Physics 7502: Homework Set No. 2

Due date: Tuesday, Jan. 26, 2016, 5:00pm in PRB M2039 (Bowen Shi's office)

Total point value of set: 100 points

Note: All cross products in this problem set must be worked out with the help of the Levi-Civitta tensor ε_{ijk} (ε_{ijk} is totally antisymetric, i.e. it changes sign under interchange of any two indices, and $\varepsilon_{123} = 1$)! Remember $\sum_{n=1}^{3} \varepsilon_{ijn} \varepsilon_{nk\ell} = \delta_{ik} \delta_{j\ell} - \delta_{i\ell} \delta_{jk}$.

Problem 1 (10 pts.): Show that the definition of the orbital angular momentum operator \hat{L} is unambiguous, i.e. that you obtain the same operator (with identical effects on any state $|\psi\rangle$) if you start from the classical expressions $L = -p \times x$ and $L = x \times p$ and then substitute $x \mapsto \hat{X}$, $p \mapsto \hat{P}$. (Note the different order of multiplication and differentiation that you obtain in the two cases!)

Problem 2 (30 pts.): For any vector operator $\hat{\boldsymbol{v}}$ constructed from $\hat{\boldsymbol{X}}$ and $\hat{\boldsymbol{P}}$, prove that $[\hat{L}_i, \hat{v}_j] = i\hbar \sum_{k=1}^3 \varepsilon_{ijk} \hat{v}_k$.

(Hint: Write $\mathbf{v} = a(\mathbf{x}^2, \mathbf{x} \cdot \mathbf{p}, \mathbf{p}^2) \mathbf{x} + b(\mathbf{x}^2, \mathbf{x} \cdot \mathbf{p}, \mathbf{p}^2) \mathbf{p} + c(\mathbf{x}^2, \mathbf{x} \cdot \mathbf{p}, \mathbf{p}^2) \mathbf{x} \times \mathbf{p}$ (where a, b, c are arbitrary functions). Derive commutation relations between the components of $\hat{\mathbf{L}}$ and those of $\hat{\mathbf{X}}$ and $\hat{\mathbf{P}}$ and show that $\hat{\mathbf{L}}$ commutes with the scalar operators \hat{a} , \hat{b} , \hat{c} . Proceed to show that $[\hat{L}_i, \hat{v}_j] = i\hbar \varepsilon_{ijk} \hat{v}_k$ (sum over k implied).)

Problem 3 (10 pts.): Prove the identity $\hat{L} \times \hat{L} = i\hbar \hat{L}$ for the orbital angular momentum operator $\hat{L} = \hat{X} \times \hat{P}$.

Problem 4 (20 pts.): From the definition $\hat{L} = \hat{X} \times \hat{P}$, derive the following expressions in the position representation $\hat{P} \to -i\hbar \nabla$ in spherical coordinates:

$$\hat{L}_x \to L_1 = i\hbar \left(\sin \phi \, \partial_\theta + \cot \theta \cos \phi \, \partial_\phi \right),$$

$$\hat{L}_y \to L_2 = i\hbar \left(-\cos \phi \, \partial_\theta + \cot \theta \sin \phi \, \partial_\phi \right),$$

$$\hat{L}_z \to L_3 = -i\hbar \, \partial_\phi,$$

$$\hat{L}^2 \to L^2 = -\hbar^2 \left[\frac{1}{\sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial}{\partial \theta} \right) + \frac{1}{\sin^2 \theta} \frac{\partial^2}{\partial^2 \phi} \right].$$

Hint: It's easiest to prove the first three backwards. For the last, express L^2 through $L_{\pm} = L_x \pm i L_y$ to simplify the algebra.

Problem 5 (10 pts.): Exercise 12.5.1 (Shankar, p. 325)

Problem 6 (10 pts.): Exercise 12.5.3 (Shankar, p. 329)

Problem 7 (10 pts.): Exercise 12.5.5, part (1) only (Shankar, p. 332)