Exercise
Suppose that a random variable X has the Binomial distribution with parameters $n=8$ and $p=0.7$. Find $\operatorname{Pr}(X \geq 5)$.

$$
\begin{aligned}
& X \in\{0,1,2, \ldots, 8\} \\
& \operatorname{Pr}(X \geq 5)=\operatorname{Pr}(X=5)+\operatorname{Pr}(X=6)+\operatorname{Pr}(X=7)+\operatorname{Pr}(X=8) \\
& \operatorname{Pr}(X=i)=\binom{8}{i} \cdot 7^{i} \cdot 3^{8-i}
\end{aligned}
$$

Uniform distribution

Say X is a discrete random variable such that

$$
X \in\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}
$$

We say that X has a Uniform distribution if the pmf is given by

$$
f\left(x_{i}\right)=\operatorname{Pr}\left(X=x_{i}\right)=\frac{1}{n}
$$

Suppose that a random variable X has the uniform distribution on the integers $10, \ldots, 20$. Find $\operatorname{Pr}(X=17)$.

$$
\operatorname{Pr}(x=17)=\frac{1}{11}
$$

3.2 Continuous Random Variabls and Their Distributions

Recall: A continuous random variable takes values in a subinterval of the real line

$$
X \in[a, b] \quad \text { or } \quad X \in(a, \infty) \quad \text { or } \quad X \in \mathbb{R}
$$

In this case, the distribution of a random variable is specified through a probability density function (pdf) $f(x)$ which has the following two properties

1. $f(x) \geq 0$
2. $\int_{-\infty}^{\infty} f(x) d x=1$

Calculating probabilities with continuous random variables

Say X is a continuous random variable, with probability density function (pdf) $f(x)$. The probability that X takes a value in the interval [a, b] can be calculated as

$$
\begin{aligned}
\operatorname{Pr}(a \leq X \leq b) & =\operatorname{Pr}(X \in[a, b])=\int_{a}^{b} f(x) d x \\
& =\operatorname{Pr}(a<X \leq b) \\
& =\operatorname{Pr}(a \leq X<b)=\operatorname{Pr}(a<x<b)
\end{aligned}
$$

A continuous random variable assigns probability 0 to any individual value.

$$
\operatorname{Pr}(X=a)=0 \quad \text { for any real number } a
$$

Uniform distribution on Intervals
A random variable X has a Uniform distribution on the interval $[a, b]$, if $a \leq X \leq b$ and the probability that X will belong to any subinterval is proportional to the length of that subinterval.

$$
X \sim \operatorname{Uniform}(a, b)
$$

The pdf of a Uniform (a, b) distribution is

$$
f(x)= \begin{cases}\frac{1}{b-a} & \text { if } a \leq x \leq b \\ 0 & \text { otherwise }\end{cases}
$$

Example
Say $X \sim$ Uniform $(-1,4)$. Write down its pdf and graph it. What is the probability that X talks a value between 0 and 2.5.

$$
f(x)=\left\{\begin{array}{cc}
\frac{1}{5} & -1 \leqslant x \leqslant 4 \\
0 & 0 / \omega
\end{array}\right.
$$

$$
\begin{aligned}
\operatorname{Pr}(0 \leq x \leq 2.5) & =\text { shaded area } \\
& =\int_{0}^{2.5} f(x) d x=2.5 \cdot \frac{1}{5}
\end{aligned}
$$

Example
Say X is a continuous random variable with pdf given by

$$
f(x)= \begin{cases}\frac{x}{8} & \text { if } 0<x<4 \\ 0 & \text { otherwise }\end{cases}
$$

Find $\operatorname{Pr}(1 \leq X \leq 2)$ and $\operatorname{Pr}(X>2)$.

Example of an unbounded pdf
Say X is a continuous random variable with pdf given by

$$
f(x)= \begin{cases}\frac{2}{3} x^{-1 / 3} & \text { if } 0<x<1 \\ 0 & \text { otherwise }\end{cases}
$$

Exercise: verify that $f(x)$ is a pdf.

Example
Say X is a continuous random variable with pdf given by

$$
f(x)= \begin{cases}c x^{2} & \text { if } 1 \leq x<2 \\ 0 & \text { otherwise }\end{cases}
$$

1. Find the value of the constant c and sketch the pdf.
2. Find $\operatorname{Pr}(X>3 / 2)$.

$$
\begin{aligned}
& \int_{1}^{2} f(x) d x=1 \quad \int_{1}^{2} f(x) d x=\int_{1}^{2} c x^{2} d x=\left.C \cdot \frac{x^{3}}{3}\right|_{1} ^{2}=c\left(\frac{8}{3}-\frac{1}{3}\right) \\
&=C \cdot \frac{7}{3}=1 \\
& C=\frac{3}{7} \\
& \operatorname{Pr}(X>3 / 2)=\int_{3 / 2}^{2} \frac{3}{7} x^{2} d x=\left.\frac{3}{7} \cdot \frac{x^{3}}{3}\right|_{3 / 2} ^{2}=\frac{3}{7}\left(\frac{1}{3} \cdot 8-\frac{1}{3} \cdot \frac{27}{8}\right)
\end{aligned}
$$

Example

Say X is a continuous r.v. with pdf

$$
f(x)= \begin{cases}\frac{1}{8} x & \text { if } 0 \leq x \leq 4 \\ 0 & \text { otherwise }\end{cases}
$$

1. Find the value of t such that $\operatorname{Pr}(X \leq t)=1 / 4$
2. Find the value of t such that $\operatorname{Pr}(X \geq t)=1 / 2$ exercise

3.3 The cumulative distribution function (cdf)

- Recall, we characterize the distribution of a r.v. X through

if X is discrete.

2.

if X is continuous.

- An alternative characterization (for both cases) which is more directly related to the probabilities associated to the random variable X is obtained through the cumulative distribution function (cdf) $F(x)$.

$$
F(x)=\operatorname{Pr}(X \leq x) \quad \text { for any real number } x
$$

Bernoulli cdf
Find the cdf for a random variable $X \sim \operatorname{Bernoulli}(p)$.
$F(x)=\operatorname{Pr}(X \leqslant x)$ for any real $\# x$
$X \in\{0,1\} \operatorname{Pr}(x=1)=p \operatorname{Pr}(X=0)=1-p$
$F(-2.95)=\operatorname{Pr}(X \leq-2.95)=0$
$F(-.8)=0$
$F(x)=0$ if $x<0$

$$
\begin{aligned}
& F(2.9)=\operatorname{Pr}(x \leq 2.9)=1 \\
& F(1.0005)=1 \\
& F(x)=1 \quad \text { if } x>1
\end{aligned}
$$

$$
\begin{aligned}
& F(0)=\operatorname{Pr}(X \leqslant 0)=1-p \\
& F(0.8)=\operatorname{Pr}(X \leq 0.8)=1-p
\end{aligned}
$$

$F(x)=1-p$ for any $0 \leq x<1$

$$
F(1)=\operatorname{Pr}(X \leq 1)=1
$$

Example

Assume that X is a discrete random variable such that $X \in\{1,2,3\}$ with pmf given by

$$
f(1)=0.2 \quad f(2)=0.7 \quad f(3)=0.1
$$

Derive and sketch the $\operatorname{cdf} F(x)$.

Example

Suppose that a random variable X can take only the values $2,0,1$, and 4 , and that the probabilities of these values are as follows:

$$
\operatorname{Pr}(X=2)=0.4 \quad \operatorname{Pr}(X=0)=0.1 \quad \operatorname{Pr}(X=1)=0.3 \quad \operatorname{Pr}(X=4)=0.2
$$

Find and sketch the cdf of X.
exeraise

Example

Say $X \sim \operatorname{Binomial}(3,0.1)$. Find and sketch the cdf of X.
exercise

