Example \(\hat{R} = R(\frac{\pi}{2}) \)

\[\begin{align*}
\hat{R} |1\rangle &= |1\rangle \\
\hat{R} |2\rangle &= |3\rangle \\
\hat{R} |3\rangle &= |2\rangle
\end{align*} \]

\[[R_{ij}] = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{bmatrix} \]

Exercise: How can you describe the action of \(\hat{R} \) whose matrix elements in the same basis are given by \([R_{ij}] = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \)?

Matrix forms of some specific operators

(1) Identity operator: \(\hat{I}_{ij} = \langle i|\hat{I}|j\rangle = \langle i|j \rangle = \delta_{ij} \equiv \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \)

(2) Projection operators:

Consider the expansion of an arbitrary ket \(|V\rangle \) as

\[|V\rangle = \sum_{i=1}^{N} |i\rangle \langle i|V\rangle = \left(\sum_{i=1}^{N} |i\rangle \langle i| \right) |V\rangle \]

Since this is true for all \(|V\rangle \), the expression in brackets must be the identity operator:

\[\hat{I} = \sum_{i=1}^{N} |i\rangle \langle i| = \sum_{i=1}^{N} \hat{P}_i \]

The object \(\hat{P}_i = |i\rangle \langle i| \) is called the projection operator for the ket \(|i\rangle \). Eq. (1) is called the completeness relation, it expresses the identity operator as a sum over projection operators. This will prove very valuable.
Now consider

\[\hat{P}_i |V\rangle = |i\rangle \langle i| V\rangle = v_i |i\rangle \]

Clearly, \(\hat{P}_i \) is linear. Whatever \(|V\rangle \), \(\hat{P}_i (V) \) points in direction of \(|i\rangle \). \(\hat{P}_i \) projects out the component of \(|V\rangle \) along \(|i\rangle \). The completeness relation says that the sum of the projections of \(|V\rangle \) along the \(n \) basis directions reproduce the vector \(|V\rangle \).

\(\hat{P}_i \) can also act on bra:

\[\langle V| \hat{P}_i = \langle V|i\rangle \langle i| = \langle i| V^* \]

We have

\[\hat{P}_i \hat{P}_j = |i\rangle \langle i| j\rangle \langle j| = \delta_{ij} |i\rangle \langle j| = \delta_{ij} \hat{P}_j \]

Projectors along orthogonal directions give 0, projecting multiple times along the same direction reproduces the result of the first projection.

Example: polarization filters:

![Diagram of polarization filters](image-url)
The matrix element of \hat{P}_i are

$$(\hat{P}_i)_{kl} = \langle k | i \rangle \langle i | l \rangle = \delta_{ki} \delta_{li}$$

$$= \begin{bmatrix}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{bmatrix}$$

\Rightarrow only one non-zero matrix element of value 1 on the diagonal at position i.

Adding all projection operators fills the diagonal with 1's and thus reproduces the identity operator.

(3) Matrix elements of products of operators:

$$(\Omega \Lambda)_{ij} = \langle i | \hat{\Omega} \hat{\Lambda} | j \rangle = \langle i | \hat{\Omega} \hat{\Lambda} | j \rangle$$

$$= \langle i | \hat{\Omega} (\sum_{k=1}^{n} \langle k | \Lambda | k \rangle \hat{\Lambda}) | j \rangle$$

$$= \sum_{k=1}^{n} \langle i | \hat{\Omega} \hat{\Lambda} | k \rangle \langle k | \Lambda | j \rangle = \sum_{k=1}^{n} \Omega_{ik} \Lambda_{kj}$$

matrix multiplication!

(4) Adjoint of an operator:

For a ket $| \alpha V \rangle = | \alpha \rangle V$, the corresponding bra is

$$\langle \alpha V | = \langle V | \alpha^* \quad \text{(not } \langle V | a \rangle ! ! \text{)}$$
Similarly, for a ket \(|\hat{\Omega}v\rangle = |\hat{\Omega}v\rangle \), the corresponding bra is
\[
\langle \hat{\Omega}v | = \langle v | \hat{\Omega}^*
\]
which defines the adjoint operator \(\hat{\Omega}^* \).
As \(\hat{\Omega} \) turns \(|v\rangle \) in \(|v\rangle = \langle \hat{\Omega}v | \), \(\hat{\Omega}^* \) turns
\(\langle v | \) into \(\langle v | = \langle v | \hat{\Omega}^* \).
Its matrix elements are
\[
(\Omega^*)_ij = \langle i | \hat{\Omega}^* | j \rangle = \langle \Omega i | j \rangle = \langle j | \Omega^* i \rangle = \Omega^*_{ji}
\]
So the matrix for \(\hat{\Omega}^* \) is obtained from that for \(\hat{\Omega} \) by transposing columns and rows and complex conjugating each matrix element.

Adjoint of a product of operators:
\[
(\hat{\Omega} \hat{\Lambda})^* = \Lambda^* \hat{\Omega}^*
\]

(Proof: \(\langle v | (\hat{\Omega} \hat{\Lambda})^* \) = \(\langle \Lambda (\hat{\Omega}^*) v | = \langle \hat{\Omega}^* (\hat{\Lambda} v) | = \langle \hat{\Lambda} v | \Omega^* \)
\(= \langle v | \Lambda^* \hat{\Omega}^* = \langle v | \Lambda^* \hat{\Omega}^* \).

Example: consider \(\alpha_1 |v_1\rangle + \alpha_2 |v_2\rangle + \alpha_3 |v_3\rangle |v_4\rangle + \alpha_4 \hat{\Omega} |v_6\rangle \)
What is the adjoint?

Answer: \(\langle v_1 | \alpha_1^* = \langle v_1 | \alpha_2^* + \langle v_1 | v_4 \rangle \langle v_4 | v_5 \rangle + \alpha_4 \langle \hat{\Omega} | \hat{\Omega}^* \alpha_4 \)
\(= \langle v_2 | \alpha_2^* + \langle v_3 | \alpha_3^* + \langle v_4 | v_5 \rangle \hat{\Omega}^* + \hat{\Omega}^* | \Lambda^* \hat{\Omega}^* \alpha_4 \)

22
Definition: A Hermitian operator is self-adjoint: $\hat{\Omega}^* = \hat{\Omega}$

Definition: An anti-Hermitian operator satisfies $\hat{\Omega}^* = -\hat{\Omega}$

Definition: A unitary operator satisfies $\hat{U}\hat{U}^* = \hat{I}$, i.e. $\hat{U}^* = \hat{U}^{-1}$

Since the inverse satisfies $\hat{U}^{-1}\hat{U} = \hat{U}\hat{U}^{-1} = \hat{I}$, we also have $\hat{U}^*\hat{U} = \hat{I}$. (This holds in finite dimensional vector spaces, but may not hold in infinite dimensional vector spaces without additional restrictions.)

- Any operator can be decomposed into Hermitian and anti-Hermitian parts:

$$\hat{\Omega} = \frac{\hat{\Omega} + \hat{\Omega}^*}{2} + \frac{\hat{\Omega} - \hat{\Omega}^*}{2}$$

 - Hermitian
 - Anti-Hermitian

- Any product of unitary operators is unitary.

$$(\hat{U}_1\hat{U}_2)^* = \hat{U}_2^* \hat{U}_1^* \Rightarrow (\hat{U}_1\hat{U}_2)^* (\hat{U}_1\hat{U}_2) = \hat{U}_2^* \hat{U}_1^* \hat{U}_1 \hat{U}_2$$

$$= \hat{U}_2^* \hat{U}_2 = \hat{I}$$

- Unitary operators preserve inner product:

$$|V_1\rangle = \hat{U} |V_1\rangle ; |V_2\rangle = \hat{U} |V_2\rangle \Rightarrow \langle V_2 | V_1\rangle = \langle \hat{U} V_2 | \hat{U} V_1\rangle$$

$$= \langle V_2 | \hat{U}^* \hat{U} V_1\rangle = \langle V_2 | V_1\rangle$$
Theorem: Both the columns of an \(n \times n \) unitary matrix and the rows of such a matrix form orthonormal basis sets of dimension \(n \).

Proof: \(\delta_{ij} = \langle i | \hat{U} | j \rangle = \langle i | \hat{U}^* \hat{U} | j \rangle \)

\[= \sum_k \langle i | \hat{U}^* | k \rangle \langle k | \hat{U} | j \rangle \]

\[= \sum_k (U^*)_i^k U^k_j = \sum_k U^*_{ki} U_{kj} \]

This proves the result for the columns.
(\(U_{kj} \) are the elements of the \(j \)th column.)

The proof for the rows follows similarly after substituting \(\hat{U}^* = \hat{U}^\dagger \).

I.7 Unitary transformations of operators

Under a unitary transformation \(|V\rangle \rightarrow \hat{U} |V\rangle \)
the matrix elements of an operator change as:

\[\langle V' | \hat{S} | V \rangle \rightarrow \langle UV' | \hat{S} | UV \rangle = \langle V | \hat{U}^* \hat{S} \hat{U} | V \rangle \]

So instead of transforming the "state" \(|V\rangle \rightarrow \hat{U} |V\rangle \)
we can transform the operator \(\hat{S} \rightarrow \hat{U}^* \hat{S} \hat{U} \)

Since we leave the vectors alone and transform only the operators, this is called a passive transformation.
I.8. The eigenvalue problem

For each operator \hat{S}, there are certain kets that are simply rescaled (i.e., multiplied by a constant) when \hat{S} acts on them:

$$\hat{S} |V\rangle = \omega |V\rangle \quad (*)$$

Any ket $|V\rangle$ with that property is called an eigenket of \hat{S}, and ω is called the eigenvalue of \hat{S} for that ket. (*) is called an eigenvalue equation.

Example: Consider $\hat{S} = \hat{I}$

Since $\hat{I} |V\rangle = |V\rangle$

all vectors are eigenvalues of \hat{I}, and 1 is the only eigenvalue.

Example: Consider $\hat{S} = \hat{P}_V$ where $|V\rangle$ is normalized:

$$\hat{P}_V = |V\rangle\langle V|$$

1. Any ket $|\alpha V\rangle$ (parallel to $|V\rangle$) is an eigenket with eigenvalue 1:

$$\hat{P}_V |\alpha V\rangle = |\alpha V\rangle$$

2. Any ket $|V\perp\rangle$ perpendicular to $|V\rangle$ is an eigenket with eigenvalue 0:

$$\hat{P}_V |V\perp\rangle = 0$$

3. Any other ket (neither parallel nor perpendicular) is not an eigenket:

$$\hat{P}_V (\alpha |V\rangle + \beta |V\perp\rangle) = \alpha |V\rangle + \beta |V\perp\rangle$$
A systematic approach to finding all eigenvalues and eigenvectors of an operator:

The characteristic equation

Let's rewrite the eigenvalue equation as

\[(\hat{\Omega} - \omega \hat{1}) |\psi\rangle = |\psi\rangle \]

If \((\hat{\Omega} - \omega \hat{1})^{-1}\) exists, we can operate with it on both sides, to get

\[|\psi\rangle = (\hat{\Omega} - \omega \hat{1})^{-1} |\psi\rangle \]

But this makes no sense: any finite operator (with finite matrix elements) maps the null vector onto itself. Hence the assumption that \((\hat{\Omega} - \omega \hat{1})^{-1}\) exists must be wrong.

What is the condition that \((\hat{\Omega} - \omega \hat{1})\) has no inverse?

The inverse of an invertible matrix is given by

\[M^{-1} = \left(\frac{\text{cofactor } M}{\det M} \right)^T \]

As long as \(M\) is finite, so is its cofactor. So for the inverse \(M^{-1}\) to not exist, \(\det M\) must be zero.

So for \((*)\) to have a solution \(|\psi\rangle \neq |\psi\rangle\),

we must have

\[\det (\hat{\Omega} - \omega \hat{1}) = 0\]
This equation will determine the possible eigenvalues \(\omega \).

To find them, project (\(\star \)) onto a basis:

\[
\langle i | \hat{S}^2 - \omega \hat{I} | V \rangle = \langle i | 0 \rangle = 0
\]

\[\uparrow \text{ insert } \hat{I} = \sum_j |j\rangle \langle j| \]

\[
\Rightarrow \sum_j (\Omega_{ij} - \omega \delta_{ij}) v_j = 0
\]

(\#)

This is a coupled system of linear equations which we can solve for the components \(v_i \) of the eigenvectors once we found the eigenvalue \(\omega \).

The determinant of the matrix \(\Omega_{ij} - \omega \delta_{ij} \) is an \(n \)th order polynomial in \(\omega \):

\[
\det (\hat{S}^2 - \omega \hat{I}) = 0 \iff \sum_{m=0}^{n} c_m \omega^m = 0
\]

The left-hand side \(\Phi^{(m)}(\omega) = \sum_{m=0}^{n} c_m \omega^m \) is called the characteristic polynomial of \(\hat{S}^2 \).

The polynomial looks different in different bases, but its roots, which are determined by this algebra equation (\(\star \)), are basis independent.

Every \(n \)th order polynomial has \(n \) complex roots \(\omega_1, \omega_2, \ldots, \omega_n \). They need not be distinct, and in general they are not real. Once the eigenvalue, are found, one solves the set of linear equations (\(\# \)) to obtain the eigenvectors.