Physics 7501 (Quantum Mechanics I): Homework Set No. 3

Due date: Tuesday, September 15, 2015, 5:00pm in PRB M2025 (Abhishek Mohapatra's office)

Total point value of set: 100 points

Problem 1 (20 pts.): If $[\hat{A}, \hat{B}] \neq 0$, λ a real or complex scalar, show that

(i)
$$e^{-\lambda \hat{A}} \hat{B}^n e^{\lambda \hat{A}} = \left(e^{-\lambda \hat{A}} \hat{B} e^{\lambda \hat{A}}\right)^n$$
, (ii) $e^{-\lambda \hat{A}} \hat{F}(\hat{B}) e^{\lambda \hat{A}} = \hat{F}(e^{-\lambda \hat{A}} \hat{B} e^{\lambda \hat{A}})$,

where n is integer and $\hat{F}(\hat{B})$ is an arbitrary function of \hat{B} that does not depend on any other operators.

Problem 2 (40 pts.): If $[\hat{A}, \hat{B}] = \hat{I}$ (\hat{I} = identity operator), λ a scalar, show

- (i) $e^{-\lambda \hat{B}\hat{A}} \hat{A} e^{\lambda \hat{B}\hat{A}} = e^{\lambda} \hat{A},$ (ii) $e^{-\lambda \hat{B}\hat{A}} \hat{B} e^{\lambda \hat{B}\hat{A}} = e^{-\lambda} \hat{B},$
- (iii) $e^{-(\lambda/2)(\hat{B}^2 \hat{A}^2)} \hat{A} e^{(\lambda/2)(\hat{B}^2 \hat{A}^2)} = \hat{A} \cosh \lambda + \hat{B} \sinh \lambda,$

(iv)
$$e^{-(\lambda/2)(\hat{B}^2 - \hat{A}^2)} \hat{B} e^{(\lambda/2)(\hat{B}^2 - \hat{A}^2)} = \hat{B} \cosh \lambda + \hat{A} \sinh \lambda.$$

Problem 3 (30 pts.): Show that

(i) (10 pts.)
$$\lim_{\epsilon \to 0^+} \delta_{\epsilon}(x) \equiv \lim_{\epsilon \to 0^+} \begin{cases} \frac{1}{\epsilon} & \text{for } |x| < \frac{\epsilon}{2} \\ 0 & \text{for } |x| > \frac{\epsilon}{2} \end{cases} = \delta(x),$$

(ii) (20 pts.) $\lim_{\epsilon \to 0^+} \delta_{\epsilon}(x) \equiv \lim_{\epsilon \to 0^+} \frac{1}{\pi\epsilon} \left(\frac{\sin(x/\epsilon)}{x/\epsilon}\right)^2 = \delta(x).$

In each case you must show that the function in question satisfies, in the limit $\epsilon \to 0$, all the defining properties of the Dirac δ -function (see Shankar, pp. 60-61). You are not allowed to use MATHEMATICA or similar programs for this problem.

Problem 4 (10 pts.): Prove that

(i)
$$\int_{-\infty}^{\infty} dx \, e^{-\alpha x^2} = \sqrt{\frac{\pi}{\alpha}},$$
 (ii) $\int_{0}^{\infty} dx \, x \, e^{-\alpha x^2} = \frac{1}{2\alpha},$
(iii) $\int_{-\infty}^{\infty} dx \, x^2 \, e^{-\alpha x^2} = \frac{1}{2\alpha} \sqrt{\frac{\pi}{\alpha}},$ (iv) $\int_{-\infty}^{\infty} dx \, e^{-\alpha x^2 + \beta x} = e^{\beta^2/(4\alpha)} \sqrt{\frac{\pi}{\alpha}}.$

You cannot use Mathematica for this problem!

Hint for part (i): It may help to first consider a two-dimensional Gaussian integral.