To be turned in for credit:

V.1:
E9: “Let \(\{X(t); t \geq 0\} \) be a Poisson process having rate parameter \(\lambda = 2. \)” (3 pts)
P7: “Shocks occur to a system according to a Poisson process of rate \(\lambda \)...” (5 pts)
P9: “Arrivals of passengers at a bus stop form a Poisson process...” (5 pts)
P10 (*): “Customers arrive at a facility at random according to a Poisson process...” (5 pts)

V.2:
P4: “Suppose that \(N \) points are uniformly distributed over the interval \([0, N)\)...” (2 pts)
P5: “Suppose the \(N \) points are uniformly distributed over the surface of a...” (2 pts)

V.3:
E3: “Customers enter a store according to a Poisson process of rate \(\lambda = 6 \)...” (3 pts)
P6: “Customers arrive at a holding facility at random according to...” (5 pts)

* Note: You can interpret the “dispatch cost \(K \)” to be a fixed cost that must be paid at time \(T \) no matter how many people show up. Therefore the answer to part (a) is simply \(K \).

(30 total points)

Suggested exercises*:

V.1
P1: “Let \(\xi_1, \xi_2, \ldots \) be independent random variables, each having...”
P5: “For each value of \(h > 0 \), let \(X(h) \) have a Poisson distribution...”

V.3:
P1: “Let \(X(t) \) be a Poisson process of rate \(\lambda \). Validate the identity...”
P2: “The joint probability density function for the waiting times \(W_1 \) and \(W_2 \)...” (4 pts)

*These questions will not be graded but solutions will be provided.