Physics 7501: Homework Set No. 6

Due date: Tuesday, October 20, 2015, 5:00pm in PRB 3018 (Fuyan Lu's office)

Total point value of set: 100 points

The 1-dimensional square well,
$$V(x) = \begin{cases} -V_0 \ |x| \le a \ (V_0 > 0) \\ 0 \ |x| > a \end{cases}$$

(1) $-V_0 \le E \le 0$ (bound states) (bopts.)
(a) Show that the eigenvalue equation for the themiltonian
 $f = \frac{D^2}{2m} + V(\hat{x})$ has alternating even and odd solutions,
with energy eigenvalues given by the solutions of
(15) (ka) tan(ka) = (xa) (even)
(ka) cot(ka) = -(xa) (odd) (x)
where the $= \sqrt{-2mE}$, the $\sqrt{2m(E+V_0)}$. ($x = happa$)
(ii) Defining the dimensionless parameter $\beta^2 = 2(ma)(V_0a)$,
the solutions for $X \equiv ka$ ($X = chi$) and for $\left[\frac{V_0}{V_0}\right]$ dependents on β .
(iii) Solve the eigenvalue equations (x) graphically, by rewriting
them as
fuese $(X) \equiv X^2 \tan^2 X = \beta^2 - X^2 = F(X^2)$,
(4x)
plotting the functions form, fodd, and F defined in (xm)
as functions of X^2 , and determining the intersection
points between fame, fodd, and F for $\beta^2 = 30$. Then the
plot, read off the resulting values of $x = (x = chi)^2$. For $\beta^2 = 30$,
(iv) Study analytically the limits $V_0 \to \infty$, $a = coust$. (particle in a
box) (Spts.) and the case of a S-fet, potential $V(x) = -q S(x)$,
(20) $g = lim (daV_0)$. In the latter limit, show that $\beta^2 \to 0$, $k \to \infty$,

V. >00

ka $\rightarrow 0$, and $k^2 a \rightarrow mg/h^2$, and that there are no odd Solutions and exactly one even solution with energy eigenvalue $E = -\frac{mg^2}{2h^2}$. So the attractive 5-fet. Potential supports exactly One bound state.

show that

$$\begin{pmatrix} A \\ B \end{pmatrix} = \begin{pmatrix} (\cos(2ka) - \frac{i\epsilon'}{2}\sin(2ka))e^{2ika} & -\frac{i2}{2}\sin(2ka) \\ \frac{i\gamma'}{2}\sin(2ka) & (\cos(2ka) + \frac{i\epsilon'}{2}\sin(2ka))e^{-2ika} \\ \end{pmatrix} \begin{pmatrix} F \\ G \end{pmatrix}$$

where
$$\varepsilon' = \frac{k'}{k} + \frac{k}{k'}$$
, $\gamma' = \frac{k'}{k} - \frac{k}{k'}$, $\varepsilon'^2 + \gamma'^2 = 4$.

- (ii) Choosing the boundary condition G=0 (no wave incident from the right), compute the transmission coefficient T = |F|² and the reflection coefficient R = |B/2 as a function of β.
 (10) You should find T⁻¹ = 1 + ¼γ² sin²(2ka).
 - (iii) Plot Tas a function of E/Vo for a shallow potential with β=10 and a deep potential with β=300, showing in each case the first five "resonances" where T=1.

(10) At which values for (2ka) does Texhibit maxima and minima? Can you interpret these physically? (Hint: Hunk of wavelengths \cap fitting into the potential well.) What are the limiting values of E', y', and T as E/ ->00?