
CUDA C on Multiple GPUs (Ch. 11 of CUDA By

Example)

• Systems containing multiple GPUs are becoming more common

– weathertop.stat.osu.edu has 2 GPUs

• Näıvely, we would expect to double the speed if using 2 GPUs

• However, copying the same memory to each GPU can be time consuming

• Zero-copy memory speeds up copying to one GPU and portable pinned

memory will allow us to do this on multiple GPUs

1

Zero-copy host memory

• Zero-copy lets us avoid making explicit copies of the data to and from

the GPU

• Uses page-locked/pinned memory we learned about last week

• We tell the program that we intend to access the buffer from the GPU

• We also tell the program to allocate the buffer as write-combined

– Inefficient if the CPU needs to read from the buffer

• We create a GPU pointer to the memory on the CPU

– The pointers look like they are on the GPU, but they actually reside

on the host

• Besides that, the kernel acts the same and no additional coding is needed

2

Comparison of zero-copy host memory

• Originally, we copied memory to the device using

a = (float*)malloc(size*sizeof(float))

cudaMalloc((void**)&dev_a, a, size*sizeof(float))

cudaMemcpy(dev_a, a, size*sizeof(float), cudaMemcpyHostToDevice)

• Last week, to allocate pinned memory

cudaHostAlloc((void**)&a, size*sizeof(float), cudaHostAllocDefault)

cudaMalloc((void**)&dev_a, a, size*sizeof(float))

cudaMemcpy(dev_a, a, size*sizeof(float), cudaMemcpyHostToDevice)

• Now, we allocate zero-copy memory

cudaHostAlloc((void**)&a,size*sizeof(float),

cudaHostAllocWriteCombined | cudaHostAllocMapped)

cudaHostGetDevicePointer(dev_a, a, 0)

3

Performance of zero-copy host memory

• Like last week, each pinned allocation takes up physical memory, so be

careful

• Zero-copy memory is not cached on the GPU. Do not use if memory gets

read multiple times

• The book performed tests on two different systems and saw improve-

ments of 35 to 45% running the dot-product example

4

Using Multiple GPUs

• Each GPU needs to be controlled by a different CPU thread

– The book supplies code to make multi-threading easier

• The book recommends creating a data structure that provides space for
input, output, and the GPU device ID
struct DataStruct {

int deviceID;

int size;

float *a;

float *b;

float returnValue;

};

• If you are using N GPUs, split the data N ways with different GPU

device IDs (data[0], data[1],..., data[N-1])

• For each data piece, start a thread and call a function that will execute

the kernel for that data on the specified GPU

5

Portable pinned memory

• Portable pinned memory allows us to combine the speed-ups from zero-

copy host memory and multiple GPUs

• To do so, we must be able to access the pinned memory from any GPU

• Problem: pinned memory can only appear pinned to a single CPU

thread (the thread that allocated it)

– Other threads will see the buffer as standard, pageable data

• A thread that did not allocated the pinned buffer will copy the data at

pageable speeds (50% slower) or possibly crash

• The solution is to allocate the pinned memory as portable, meaning

we allow any thread to view it as a pinned buffer

6

Technical details of portable pinned memory

• Before we allocate host memory, we have to set the (first) CUDA device

on which we wish to run (cudaSetDevice(0)) (?)

• Memory management is very similar to what we did before

cudaHostAlloc((void**)&a, N*sizeof(float),

cudaHostAllocWriteCombined |

cudaHostAllocPortable |

cudaHostAllocMapped)

cudaHostGetDevicePointer(&dev_a, a, 0)

7

