ 2 between the two samples, but shows no difference at higher temperatures. $1/T_1T$ goes through a broad maximum centered at approximately 1 K.

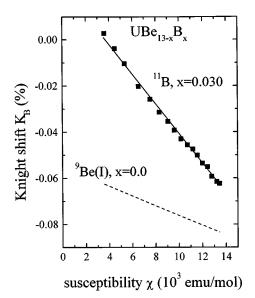


FIG. 5. $K_{\rm B}$ versus χ for the x = 0.030 sample. The slope gives the hyperfine coupling constant, which is equal to $-361.1 \text{ Oe}/\mu_B$. The data for the undoped material are taken from Ref. 10 and were measured in a single crystal. The x = 0.067 sample (not shown) exhibits quantitatively similar behavior. $K_{\rm B}$ was calculated using Eq. (3) with an uncertainty estimated at $\pm 0.008\%$. The Knight shift data in Fig. 5 are isotropic shifts. The linearity of $K_{\rm B}$ versus χ implies that a single mechanism is responsible for the *T* dependence of both $K_{\rm B}$ and χ . The data were acquired at $B_0 = 7$ T.

row temperature range spanning less than 2 K just above T_c where $1/T_1T$ is roughly constant.⁸ At higher temperatures, $1/T_1$ is nearly independent of temperature up to approximately ~60 K; above this temperature, $1/T_1$ is more strongly temperature dependent. The additional relaxation occurring above ~60 K has been attributed to thermal excitations of low-lying crystal field states of the U³⁺ ion.¹¹ The downturn in $1/T_1T$ below ~2 K that we observe has not been previously reported to our knowledge.

Figure 5 shows $K_{\rm B}$ plotted as a function of $\chi(T)$ in the x = 0.030 sample with temperature the implicit parameter over the range 4.2–300 K. The x = 0.067 sample (not shown) has a comparable magnitude of shift and temperature dependence. $K_{\rm B}$ was calculated using Eq. (3) with an uncertainty estimated at $\pm 0.008\%$. For comparison, the dashed line in Fig. 5 shows the ⁹Be data for the Be(I) site in undoped single-crystal UBe₁₃.¹⁰ Because the Be(I) site has local cubic symmetry, the Knight shift data in Fig. 5 for both nuclei are isotropic shifts. The linearity of the $K_{\rm B}$ versus χ plot suggests that a single mechanism is responsible for the *T* dependence of both the Knight shift and the magnetic susceptibility.

From the slope of the $K_{\rm B}$ versus χ plot, we calculate the value of the hyperfine coupling constant. The susceptibility can be decomposed into a summation of temperature independent and dependent terms

$$\chi(T) = \chi_0 + \chi_{sf}(T), \tag{5}$$

where χ_0 has contributions from *T*-independent diamagnetic and orbital susceptibility. The term $\chi_{sf}(T)$ has contributions from conduction electron and *f*-electron (Curie-Weiss) paramagnetism. In heavy fermions, strong hybridization between conduction and f electrons at low temperatures makes it reasonable to combine these two contributions into a single T-dependent term. The Knight shift, which is proportional to the magnetic susceptibility, can be expressed as

$$K_{\rm B}(T) = K_0 + K_{sf}(T) = K_0 + \frac{H_{\rm hf}\chi_{sf}(T)}{N\mu_B},$$
 (6)

where $H_{\rm hf}$ is the hyperfine field, N is Avogadro's number, and μ_B is the Bohr magneton. Using Eq. (6) and the slope of the ¹¹B data in Fig. 5, we obtain $H_{\rm hf} = -361.1 \text{ Oe}/\mu_B$.

B. Superconducting state

In this section we present measurements of $1/T_1$ and the Knight shift in the superconducting state to provide insight into how a small concentration of B modifies the superconducting density of states. We focus on the $1/T_1$ data from the ⁹Be and ¹¹B nuclei in UBe_{13-x}B_x for x=0.030 and 0.067 in the temperature range between 0.096 and 2 K. Also, ¹¹B Knight shift data for the two samples are presented in the same temperature regime.

Note that for the following data ¹¹B measures properties at the Be(I) site, whereas ⁹Be primarily measures the more abundant Be(II) sites. Selective excitation of one site or the other is not easily achieved for the ⁹Be, so that onethirteenth of the total nuclear magnetization originates from Be(I).

For the T_1 measurements, all Zeeman levels were saturated and the magnetization recovery was recorded as a function of time. Unlike the T_1 measurements in the normal state, the recovery in the superconducting state exhibited a distribution of relaxation times for both samples and nuclei that were investigated. A reasonable fit to the actual recovery is obtained using the double exponential expression

$$M(t) = M_{\rm eq}^{(l)} (1 - e^{-t/T_1^{(l)}}) + M_{\rm eq}^{(s)} (1 - e^{-t/T_1^{(s)}}) + M_0, \quad (7)$$

where $M_{eq}^{(l)}$, $M_{eq}^{(s)}$, M_0 , $T_1^{(l)}$, and $T_1^{(s)}$ are fit parameters. Here *s* denotes the short time constant and *l* is the long one.

A typical example of such a recovery that covers over five orders of magnitude in time is shown in Fig. 6, where the echo signal height is plotted as a function of t at 0.192 K with $B_0 = 1.47$ T. The solid line, which shows the double exponential fit, works well for the later times, but has a visible deviation at shorter times that reflects a distribution of short relaxation times. This situation is reflected in the uncertainties in the fit. At this temperature, the uncertainty is $\pm 10\%$ for $T_1^{(s)}$ and $\pm 1.6\%$ for $T_1^{(l)}$. Also, the values of $T_1^{(s)}$ and $T_1^{(l)}$ differ by at least an order of magnitude throughout most of the temperature range below T_c . The relative weight of $M_{\rm eq}^{(l)}/M_{\rm eq}^{(s)}$ is of order unity at this temperature, but more generally varies in the range 0.1-2 depending upon the nucleus, the value of x, and T.¹⁸ These features of the magnetization recovery were observed for both ¹¹B and ⁹Be in the two samples studied, as well as in our own measurements of undoped UBe₁₃. In undoped UBe₁₃, the long time constant agreed with previously reported results.⁸

We employed two tests that showed that the origin of the T_1 distribution is not transient Joule heating by the rf pulses. First, we intentionally induced sample heating by the rf pulses during a T_1 measurement and investigated its signa-

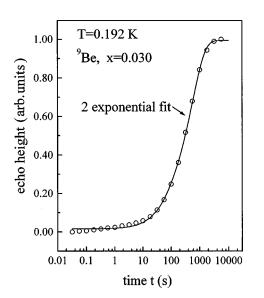


FIG. 6. Typical magnetization recovery measured by the combsaturation-recovery method in the superconducting state in the x = 0.030 sample at 0.192 K. The recovery exhibits a distributed T_1 behavior. Two exponentials [Eq. (7)] were used to fit superconducting data. We assume that the longer time constant is representative of the quasiparticle relaxation and the *T* dependence of this quantity is displayed in subsequent figures. These data were taken at 1.47 T.

ture on the parameters in Eq. (7). Sets of T_1 data were recorded as a function of rf power by varying the number of pulses (N_p) in the saturating train. The fitting parameters were essentially constant for $N_p = 5-20$. When $N_p = 40$, there was evidence of transient heating by the rf pulses. (Also, a small transient increase in the temperature of the mixing chamber's thermometer was observed immediately following the train of 40 pulses.) There was also an anomaly for $N_p = 1$ that we interpret as spectral diffusion following incomplete saturation of the inhomogeneously broadened ⁹Be spectrum ("hole burning").

The second indication that the distribution in T_1 is not related to heating is that at constant temperature, increasing the magnetic field above H_{c2} returns the recovery to single exponential. Joule heating, which is proportional to the square of the frequency, should become worse at the higher frequency needed to exceed H_{c2} . Thus we attribute the distributed T_1 as relating to the superconducting state.

Here we concentrate on the properties of the long time constant (referred to simply as T_1), whose primary origin we attribute to spin-lattice relaxation by thermally excited quasiparticles outside of the vortex core region of the superconductor. The typical uncertainty in the individual measurements is on the order of 2%.

Figures 7 and 8 show the temperature dependence of $1/T_1$ at 1.47 T for ⁹Be and ¹¹Be, where $T_1 = T_1^{(l)}$. Values of N_p were chosen to avoid rf heating and incomplete saturation of the NMR line. Below T_c there is a sharp decrease in $1/T_1$ for both ⁹Be and ¹¹B. This abrupt drop just below T_c is most likely an artifact caused by the change from the single exponential behavior above T_c to multiple exponential just below it. The use of a double exponential analysis close to the transition is problematic because the separation of the slow and fast parts is less evident than it is at lower temperatures. Therefore, the sharpness of the initial drop in the range

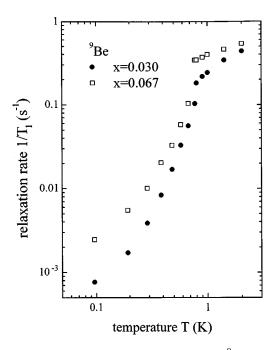


FIG. 7. Temperature dependence of $1/T_1$ for ⁹Be. Note that there is not a significant span of temperature where a power-law *T* dependence is obeyed. Also, there is a significant difference in the magnitude and the temperature dependence of $1/T_1$ between the two B concentrations; in the normal state at $T \sim 1$ K, $T_1(x = 0.030)/T_1(x = 0.067) \sim 2$. The abrupt drop immediately below T_c is most likely an artifact, as discussed in Sec. III B. The data were acquired at $B_0 = 1.47$ T.

 $0.9T_c - 1.0T_c$ should be discounted. At lower temperatures, however, where the analysis provides an unambiguous value for $1/T_1$, there is no significant span of temperature where $1/T_1 \propto T^3$, as reported for undoped UBe₁₃.⁸

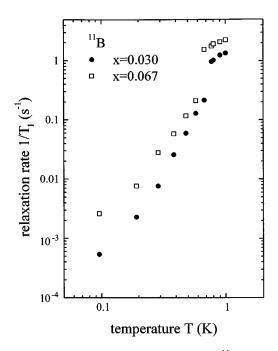


FIG. 8. Temperature dependence of $1/T_1$ for ¹¹B. The overall behavior of the two concentrations looks very similar to the ⁹Be data (see the caption of Fig. 7). The data were acquired at $B_0 = 1.47$ T.

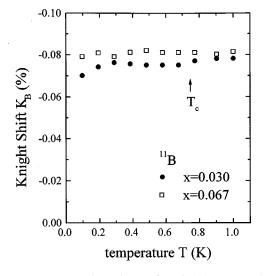


FIG. 9. Temperature dependence of $K_{\rm B}$ in the superconducting state. The $K_{\rm B}$ was measured with respect to the ²⁷Al resonance and calculated using Eq. (3). The data show no significant temperature variation in the superconducting state. Both B concentrations have the same shift within the uncertainty, which is estimated to be $\pm 0.01\%$. The data were taken at 1.47 T.

The ¹¹B magnetic shift measurements in the superconducting state were made for both sample concentrations and in the same temperature range as the $1/T_1$ data. The results are displayed in Fig. 9. The superconducting diamagnetic shift was accounted for using an Al powder reference Eq. (3)]. However, the magnitude of the superconducting diamagnetic shift was negligible because no detectable shift in the ²⁷Al resonance position was observed upon entering the superconducting state. This behavior is a consequence of the large Ginzburg-Landau parameter ($\kappa \sim 100$) for this material.¹⁹ Figure 9 shows a temperature-independent shift in the superconducting state equal to the normal state value near T_c . The magnitude of the shift is $-0.08 (\pm 0.01\%)$ and is comparable for both samples. For the x = 0.067 sample there is a tendency for a slightly more negative shift, but this is probably not significant and is within the stated uncertainty. The spectral linewidths and line shapes also remain constant below T_c . The linewidths in an applied field of 1.47 T are 10.7 ± 0.7 and 11.7 ± 1.2 G for the x = 0.030 and 0.067samples, respectively. A small amount of broadening is expected at low temperatures due to the magnetic field distribution of the vortex lattice. However, this effect would be small due to the large penetration depth of these materials²⁰ and is not resolvable in our measurements.

IV. ANALYSIS AND DISCUSSION

In this section we analyze and interpret the normal and superconducting state properties investigated by our NMR measurements.

A. Normal state

The values of $1/T_1$ for the ⁹Be in the x=0.030 sample (Fig. 7) are almost the same as those in the normal state of undoped UBe₁₃ (Ref. 8) at all temperatures investigated. In contrast, just above T_c the x=0.067 sample (Fig. 7) has a

value for $1/T_1$ of ⁹Be that is roughly twice that of the x = 0.030 sample or the undoped material; a factor of 2 increase is also observed in the ¹¹B T_1 results (Figs. 4 and 8). Interestingly, the ⁹Be T_1 for x = 0.067 is similar to what is observed in U_{0.967}Th_{0.033}Be₁₃.⁸

Above ~4 K, the T_1 values for either ⁹Be or ¹¹B for both B concentrations are indistinguishable within experimental uncertainties. The apparent upturn in $1/T_1$ observed at ~60 K (Fig. 3) occurs essentially at the same T as undoped UBe₁₃ (Ref. 11) and suggests that there is not a significant modification of the crystal field level splitting with B doping. We note that a similar conclusion was reached after inspection of the high-temperature resistivity data in the same samples.⁵ Thus, only at temperatures below ~4 K do measurements of $1/T_1$ show significant differences between the two samples.

The maximum in $1/T_1T$ (Fig. 4) observed in both samples is not understood. Because T_1 probes the density of states (DOS) close to the Fermi energy (ϵ_F), this behavior is consistent with "structure" in the many-body resonance at ϵ_F and/or a slight displacement of the resonance away from ϵ_F . In the latter case, the displacement would be of order of a few tenths of a degree kelvin away from ϵ_F . Also, this behavior could be explained by a slight temperature dependence to the amplitude or position of the resonance at low temperatures.

The spin-lattice relaxation rate in the normal state is independent of magnetic field up to the limit of 9 T covered in our experiments. This behavior has been investigated at 0.4, 1.7, and 5 K, over a wide range of fields and in both samples. Similar results have been observed in the undoped material.²¹ This result is consistent with nonsaturation of the magnetization with increasing field strength. The NMR shows that a narrow, rigid, spin-split band does *not* describe the states near the Fermi energy that are responsible for the heavy-fermion properties. An explanation of this behavior is certainly one of the most interesting outstanding questions concerning the normal state of UBe₁₃.

The normal state $K_{\rm B}$ and hyperfine field data (Fig. 5) show several interesting features. First, the magnitude of the hyperfine field calculated for ${}^{11}B(-361.1 \text{ Oe}/\mu_B)$ is approximately a factor of 3 larger than that of the Be(I) site in undoped UBe₁₃ (-118 Oe/ μ_B).¹⁰ This result cannot be explained in terms of differences in the magnitude of the atomic hyperfine fields for the two different atoms, which should be comparable because they have the same core electron configuration. (Be and B are neighbors on the Periodic Table.) Because $K_{\rm B} \propto \chi \langle |\psi_s(0)|^2 \rangle$ (the bracketed term is the square of the electronic wave function at the nucleus averaged over the Fermi surface) and the bulk susceptibility of these samples are the same, the value of $\langle |\psi_s(0)|^2 \rangle$ must be larger for ¹¹B than for ⁹Be. The reason for this is not clear, but perhaps the extra 2p electron from the B adds an additional core-polarization contribution to the hyperfine field. Another possibility is that because of the larger valence of B compared to Be, the B impurity requires extra electron density locally to screen the excess charge; this could possibly increase the size of the contact hyperfine term.

It is also noteworthy that the sign of the shifts and hyperfine fields is negative for both the ¹¹B and the undoped Be(I)site. Interestingly, for the Be(II) site in pure UBe_{13} , the shifts and hyperfine fields are all positive.¹⁰ The negative sign at the Be(I) site for both nuclei indicates an opposite sign for the electronic spin density with respect to the applied field at that specific lattice position.

B. Uranium moment fluctuation rate

By combining the results of the T_1 , K_B , and χ measurements, we estimate the U moment fluctuation rate using the following analysis. The dominant mechanisms responsible for T_1 in UBe_{13-x}B_x are assumed to be composed of primarily two terms

$$\frac{1}{T_1} = \left(\frac{1}{T_1}\right)_{\text{on-site}} + \left(\frac{1}{T_1}\right)_{\text{dip}}.$$
(8)

The first contribution, or "on-site" term, involves a fluctuating electron spin density directly overlapping the nuclei. This term can have several origins including fluctuations of the conduction electrons arising from the exchange interaction with the 5f electrons. The second term is the direct nuclear coupling to the fluctuating moment via the dipolar interaction.

The on-site term can be obtained from²²

$$\frac{1}{T_1} = \frac{k_{\rm B} \gamma_n^2 T}{\mu_{\rm B}^2} \sum_{q} |H_{\rm hf}(q)|^2 \lim_{\omega_n \to 0} \left[\frac{\chi''(q, \omega_n)}{\omega_n} \right], \qquad (9)$$

where $k_{\rm B}$ is Boltzmann's constant, γ_n is the nuclear gyromagnetic ratio, $\mu_{\rm B}$ is the Bohr magneton, $\chi(q,\omega) = \chi'(q,\omega) + i\chi''(q,\omega)$ is the dynamic susceptibility, $H_{\rm hf}(q)$ is the Fourier transform of the spatially dependent hyperfine field, and ω_n is the Larmor frequency. We assume that the fluctuations of neighboring U moments are uncorrelated, which implies that χ is independent of q. The electronic fluctuation time can be expressed as

$$\tau = \lim_{\omega_n \to 0} \left[\frac{\chi''(\omega_n)}{\chi'(0)\omega_n} \right], \tag{10}$$

where $\chi'(0)$ is the static susceptibility per U atom. The dipolar term can be obtained using the expression²³

$$\left(\frac{1}{T_1}\right)_{\rm dip} = 4 \gamma_n^2 k_{\rm B} T \left(\sum_i \frac{1}{r_i^6}\right) \lim_{\omega_n \to 0} \left[\frac{\chi''(\omega_n)}{\omega_n}\right], \qquad (11)$$

where r_i is the magnitude of the position vector joining the nucleus and the *i*th fluctuating electronic spin.

By combining Eqs. (8)–(11), an approximate relation for the fluctuation rate $\Gamma \equiv \hbar/\tau$ can be derived,

$$\Gamma \simeq 2 \gamma_n^2 k_{\rm B} \hbar \left[\frac{2N}{r_N^6} + \frac{H_{\rm hf}^2}{\mu_{\rm B}^2} \right] T_1 T \chi'(0), \qquad (12)$$

where N is the number of nearest-neighbor U atoms at a distance r_N , and $H_{\rm hf}$ is the isotropic hyperfine field obtained from the Knight shift. A number of assumptions are contained within Eq. (12); the most important are (i) a q-independent χ (discussed further below), (ii) both relaxation mechanisms in Eq. (8) can be described in terms of a single fluctuation time (τ), (iii) only nearest-neighbor contributions are included in the dipolar term, and (iv) the elec-

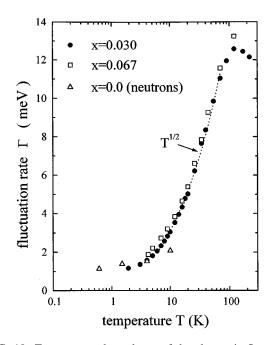


FIG. 10. Temperature dependence of the electronic fluctuation rate for the x=0.030 (solid circles) and 0.067 (open squares) samples. The \sqrt{T} dependence at intermediate temperatures is characteristic of local moment fluctuations. At low temperatures, Γ is consistent with the value of the renormalized density of states obtained by thermodynamic measurements. Above ~60 K, the effects of crystal fields are observed. Also shown is the quasielastic linewidth data from neutron scattering results in UBe₁₃ (open triangles) (Ref. 26), which are in reasonable agreement with values obtained by NMR.

tronic spin is a point moment. We estimate that the error associated with these assumptions is much less than an order of magnitude.

Figure 10 show the values of Γ obtained from Eq. (12) and using the experimental results in Figs. 3-5. A strong temperature dependence of Γ is observed. Roughly between 8 and 70 K $\Gamma \propto \sqrt{T}$. A similar temperature dependence is also seen in many Ce-, Yb-, and U-based heavy-fermion compounds^{12,24} at temperatures greater than the coherence temperature. This temperature dependence can be deduced theoretically using a single-impurity degenerate Anderson model²⁵ and is universal for a temperature regime larger than the system's Kondo temperature. The observation of a \sqrt{T} dependence in $UBe_{13-x}B_x$ suggests the existence of isolated local moment fluctuations at high temperatures. At temperatures above 70 K the presence of crystal field splittings introduces an additional energy scale that destroys the \sqrt{T} dependence. At low temperatures, Γ approaches a constant value of order of 1 meV or 10 K, which is consistent with the order of magnitude of the renormalized density of states obtained by thermodynamic measurements.

It is interesting to estimate the relative contributions to $1/T_1$ from the on-site and dipolar terms of Eq. (8). By using the above assumptions, we obtain for this ratio

$$\frac{\left(\frac{1}{T_{1}}\right)_{\text{on-site}}}{\left(\frac{1}{T_{1}}\right)_{\text{dip}}} = \frac{1}{2} \frac{H_{\text{hf}}^{2} r_{N}^{6}}{N \mu_{\text{B}}^{2}} \sim 0.7, \qquad (13)$$

Measurements of $1/T_1$ indicate a moderate decrease in Γ upon doping with boron. At low temperatures in the normal state, $1/T_1$ of ⁹Be is about the same for the undoped material and for x = 0.030. On the other hand, the x = 0.067 sample has a value of $1/T_1$ about twice that of the x = 0.030 sample for both ⁹Be and ¹¹B. However, as is the case for the static magnetic susceptibility,⁵ there is no change in K_B with B concentration. Thus we estimate that Γ for the x = 0.030 sample is roughly equal to that of undoped UBe₁₃ and $\Gamma(x = 0.030)/\Gamma(x = 0.067) \sim 2$.

Under certain conditions Γ calculated from NMR parameters can be compared to the results of neutron scattering quasielastic linewidth measurements. NMR and neutrons probe somewhat different aspects of the imaginary part of the dynamic susceptibility $\chi''(q,\omega)$. Quantitative agreement between the two probes is observed if χ'' is independent of qand the fluctuation spectrum, given by Eq. (10), is Lorentzian in form. For neutrons, the half-width at half maximum of the quasielastic response, which is a measure of the fluctuation rate of the system, is the relevant quantity to be compared to the NMR results.

Neutron scattering experiments have not been performed in UBe_{13-x}B_x. However, low-energy quasielastic linewidth measurements have been made in undoped UBe₁₃.²⁶ In Fig. 10 the results of these measurements, averaged over the different q values at each temperature, are compared to the Γ values estimated from the NMR parameters for the x =0.030 sample. The comparison shows reasonable agreement between the two probes, which suggests that any antiferromagnetic correlations in these materials are, at most, weak down to at least ~2 K. This interpretation is also supported by the neutron results, which show no statistically significant variation of Γ with q.²⁶ Such a result is somewhat surprising since strong antiferromagnetic correlations are observed in many other heavy-fermion systems.²⁷

In addition to the low-energy excitations observed by neutrons, a higher-energy broad magnetic response, ~13 meV, is reported by Goldman *et al.*²⁸ in UBe₁₃. This is thought to originate from inelastic scattering from the $\Gamma_6 \leftrightarrow \Gamma_8$ crystal field levels.²⁶ Thermal occupation of these states is evident in the $1/T_1$ (Fig. 3) above ~60 K, as well as in the Γ calculated from the NMR parameters at temperatures above ~70 K. Thus both the low- and high-energy magnetic responses observed in neutron scattering can be detected using NMR.

C. Superconducting state

The major result in the superconducting state is the substantial increase in $1/T_1$ at low temperatures caused by the dilute substitution of B for Be(I) atoms. This increase may be caused by a change in the quasiparticle spectrum or by other mechanisms, such as spin diffusion to paramagnetic centers or spin diffusion to mixed-state vortex cores.²⁹

There are several circumstances that limit the importance of relaxation by either of the two spin-diffusion mechanisms. In the case of spin diffusion to paramagnetic centers, at the 1.47-T field used in these measurements, the Zeeman splitting of a g=2 magnetic moment is ~ 2 K; this is much larger than $k_{\rm B}T$ for the low-temperature regime under consideration. Under these circumstances, the paramagnetic centers are aligned with the field and the fluctuations needed for a significant contribution to $1/T_1$ are frozen out, as seen in the case of Gd-doped UBe₁₃.³⁰ Although relaxation via spin diffusion to vortex cores can be a significant process for the ⁹Be spins at the lowest temperatures investigated,³¹ it is expected to be negligible for the ¹¹B nuclei. This is because the dilute concentration of the B results in a greatly reduced nuclear spin diffusion coefficient in comparison to the ⁹Be spins. Thus we attribute the observed increase in $1/T_1$ at low temperatures to an increased DOS at the Fermi energy caused by the replacement of Be(I) atoms by B.

Before analyzing our results on the basis of this hypothesis, we point out several important considerations. In conventional s-wave superconductors, nonmagnetic impurities have a weak effect on fundamental parameters such as the energy gap and T_c .³² Paramagnetic impurities, on the other hand, are Cooper pair breakers and result in a strong depression of T_c and a broadening of the superconducting DOS.³³ The situation is quite different for anisotropic superconductors. Nonmagnetic impurities can act as pair breakers and modify the low-temperature superconducting properties, even for very small impurity concentrations.³⁴ It has been argued that certain impurities in heavy-fermion systems are likely to be strong resonant scatterers with phase shifts close to $\pi/2$.³⁵ For such a situation, an infinitesimally small impurity concentration can result in a peak in the DOS at zero energy.³⁴ The height of this peak is proportional to the impurity concentration. At higher energies, the DOS is almost unaffected by the impurities. In terms of the NMR properties, the usual power-law dependences to $1/T_1$ just below T_c are expected, followed by a crossover to $1/T_1T \sim \text{const}$ at low temperatures. Also, the Knight shift should not go to zero at T=0 (assuming spin-singlet pairing) because the low-energy DOS contributes a finite spin susceptibility. Such behavior in $1/T_1$ and the Knight shift has been observed in several cuprate superconductors.36

Figures 11 and 12 again show the low-temperature relaxation data for ⁹Be and ¹¹B. Here we plot $R_s/R_n \equiv (1/T_1T)_s/(1/T_1T)_n$ as a function of temperature, where the subscripts *n* and *s* refer to the normal state value at T_c and the superconducting state, respectively. Note that for either nuclei below ~0.2 K, R_s/R_n approaches nearly a constant value that is strongly *x* dependent. At the lowest temperature of 0.096 K, the ratio

$$\rho = \frac{\left(\frac{R_s}{R_n}\right)_{x=0.030}}{\left(\frac{R_s}{R_n}\right)_{x=0.067}}$$
(14)

is equal to 0.57 for ⁹Be and 0.40 for ¹¹B. The lowtemperature behavior seen for ⁹Be and ¹¹B, or R_s/R_n approaching a constant, suggests a finite DOS at zero energy, or a gapless superconducting state. The number of states at low energy appear to be strongly dependent on the concentration of B impurities. Let us now focus on this lowtemperature behavior and the effect of adding impurities into anisotropic superconductors.

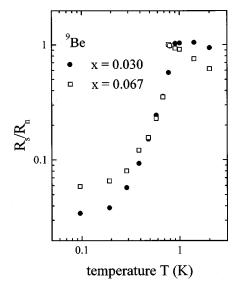


FIG. 11. Temperature dependence of $R_s/R_n = (1/T_1T)_s/(1/T_1T)_n$ for ⁹Be. The subscript *s* represents superconducting state and *n* is the normal state value just above T_c . Note that below T_c the normalized relaxation rates of the two concentrations have a similar temperature dependence and magnitude, but at lower temperatures there is a substantial difference between the two rates.

Our observed low-temperature behavior of T_1 is consistent with the hypothesis that the B impurities act as strong scattering centers. Assuming this to be the case, we estimate the magnitude of ρ , defined by Eq. (14), from the known B concentrations using the results of a model for resonant impurities in *d*-wave superconductors.³⁷ At low temperatures³⁷

$$\frac{R_s}{R_n} \sim \left[\frac{N_{\rm imp}(0)}{N_0}\right]^2 \tag{15}$$

and

$$\frac{N_{\rm imp}(0)}{N_0} \sim \sqrt{n_i},\tag{16}$$

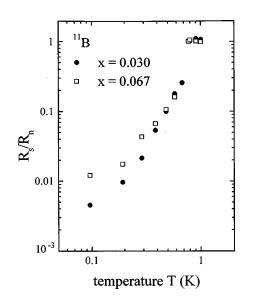


FIG. 12. Temperature dependence of R_s/R_n for ¹¹B (see the caption of Fig. 11).

where N_0 is the normal state DOS at the Fermi surface, $N_{imp}(0)$ is the DOS at zero energy in the superconducting state, and n_i is the concentration of impurities. Therefore, we expect

$$\rho \sim \frac{(n_i)_{x=0.030}}{(n_i)_{x=0.067}},\tag{17}$$

or just the ratio of the B concentrations, which is equal to 0.42. This value is in reasonable agreement with $\rho = 0.40$ obtained from the ¹¹B data. For ⁹Be, $\rho = 0.57$, which is in poorer agreement, but we expect ⁹Be to be more affected by the other relaxation mechanisms discussed at the beginning of this section. Thus there is semiquantitative agreement of our low-temperature $1/T_1$ data with a model calculation for resonant scattering in anisotropic superconductors.

There are several comments to be made regarding the possibility of resonant impurity scattering in $UBe_{13-x}B_x$. First, the impurities should be pair breakers that cause a reduction of T_c . Doping UBe₁₃ with B is unusual, however, because a substantial reduction in T_c does not occur, which is in contrast to what happens when other nonmagnetic substitutions are made onto a U or Be site at comparable concentrations. On the other hand, Hirschfeld et al.³⁴ have pointed out that T_c may only be slightly depressed if impurity concentrations are at the $10^{-3} - 10^{-4}$ level. This range is close to that of our samples. Second, if a "Kondo hole" picture³⁵ is relevant in this system, a B impurity must somehow behave as if it were a Kondo hole, even though the atom that it replaced does not have a moment. We speculate that the presence of the B dopant somehow substantially modifies or destroys one or more nearby U moments.

Resonant impurity scattering in UBe_{13-x}B_x should manifest itself in other measurable properties, such as very-low-temperature specific heat and thermal conductivity. In the case of specific heat, a residual linear term is expected at low temperatures. Although we are not aware of such measurements in UBe_{13-x}B_x, low-temperature ($T \sim 90$ mK) measurements in U_{1-x}Th_xBe₁₃ (Ref. 38) have shown a large linear term in C(T) for x > 0.02 along with deviations in the T^3 dependence normally observed in undoped UBe₁₃. Thus, in the Th-doped system, there are several suggestive characteristics of the resonant impurity scattering interpretation.

The ratio of relaxation times for ¹¹B and ⁹Be for both B concentrations is shown in Fig. 13. For temperatures above and just below T_c the observed ratio is ~0.2. For magnetic relaxation, one expects this relaxation time ratio to be temperature independent and have a magnitude of order

$$\frac{T_1({}^{11}\text{B})}{T_1({}^{9}\text{Be})} \sim \frac{(\gamma_n H_{\text{hf}})^2|_{\text{Be}}}{(\gamma_n H_{\text{hf}})^2|_{\text{B}}} \sim 0.3,$$
(18)

where we have used H_{hf} =478 Oe/ μ_B for ⁹Be at the Be(II) site.¹⁰ This is not far from the measured result in this temperature range. The large increase in this ratio at low temperatures indicates that the ⁹Be experiences "additional" relaxation. We attribute this to spin diffusion to vortex cores that does not affect the ¹¹B rate because of its very small spin diffusion coefficient, as discussed above. For this reason, we believe that the ¹¹B T_1 data are a more accurate measure of the intrinsic quasiparticle relaxation than the ⁹Be data.

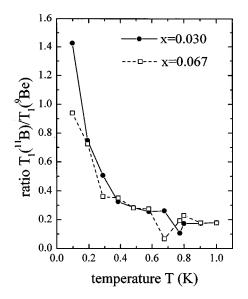


FIG. 13. Temperature dependence of the ratio of T_1 's for the ¹¹B and ⁹Be. At low temperatures the ⁹Be experiences additional relaxation compared to ¹¹B. We attribute this to spin diffusion to vortex cores that does not affect the ¹¹B rate because of its very dilute concentration.

The main feature of $K_{\rm B}$ in UBe_{13-x}B_x is that it is unchanged by the superconducting transition and that, within experimental error, it is the same for x = 0.067 and 0.030. This temperature independence has been observed in some uranium-based heavy-fermion superconductors, but not in others. For example, a temperature-independent NMR shift in the superconducting state has been reported for $U_{0.967}$ Th_{0.033}Be₁₃ (Ref. 8) and UPt₃.³⁹ On the other hand, a reduction of 20% has been reported for UPd₂Al₃ (Ref. 40) and μ SR results have indicated a reduction of 10–40% for UBe₁₃.⁴¹ (We are unaware of any superconducting NMR Knight shift studies in undoped UBe₁₃.) In no case is the full vanishing Knight shift of the Yosida model²⁹ observed.

It is natural to assume that this behavior of $K_{\rm B}$ is the result of a temperature-independent spin susceptibility. A finite spin susceptibility at zero temperature can originate from a variety of mechanisms. They include spin-orbit scattering,42 gapless superconductivity, and spin-triplet pairing of the Cooper pairs.⁴³ We attribute strong spin-orbit scattering as the dominant mechanism for the temperature independence of $K_{\rm B}$. Although the $1/T_1$ data indicate the occurrence of a gapless superconducting state with B doping, it does not appear to be the most important contribution. If the DOS of the gapless states were large enough to cause the temperature independence of $K_{\rm B}$, we would expect $K_{\rm B}$ to be substantially larger for x = 0.067 than for x = 0.030, but they are the same within uncertainties. Since there is no other conclusive evidence of spin-triplet Cooper pairing in these materials, we reject this possibility as a mechanism for the behavior of $K_{\rm B}$.

V. CONCLUSIONS

The NMR results in this study provide insight into how the magnetic response and the superconducting DOS are modified when B is doped into UBe₁₃. In the normal state, above $\sim 4 \text{ K}$, $1/T_1$ values for ⁹Be or ¹¹B for all B concentrations are indistinguishable within experimental uncertainties. At lower temperatures, of the order of 1 K, significant differences exist, with x=0.067 having a $1/T_1$ roughly twice that compared to the x=0.030 sample for both nuclei. The x=0.030 sample has essentially the same $1/T_1$ magnitude and temperature dependence as undoped UBe₁₃. For a span of about 1–2 K above T_c , the temperature dependence for the x=0.030 sample shows a Korringa-like dependence. In the x=0.067 sample, deviations from this behavior are observed, possibly reflecting a reduction in T^* . Below ~1 K, $1/T_1T$ exhibits a monotonic decrease in both sample concentrations. The ¹¹B hyperfine field coupling constant, extracted from the linear plot of K_B versus χ , was calculated to be $-361.1 \text{ Oe}/\mu_B$.

Using an approximate analysis of the U moment electronic fluctuation rate, we observe a $\Gamma \propto \sqrt{T}$ dependence in a temperature range between 8 and 70 K, which is consistent with the existence of isolated local moment fluctuations at high temperatures. For T > 70 K, the Γ analysis breaks down due to the presence of crystal field excitations. Measurements of $1/T_1$ indicate a moderate decrease in Γ with the addition of boron at low temperatures, where $\Gamma(x = 0.030)/\Gamma(x=0.067) \sim 2$. At lower temperatures, Γ approaches a constant value of the order of 1 meV near 2 K. This value is comparable to the magnitude of the renormalized density of states obtained from thermodynamic measurements and for x=0.030 compares favorably with quasielastic neutron scattering experiments in the undoped material.

In the superconducting state, we investigated the T dependence of T_1 for both the ⁹Be and ¹¹B nuclei. Below T_c , $1/T_1$ exhibited a strong B concentration dependence, especially at the lowest temperatures. We interpret this behavior as consistent with gapless superconductivity induced by the B impurities. Due to the small amount of B dopant, we speculate that the B impurities act like strong scattering centers near the unitary limit. This hypothesis is supported by semiquantitative agreement of our low-temperature T_1 results with theoretical predictions for resonant impurity scattering in anisotropic superconductors. The ratio of the ⁹Be to ${}^{11}B \ 1/T_1$ increased with decreasing temperature below T_c . This observation indicates that additional contributions to the ⁹Be relaxation rate are present at low temperatures. We attribute this effect to spin diffusion processes that have little impact on the dilute ¹¹B; thus the ¹¹B T_1 results may more accurately reflect the intrinsic quasiparticle relaxation compared to the ⁹Be. Below T_c , the ¹¹B Knight shift was measured to be $-0.08 \ (\pm 0.01)$ %. This value is independent of x and T within our experimental uncertainties and is presumably due to strong spin-orbit scattering in these materials.

ACKNOWLEDGMENTS

We thank D. E. MacLaughlin, M. Takigawa, A. V. Balatsky, and W. P. Beyermann for enlightening discussions. One of us (E.T.A.) acknowledges support from the Associated Western Universities for much of this work. This work was funded in part by NSF Grant No. DMR-9705369. Work at Los Alamos was performed under the auspices of the U.S. Department of Energy.

- *Author to whom correspondence should be addressed. Present address: Beckman Institute and Division of Biology, California Institute of Technology, MS 139-74, Pasadena, CA 91125. FAX: (626) 449-5163. Electronic address: eta@gg.caltech.edu
- [†]Present address: National High Magnetic Field Laboratory, Florida State University, 1800 Paul Dirac Drive, Tallahassee, FL 32310.
- ¹A. L. Giorgi, Z. Fisk, J. O. Willis, G. R. Stewart, and J. L. Smith, in *Proceedings of the 17th International Conference on Low Temperature Physics, LT-17*, edited by U. Eckern, A. Schmid, W. Weber, and H. Wuhl (North-Holland, Amsterdam, 1984), p. 229.
- ²H. R. Ott, H. Rudigier, Z. Fisk, and J. L. Smith, Phys. Rev. B **31**, 1651 (1985); R. H. Heffner, J. L. Smith, J. O. Willis, P. Birrer, C. Baines, F. N. Gygax, B. Hitti, E. Lippelt, H. R. Ott, A. Schenck, E. A. Knetsch, J. A. Mydosh, and D. E. MacLaughlin, Phys. Rev. Lett. **65**, 2816 (1990).
- ³Z. Fisk and H. R. Ott, Int. J. Mod. Phys. B **3**, 535 (1989); E. Felder, A. Bernasconi, H. R. Ott, Z. Fisk, and J. L. Smith, Physica C **162-164**, 429 (1989); H. R. Ott, E. Felder, Z. Fisk, R. H. Heffner, and J. L. Smith, Phys. Rev. B **44**, 7081 (1991).
- ${}^{4}T^{*}$ is defined as the temperature where the entropy ΔS reaches a value given by $\Delta S = \int_{0}^{T^{*}} \gamma \, dT = R \ln 2$ per mole of actinide (fully compensated moment), where γ is the electronic heat capacity.
- ⁵W. P. Beyermann, R. H. Heffner, J. L. Smith, M. F. Hundley, P. C. Canfield, and J. D. Thompson, Phys. Rev. B **51**, 404 (1995).
- ⁶E. T. Ahrens, P. C. Hammel, R. H. Heffner, A. P. Reyes, J. L. Smith, and W. G. Clark, Phys. Rev. B 48, 6691 (1993).
- ⁷E. T. Ahrens, R. H. Heffner, P. C. Hammel, A. P. Reyes, and J. L. Smith, Physica B **206&207**, 589 (1995).
- ⁸D. E. MacLaughlin, Cheng Tien, W. G. Clark, M. D. Lan, Z. Fisk, J. L. Smith, and H. R. Ott, Phys. Rev. Lett. **53**, 1833 (1984).
- ⁹N. E. Alekseevskii and E. G. Nikolaev, Sov. Phys. JETP 64, 1078 (1987).
- ¹⁰W. G. Clark, M. C. Lan, G. van Kalkeren, W. H. Wong, Cheng Tien, D. E. MacLaughlin, J. L. Smith, Z. Fisk, and H. R. Ott, J. Magn. Magn. Mater. **63-64**, 396 (1987).
- ¹¹W. G. Clark, W. H. Wong, W. A. Hines, M. D. Lan, D. E. MacLaughlin, Z. Fisk, J. L. Smith, and H. R. Ott, J. Appl. Phys. 63, 3890 (1988).
- ¹² M. Benakki, A. Qachaou, and P. Panissod, J. Magn. Magn. Mater. 73, 141 (1988).
- ¹³ R. E. Walstedt, E. L. Hahn, C. Froidevaux, and E. Geissler, Proc. R. Soc. London, Ser. A **284**, 499 (1965); M. I. Aalto, H. K. Collan, R. G. Gylling, and K. O. Nores, Rev. Sci. Instrum. **44**, 1075 (1973).
- ¹⁴E. Fukushima and S. B. W. Roeder, *Experimental Pulse NMR: A Nuts and Bolts Approach* (Addison-Wesley, Reading, MA, 1981).
- ¹⁵J. M. Moore, W. G. Clark, and W. H. Wong, Phys. Rev. B 38, 11 163 (1998).
- ¹⁶ Metallic Shifts in NMR, edited by G. C. Carter, L. H. Bennet, and D. J. Kahan (Pergamon, Oxford, 1978).
- ¹⁷G. Remenyi, D. Jaccard, J. Flouquet, A. Briggs, Z. Fisk, J. L. Smith, and H. R. Ott, J. Phys. (Paris) 47, 367 (1986).

- ¹⁸E. T. Ahrens, Ph.D. thesis, University of California at Los Angeles, 1994.
- ¹⁹H. M. Mayer, U. Rauchschwalbe, C. D. Bredl, F. Steglich, H. Rietschel, H. Schmidt, H. Wuhl, and J. Beuers, Phys. Rev. B 33, 3168 (1986).
- ²⁰D. Einzel, P. J. Hirschfeld, F. Gross, B. S. Chandrasekhar, K. Andres, H. R. Ott, J. Beuers, Z. Fisk, and J. L. Smith, Phys. Rev. Lett. 56, 2513 (1986).
- ²¹W. G. Clark (unpublished).
- ²²A. Narath, CRC Crit. Rev. Solid State Sci. 3, 1 (1972).
- ²³D. L. Cox, Phys. Rev. B **35**, 6504 (1987).
- ²⁴A. Qachaou, E. Beaurepaire, M. Benakki, B. Lemius, J. P. Kappler, A. J. P. Meyer, and P. Panissod, J. Magn. Magn. Mater. **63-64**, 635 (1987); M. Benakki, J. P. Kappler, and P. Panissod, J. Phys. Soc. Jpn. **56**, 3309 (1987).
- ²⁵D. L. Cox, N. E. Bickers, and J. W. Wilkins, J. Appl. Phys. 57, 3166 (1985).
- ²⁶G. H. Lander, S. M. Shapiro, C. Vettier, and A. J. Dianoux, Phys. Rev. B 46, 5387 (1992).
- ²⁷Z. Fisk, D. W. Hess, C. J. Pethick, D. Pines, J. L. Smith, J. D. Thompson, and J. O. Willis, Science **239**, 33 (1988).
- ²⁸A. I. Goldman, S. M. Shapiro, G. Shirane, J. L. Smith, and Z. Fisk, Phys. Rev. B **33**, 1627 (1986).
- ²⁹D. E. MacLaughlin, Solid State Phys. **31**, 1 (1976).
- ³⁰J. M. Moore, Ph.D. thesis, University of California at Los Angeles, 1991.
- ³¹D. E. MacLaughlin, M. D. Lan, C. Tien, J. M. Moore, W. G. Clark, Z. Fisk, J. L. Smith, and H. R. Ott, J. Magn. Magn. Mater. **63-64**, 455 (1987).
- ³²P. W. Anderson, J. Phys. Chem. Solids **11**, 26 (1959).
- ³³A. A. Abrikosov and L. P. Gor'kov, Sov. Phys. JETP **12**, 1243 (1961).
- ³⁴P. J. Hirschfeld, D. Vollhardt, and P. Wolfle, Solid State Commun. **59**, 111 (1986); P. J. Hirschfeld, P. Wolfle, and D. Einzel, Phys. Rev. B **37**, 83 (1988).
- ³⁵C. J. Pethick and D. Pines, Phys. Rev. Lett. **57**, 118 (1986); S. Schmitt-Rink, K. Miyake, and C. M. Varma, *ibid.* **57**, 2575 (1986).
- ³⁶K. Ishida, Y. Kitaoka, N. Ogata, T. Kamino, K. Asayama, J. R. Cooper, and N. Athanassopoulou, J. Phys. Soc. Jpn. **62**, 2803 (1993); M. Takigawa and D. B. Mitzi, Phys. Rev. Lett. **73**, 1287 (1994).
- ³⁷A. V. Balatsky, P. Monthoux, and D. Pines, Phys. Rev. B **50**, 582 (1994).
- ³⁸D. S. Jin, T. F. Rosenbaum, J. S. Kim, and G. R. Stewart, Phys. Rev. B **49**, 1540 (1994).
- ³⁹Y. Kohori, T. Kohara, H. Shibai, Y. Oda, Y. Kitaoka, and K. Asayama, J. Phys. Soc. Jpn. **56**, 2263 (1987).
- ⁴⁰M. Kyogaku, Y. Kitaoka, K. Asayama, N. Sato, T. Sakon, T. Komatsubara, C. Geibel, C. Shank, and F. Steglich, Physica B **186-188**, 285 (1993).
- ⁴¹R. H. Heffner, D. W. Cooke, Z. Fisk, R. L. Hutson, M. E. Schillaci, J. L. Smith, J. O. Willis, D. E. MacLaughlin, C. Boekema, R. L. Lichti, A. B. Denison, and J. Oostens, Phys. Rev. Lett. 57, 1255 (1986).
- ⁴²R. A. Ferrell, Phys. Rev. Lett. **3**, 262 (1959); P. W. Anderson, *ibid.* **3**, 325 (1959).
- ⁴³A. J. Leggett, Rev. Mod. Phys. 47, 331 (1975).