Conditional expectations

- Let X and Y be random variables such that $E(X)$ and $E(Y)$ exist and are finite.
- The conditional expectation (conditional mean) of Y given that $X=x$ is defined as the expected value of the conditional distribution of Y given that $X=x$.

$$
\begin{aligned}
& E(Y \mid X=x)=\int_{-\infty}^{\infty} y g_{2}(y \mid x) d y \quad \text { continuous case } \\
& E(Y \mid X=x)=\sum_{\text {All }}^{y} y g_{2}(y \mid x) \quad \text { discrete case }
\end{aligned}
$$

Recall

$$
\begin{array}{lr}
g_{2}(y \mid x)=\frac{f(x, y)}{f_{1}(x)} & \text { continuous case } \\
g_{2}(y \mid x)=\frac{\operatorname{Pr}(X=x, Y=y)}{\operatorname{Pr}(X=x)} & \text { discrete case }
\end{array}
$$

Conditional expectations

Similarly

$$
\begin{aligned}
& E(X \mid Y=y)=\int_{-\infty}^{\infty} x g_{1}(x \mid y) d x \quad \text { continuous case } \\
& E(X \mid X=y)=\sum_{\text {All }}^{x}
\end{aligned} x g_{1}(x \mid y) \quad \text { discrete case }
$$

Recall

$$
\begin{aligned}
& g_{2}(x \mid y)=\frac{f(x, y)}{f_{2}(y)} \quad \text { continuous case } \\
& g_{2}(x \mid y)=\frac{\operatorname{Pr}(X=x, Y=y)}{\operatorname{Pr}(Y=y)} \quad \text { discrete case }
\end{aligned}
$$

Example
Suppose that a point X is chosen in accordance with the uniform distribution on the interval $[0,1]$. Also, suppose that after the value $X=x$ has been observed $(0<x<1)$, a point Y is chosen in accordance with a uniform distribution on the interval $[x, 1]$. Determine the value of $E(Y)$.

$$
\left.\begin{array}{l}
X \sim \text { Uniform }(0,1) \quad f_{1}(x)= \begin{cases}1 & x \in(0,1) \\
0 & 0 / w\end{cases} \\
Y \left\lvert\, X=x \sim U_{n i f o r m}(x, 1) \quad g_{2}(y \mid x)=\left\{\begin{array}{cl}
\frac{1}{1-x} & x<y<1 \\
0 & 0 / w
\end{array}\right.\right. \\
f(x, y)=f(x) \cdot g_{2}(y \mid x)=\left\{\begin{array}{cc}
\frac{1}{1-x} & 0<x<1 \\
0 & 0 / w
\end{array} \quad x<y<1\right.
\end{array}\right] \begin{aligned}
& E(y)=\int_{-\infty}^{\infty} y \cdot f_{2}(y) d y
\end{aligned}
$$

$$
\begin{aligned}
f_{2}(y) & =\int_{-\infty}^{\infty} f(x, y) d x=\int_{0}^{y} \frac{1}{1-x} d x=-\left.\log (1-x)\right|_{0} ^{y} \quad \log (1-x)^{\prime}=-\frac{1}{1-x} \\
& =-\log (1-y)=\log \frac{1}{1-y} \quad y \in(0,1) \\
E(y) & =\int_{-\infty}^{\infty} y f_{2}(y) d y=\int_{0}^{1} y \cdot \log \frac{1}{1-y} d y=\frac{3}{4} \quad \text { (please check!) }
\end{aligned}
$$

Example
Consider a clinical trial in which a number of patients will be treated and each patient will have one of two possible outcomes: success or failure. Let P be the proportion of successes in a very large collection of patients, and let $X_{i}=1$ if the th patient is a success and $X_{i}=0$ if not. Assume that the random variables X_{1}, X_{2}, \ldots are conditionally independent given $P=p$ with

$$
\operatorname{Pr}\left(X_{i}=1 \mid P=p\right)=p
$$

Let $X=X_{1}+\ldots+X_{n}$, which is the number of patients out of the first n who are successes. Find the conditional mean of X given $P=p$.

$$
\begin{aligned}
E(X \mid p=p) & =E\left(X_{1}+X_{2}+\ldots+X_{n} \mid p=p\right) \\
& =E\left(X_{1} \mid p=p\right)+E\left(X_{2} \mid p=p\right)+\ldots+E\left(X_{n} \mid p=p\right) \\
& =p+p+\ldots+p=n p
\end{aligned}
$$

Example
Suppose that X and Y have a continuous joint distribution for which the joint pdf is as follows:

$$
f(x, y)= \begin{cases}x+y & \text { if } 0 \leq x \leq 10 \leq y \leq 1 \\ 0 & \text { otherwise }\end{cases}
$$

Find $E(Y \mid X=x)$ and $\operatorname{Var}(Y \mid X=x)$.

$$
\begin{aligned}
& E(Y \mid X=x)=\int_{-\infty}^{\infty} y \cdot g_{2}(y \mid x) d y \\
& g_{2}(y \mid x)=\frac{f(x, y)}{f_{1}(x)}=\frac{x+y}{x+\frac{1}{2}} \quad y \in[0,1] \\
& f_{1}(x)=\int_{-\infty}^{\infty} f(x, y) d y=\int_{0}^{1}(x+y) d y=x+\frac{1}{2}
\end{aligned}
$$

$$
\begin{aligned}
E(Y \mid X=x) & =\int_{0}^{1} y \cdot \frac{x+y}{x+\frac{1}{2}} d y=\int_{0}^{1} \frac{x}{x+\frac{1}{2}} \cdot y+\frac{1}{x+\frac{1}{2}} \cdot y^{2} d y=\left.\frac{x}{x+\frac{1}{2}} \cdot \frac{y^{2}}{2}\right|_{0} ^{1}+\left.\frac{1}{x+\frac{1}{2}} \cdot \frac{y^{3}}{3}\right|_{0} ^{1} \\
& =\frac{x}{x+\frac{1}{2}} \cdot \frac{1}{2}+\frac{1}{x+\frac{1}{2}} \cdot \frac{1}{3}=A
\end{aligned}
$$

$\operatorname{Var}(Y \mid X=x)=$ Variance of the conditional distr of Y given $X=x$

$$
\begin{gathered}
=\underline{E\left(Y^{2} \mid X=x\right)}-E(Y \mid X=x)^{2}=B-A^{2} \\
E\left(Y^{2} \mid X=x\right)=\int_{0}^{1} y^{2} \cdot \frac{x+y}{x+\frac{1}{2}} d y=\left.\frac{x}{x+\frac{1}{2}} \cdot \frac{y^{3}}{3}\right|_{0} ^{1}+\left.\frac{1}{x+\frac{1}{2}} \cdot \frac{y^{4}}{4}\right|_{0} ^{1}=\frac{x}{x+\frac{1}{2}} \cdot \frac{1}{3}+\frac{1}{x+\frac{1}{2}} \cdot \frac{1}{4}=B
\end{gathered}
$$

Functions of two or more RV

Assume that $Z=r(X, Y)$ is a random variable where the joint distribution of X, Y is described via the joint pmf/pdf $f(x, y)$. One can evaluate the conditional expectation $E(Z \mid X=x)$ in the following way

$$
\begin{aligned}
E(Z \mid X=x) & =E(r(X, Y) \mid X=x) \\
& =E(r(x, Y) \mid X=x) \\
& =\int_{-\infty}^{\infty} r(x, y) g_{2}(y \mid x) d y
\end{aligned}
$$

Example
Suppose that the joint distribution of (X, Y) is uniform over the unit circle. Let $Z=X^{2}+Y^{2}$. Find $E(Z \mid Y=-0.2)$.

$$
\begin{aligned}
E(z \mid Y=y) & =E_{\infty}\left(X^{2}+Y^{2} \mid Y=y\right) \\
& =\int_{-\infty}^{\infty}\left(x^{2}+y^{2}\right) \cdot g_{2}(x \mid y) d x \\
g_{2}(x \mid y)= & \frac{f(x, y)}{f_{2}(y)}
\end{aligned}
$$

$$
f(x, y)=
$$

$$
\begin{aligned}
& f(x, y)=\left\{\begin{array}{l}
\frac{1}{\pi} \\
0
\end{array}\right. \\
& \longrightarrow \frac{x^{2}+y^{2} \leqslant 1}{} \\
& (\text { unit disc) }
\end{aligned}
$$

$$
\left(\text { uniform } \approx \frac{1}{\text { area }}\right)
$$

$$
\begin{aligned}
f_{2}(y) & =\int_{-\infty}^{\infty} f(x, y) d x=\int_{-\sqrt{1-y^{2}}}^{+\sqrt{1-y^{2}}} \frac{1}{\pi} d x \\
& =\left.\frac{1}{\pi} \cdot x\right|_{-\sqrt{1-y^{2}}} ^{\sqrt{1-y^{2}}}=\frac{2}{\pi} \cdot \sqrt{1-y^{2}}
\end{aligned}
$$

$$
f_{2}(y)=\frac{2}{\pi} \sqrt{1-y^{2}} \quad y \in(-1,1]
$$

$$
\begin{aligned}
& g_{1}(x \mid y)=\frac{f(x, y)}{f_{2}(y)}=\frac{\frac{1}{\pi}}{\frac{2}{\pi} \cdot \sqrt{1-y^{2}}}=\frac{1}{2 \sqrt{1-y^{2}}} \\
& g_{1}(x \mid y)=\frac{1}{2 \sqrt{1-y^{2}}} \\
& E(2 \mid y=y)=\int_{-\infty}^{\infty}\left(x^{2}+y^{2}\right) \cdot \frac{1}{2 \sqrt{1-y^{2}}} d x=\int_{-\sqrt{1-y^{2}}}^{\sqrt{1-y^{2}}} \frac{1}{2 \sqrt{1-y^{2}}}\left(x^{2}+y^{2}\right) d x=\frac{1}{2 \sqrt{1-y^{2}}}\left(\left.\frac{x^{3}}{3}\right|_{-\sqrt{1-y^{2}}} ^{\sqrt{1-y^{2}}}+\left.y^{2} \cdot x\right|_{-\sqrt{1}} ^{\sqrt{1+1}}\right)
\end{aligned}
$$

Prediction

Suppose X, Y are random variables and the goal is to predict one of them, say Y. Let d be the predicted value.

- If no information is available, the prediction that minimizes the mean squared error (MSE)

$$
\mathrm{MSE}=E\left((Y-d)^{2}\right)
$$

among all possible d values, is $d=E(Y)$.

- The prediction that minimizes the mean absolute error (MAE)

$$
\mathrm{MAE}=E(|\boldsymbol{y}-d|)=E(|y-d|)
$$

among all possible d values is $d=\operatorname{median}(\boldsymbol{X})$.
median (y)

Quantiles
2-quantile

$q=\frac{1}{2} 50^{\prime}$ th quantile is called the median
(1) find the $c d f$

any x is OK
choose the smallest $x: F(x)=2$

