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Motivation

Let x(t) be the state of a system at time t > 0. Assume that the time
evolution of x(-) can be described via

4 x(t) = b(x(t)), fort>0
{ %(0) = x (1)

where b(-) is a given, smooth function. Under conditions which will not
be discussed here, the problem above can be solved, i.e., one can find a

function x(t) satisfying (1). This function is necessarily smooth and its
graph may take the following form.

x(t)

Figure: Trajectory of a solution x(-).



In many cases, one can obtain measurements of the variable x (at many
time points). When plotted against time, trajectories behave as follows:

X(t)

Xo

Figure: Trajectory of a “measured” solution X(-).

Note that

> We are plotting observations X, not the variable x;
> There are many dissimilarities between the two graphs;
> There are many similarities between the two graphs;



Our goal is to understand how X changes in time, accounting for
various sources of uncertainty: measurement error, approximate
dynamics, etc.

Why ? Ultimately we would like to predict the value of the system
at a a future time point, or a spatial location of interest. For the
time being, we will ignore the fact that X may contain
measurement error — this can be dealt with later.

Clearly x and X are different and one cannot use (1) to describe
how X behaves in time.

On the other hand one can observe that the evolution of X is very
similar to that of x, which indicates that

d
ZX(1) = b(X(1))

is a “good” place to start in describing how X changes in time.



» The little wiggles that appear in the graph of X can be thought of
as “noise” - something that we cannot explain, but something that
doesn’t seem to change the overall dynamics.

> This suggests the following modification

{ 4 X(t) = b(X(t)) + "noise”, for t >0
X(0) = Xo



Questions:

> define “noise” in a rigorous way; define what it means for X(-) to
solve the system above;

> discuss uniqueness, asymptotic behavior, dependence upon Xy, b(-),
etc

These questions are addressed by the classical SDE theory. In many
cases, b(-) is also unknown. This raises some additional questions:

> estimate b (parametric, non-parametric, Bayes, etc.);

» if “noise” involves parameters, estimate those too;

> what statistical properties do all the estimators have ? (consistency,
asymptotics);

» computational issues
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Probability spaces, random variables

> Let (2, B,P) be a probability space.

» Q # () is the sample space;
» BC2%is a o-field (its elements are called events);
» P:B —[0,1] is a probability measure.

» A Borel-measurable map X : Q — R is called a random vector (or
variable, if k = 1). In general, a Borel-measurable map X : Q — D
is called a random element (of D). Here D is a generic metric space.

» The law of X or, the distribution of X is the probability measure
PX~1:B(D) - [0,1]

PX~(B) = P(X"*(B))
=P{weQ : X(w)eBY) V¥ BeBD)



Stochastic Processes

View 1: A collection of random variables {X;, t € T}.
Typically 7 = [0,00) or T = [0, T].

X;: Q=R teT
For each w € Q, the map
t = Xe(w) teT

is called a sample path.

X(tjon)

Figure: Two sample paths of a stochastic process.



View 2: A map

X:TxQ—=R (t,w) = X(t,w) = X¢(w)

View 3: A map

X:Q—RT wr X, where X,: 7T —R

Unless otherwise specified, we will assume that 7 = [0, T].



v

A family of o-fields (F;), t € T such that F;, C Fp, if t1 < tp is
called a filtration.

A o-field F; is viewed as “information”. Thus, F;, C F¢, can be

interpreted as “information accumulates in time".

The process (X:), t € T is adapted to the filtration F; if

X: € Fi/B(R)

The process (X:), t € T is measurable if the map
(t,w)— X(t,w) tel0,T|weQ

is measurable wrt the product o-field B([0, T]) x B.

The process (X;) is progressively measurable if , for each t € [0, T]
the map
(s,w) — X(s,w) se0,t]weQ

is measurable wrt the product o-field B([0, t]) x B;.



Some classes of stochastic processes

Stationary processes.
The process X = {X;, t € T} is called stationary in a narrow sense if

P(th E A]_, PP ,th E An) - P(Xtﬁ,g E /4]_7 e th+5 6 An)

The process X™ = {X;, t € T} is called stationary in a wide sense if
E(Xt) < oo E(Xt) - E(Xt+6) E(Xth) = E(Xs+6Xt+6)
The process X has independent increments if, for any
t1 < t; < --- < t,, the increments
X(t2) — X(t1), X(t3) — X(t2), ..., X(tn) — X(tn—1)

are independent.



Markov processes
The stochastic process X is called Markov wrt the filtration (F;) if
P(ANB[X:) = P(A| X¢)P(B | X:)

forany te 7, AcF, BecFix) =0(X,s52>1).

Theorem(1.12, L&S)
The process X; is Markov iff for each measurable function f(x) with
sup, [f(x)] <ocandany 0 < t; <...,<t,<t,

E(f(Xt) | Xiys o ~;Xt,.) = E(f(Xt) | th)

Stochastic processes with independent increments are an important
subclass of Markov processes.



Martingales

The stochastic process (X:), t € T is called a martingale with
respect to the filtration (F;) if E(X;) < oo, t € T and

E(X¢| Fs)=Xs as. t>s.

Exercise Let Y3, Y5,... be such that

(Y1, Y2, ..., Yn) ~ pn(y1, .-y ¥n) wrt A,
Let gn(yi,...,yn) be an alternative pdf (wrt A). Then

o qn(Y17~~- ) Yn)

X =
! pn(Y17~~-7Yn)

is a martingale wrt 7, = o(Y1,..., Yy).



Brownian Motion (BM)

» discovered by Robert Brown (1828);

» first quantitative work on BM due to Bachelier (1900) — in
the context of stock price fluctuations;

» Einstein (1905) derived the transition density for BM from
molecular-kinetic theory of heat;

» Wiener (1923,1924) — first rigorous treatment of BM; first
proof of existence;

» P. Lévy (1939, 1948) — most profound work (construction by
interpolation, first passage times, more).



Definition of a BM

A real-valued continuous time stochastic process W = {W,, t > 0} is
called a Brownian motion if

» Wog=0as;
» W7 has stationary and independent increments;

> If s <t, W, — W is a Gaussian variate with

E(W, —W,)=0 Var(W; —W,) =c*(t —s)

> For almost all w € Q, the sample path t — W,(w) is a continuous
function of t > 0

If o =1 the process (W,) is called a standard BM.
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Properties
Let W' be a SBM.

» The natural filtration generated by a BM process is

ft:J(Ws, 0§s§t)

> E(Wr) = 0, Var(Wt) =t
> SBM is a martingale wrt (F;)

» Independent increments = Markov process.

Exercise Let t; < t, < --- < t,. Derive the joint distribution of
(W(t), W(ts), .., W(t,)).



Existence

Constructive method.
Let 71,72, ... be iid N(0,1) variates and ¢1(t), ¢2(t),... be an arbitrary
complete orthonormal sequence in L»[0, T]. Define

¢j(t)=/0 bi(s)ds j=1,2,...

Theorem. The series -
We = n®(t)
j=1

converges P-a.s. and defines a Brownian motion process on [0, T].



Brownian motion as a limit of a random walk

Let X, = +1 with probability 1/2 and consider the partial sum
Sn:X1+X2+"'+Xn .

Then, as n — oo,

P(‘f[[",";] < x) — P(W, < x)

(discussion)



Strong Markov property

Let 7 be a Markov time wrt F;, assume that P(7 < T) = 1.
Fix s such that P(s +7 < T) = 1.

E(f(WT+S) |]:'r) = E(f(WT+s) |WT)

This is equivalent to saying that
W; = W7+t - W,

is a SBM, independent of F..



Reflection principle

Let W7 be a SBM and 7 a Markov time. The process

W*(t)_{wt |ft§7_

W, — (W, —W,) ift>r
is a SBM.

Let 7 = inf{t > 0, W, > x} where x > 0, and let

M; = sup Wi
0<s<t

Then,
P(M; > x) =P(r < t) =2P(W, > x)



Stochastic Integral

Let (2, B,P) be a prob. space, W' be a SBM.
The quadratic variation (on [0, T]) is defined as

[WT’ WT] “_|II||rn Z ‘ t1+1 th |2

where M= (0=1ty <t <---<t,=T)is a partition of [0, T].

Lemma. The quadratic variation of a Brownian motion is

[WT,WT] =T as.



Differential forms (stochastic calculus)

Recall that [Wr, W] =T a.s.. In short, we write that

th th - dt

It can also be shown that
dt dW; =0 anddtdt=0

Higher order variations are all equal to zero.



Stochastic integrals

Let X' be a stochastic process (random function). Define

Mt = {XT— prog. meas. : P(/OTX2(t,w)dt<oo) :1}

This is the class of all progressively measurable functions which are
square integrable a.s. Also, define

M3 = {XT e Mr E(/OTXz(t,w)dt> <oo}

Consider h € M2T and W7 — Brownian motion. We aim to define
the It6 integral

Ir(h) = /OTh(s,w)dWS



Case 1: his a simple function.

h:[0,T]xQ—=R (t,w) — h(t,w)

Assume that there exists 0 = tg < t; < --- < t, = T such that

h(t) = h; if telt,tii)
o0
0
[ —
ty ta t3 :
e
8




The 1t6 integral I7(h) is defined as

Ir(h) = /OT h(t, w)d VT

= ho(Wy — Weo) + hi(We, = Wy )+ -+ hpo1 (W, — Wy, )
n—1

= Z hi(Wt:’+1 - Wti)

i=0



Properties of the It6 integral

» Ir(h) is a martingale. That is,
E(Ir(h) =0, E(Ir(h) [ F2) = k(h), ,t<T,

where Fy = o(W,, 0 <u < t).

» For any simple functions h,g € M?%,

E(/T(h) : /T(g)) - E(/OT h(t,w)g(t,w)dt)

E(/T(h)2) - E(/OTh(r,w)Zdt)

» The quadratic variation is

thus,

.
[I7(h), I+(h)] :/0 h(t,w)?dt



Case 2: General h.

Lemma There exists a sequence of simple random functions h,, such that

.
/|hn(t,w)—h(t,w)\2dti>o as n = 0o
0




The stochastic integral I7(h) is defined as the limit

T T
/ ho(t,w)dW, —— IT(h):/ h(t,w)dW; as n— oo
0 0

Important observation: The Ito integral is defined as a limit of a
Riemann-Stieltjes sum, where the intermediate points are taken to
be the lower limits of the partition intervals.

.
Zh (W(tie1) — W(t)) —= IT(h)/ he dW,
0



Properties

As a function of t, the paths /;(h) are continuous;
for each t, I;(h) is measurable wrt F;;

aly(h) + Bl(g) = l(ah+ Bg)
It(h) is a martingale;

vVvyVvyVvyespy

[1,1](¢) :/0 h*(s) ds

Differential form

It(h)—/oth(u,w)qu & dly(h) = h(t,w) dW,



Exercise

Show that:
T 1., 1
o Wtth - EWT - ET



It6 processes

.
Let h € M2 and g be such that P(/ lg(t,w)|dt < oo) =1.
0

The stochastic process
t t
X; = Xo +/ g(s,w)ds +/ h(s, w)dW,
0 0
is called an Ito process.

In differential form,

dX: = g(t,w)dt + h(t,w)dW, X(0) =Xy, t €0, T]



Examples

» The Ornstein-Uhlenbeck (OU) process is defined as
dX; = (01 — 02X )dt + 03dW,  X(0) = Xo, t € [0, T]

where 01,0, € R, 03 > 0.

> The Geometric Brownian Motion (GBM) process is defined as
dX, = 01 Xedt + 02X, dW,  X(0) = Xo, t € [0, T]

where 61 € R, 6, >0

> The Cox-Ingersoll-Ross (CIR) process is defined as
dXt - (91 - 92Xt)dt + 03 \V4 Xtth X(O) = )(07 t e [0, T]

where 91, 0> € R, 65 > 0.



Stochastic integral wrt an Itd process

As before, let f € M2 and X be an Itd process defined via the SDE

dX: = g(t,w)dt + h(t,w)dW, X(0) = Xp, t €0, T]

The 1t6 integral wrt X7 is defined as

T T T
/Of(t,w)dXt:/O f(t,w)g(t,w)dt+/o f(t,w)h(t,w)dW,

Here we assume that all the above integrals are well defined.



[to formula

The class of 1té processes is closed with respect to smooth
transformations, in the following sense. Let X be an Itd process defined
by

dX; = g(t,w)dt + h(t,w)dW, X(0)= Xp,t €0, T]
Also let G(t,x) be a “smooth” function: the derivatives G;, Gy, Gy exist
and are continuous. Then the stochastic process Y; = G(t, X;) is an It"o
process with the stochastic differential

1
dy, = [Gt(t,xt)+Gx(t,xt)g(t,w)+§Gxx(t,xt)h(t,w)2 dt +

+ [Gx(t, X)h(t, w)] dW,

or,

1
dy, = [Gt(t,Xt) n EGXX(t,Xt)h(t,w)ﬂ dt + [Gx(t,Xt)} dX,



Application

Consider the OU process
dX: = (01 — 02X;)dt + 03dW,  X(0) = Xo, t €0, T]

and the transformation Y(t) = X(t)e%!.



Application

Consider the OU process
dX: = (01 — 02X;)dt + 03dW,  X(0) = Xo, t €0, T]

and the transformation Y(t) = X(t)e%!.

The solution is

6 t
Xt = Xoe—ezf + 071 (1 _ e—azt) + 93/ e—@z(t—s)dws
2 0



Application

Consider the Geometric Brownian Motion (GBM)
dXy = 61 Xedt + X dW,  X(0) = Xp, t €0, T]

and the transformation Y (t) = log(X(t)).



Application

Consider the Geometric Brownian Motion (GBM)
dXy = 61 Xedt + X dW,  X(0) = Xp, t €0, T]

and the transformation Y (t) = log(X(t)).

The solution is
X, = Xoe(917(1/2)9§)t+92Wt



Another (important) application of Itd formula

dX; = S(Xp)dt + o(Xp)dW, X(0) =Xy, 0<t<T
If h(-) is a smooth function, show that
T Xr 1 (7
/ h(Xs) dXs = / h(s)ds — 7/ K (Xs)o(Xs)? ds
0 Xo 2 Jo

Solution: Define G(x) = [, h(s)ds and use It& formula for
Y(t) = G(X(t)).



Diffusion processes

A homogeneous diffusion process is a particular case of an It process,
defined as the solution of the stochastic differential equation (SDE)

dX; = S(X,)dt + o(X,)dW, X(0)=Xo, 0<t<T

Notation: {X;,0<t< T} =XT.

The functions S(-) and o(-) are called the drift and diffusion coefficients,
respectively. In integral form, the process X is represented as

t t
X: = Xo +/ S(X,)du +/ o(X,)dW,, 0<t<T
0 0



Strong solution of an SDE
dX; = S(X;)dt + o(X:)dW, , X(0)=X,, 0<t<T

The SDE above has a strong solution {X;,t € [0, T]} on (2, F,P) wrt
the Wiener process {W,, t € [0, T] and initial condition Xj if:

> {X;,t €0, T|} is adapted to F; = o(Xo, W, u € [0, t]);

> P(X(0)=Xo)=1;
> {X;,t €0, T]} has continuous sample paths;
g T
P{/ [S(Xe) + o (Xe)?]dt < oo} =1
0
>

ot t
xtzxo+/ S(Xu)du+/ o(X,)dW,
0 0

holds a.s. foreach 0 <t < T.



The crucial requirement of this definition is captured in the highlighted
condition; it corresponds to our intuitive understanding of X; as the
output of a dynamical system described by [S(-), o(-)], whose input is
W7 and Xy. The principle of causality for dynamical systems requires
that the output X; at time t depend only on Xy and the input
{W,,0<u<t}.

(GL) Globally Lipschitz condition
S(x) =S +lo(x) —o(y)| < Lix—y| ¥ x,yeR"
This implies a linear growth condition
[S(x) + o (x) < L(1+[x])
Theorem. Let the condition GL be fulfilled and P(]Xp| < o) = 1. Then
the SDE above has a unique strong solution.

Proof can be found in L&S, Theorem 4.6.



(LL) Locally Lipschitz condition. For any N < oo and |x|, |y| < N, there
exists a constant Ly > 0 such that

S() = S+ lo(x) = a(y)l < Lulx — vl
and
2xS(x) + o(x)? < B(1+ x?) .
Theorem Let the condition £LL be fulfilled and P(|Xp| < c0) = 1. Then

the SDE above has a unique strong solution.

Proof can be found in K&S.



Weak Solution of an SDE

A weak solution to the SDE above is a triplet
(Q,F,P), {F:,0<t < T}, (XT,WT) where

> (Q,F,P) is a probability space and
{F:,0 <t < T} is a filtration of F;
XT ={X;,0<t< T} isa continuous, adapted process;

v

» W7 = {W;,0 <t < T} is a Brownian motion;
> T
P{/ [S(Xe) + o(X:)?]dt < oo} =1
0
>

t t
Xt == XO + / S(Xt)dt + / J(Xt)th
J0O J0

holds a.s. foreach 0 <t < T.



Uniqueness of solutions for SDEs

Suppose (2, F,P), {F:,0 <t < T}, (X7, WT)and (2, F,P),
{Fr,0<t < T}, (XT,WT) are two weak solutions with common initial
value P(Xy = Xo) = 1. We say that pathwise uniqueness holds if

PX, =X, V0<t<T)=1

Suppose (2, F,P), {F:,0 <t < T}, (X7, W) and (@, F,P),
{Fr,0<t< T} (XT,WT) are two weak solutions with the same initial
distribution £(Xo) = £(Xo). We say that uniqueness in the sense of
probability law holds if the two processes X " and XT have the same law.



(E8S) The function S(-) is locally bounded, the function o2(-) is
continuous and for some A > 0

xS(x) + o(x)? < A(L + x?)
Theorem. Suppose that condition £S is fulfilled, then the SDE has a

unique (in law) weak solution.

Proof can be found in K&S.



Absolute continuity of measures on C([0, T])

Preamble

» Assume that X = 3.5 is one observation, generated from one of two
possible probability distributions P; and P, (over R)

> Q: Is X likely to be a draw from Py or P, ?



Absolute continuity of measures on C([0, T])

Preamble

» Assume that X = 3.5 is one observation, generated from one of two
possible probability distributions P; and P, (over R)

Q: Is X likely to be a draw from P; or P, ?

v

A: Calculate the likelihood ratio

dPy . dP;
T X) = 55 65)

v

v

If this quantity is “large”, X is likely a draw from P;

> Otherwise, X is likely a draw from P,



Absolute continuity of measures on C([0, T])

Similar ideas can be applied to stochastic processes.
(Reference: L&S, Chapter 7)

> (Q,F,P) - prob. space, (F;) - filtration, (W,) - SBM
> C([0, T]) = space of continuous functions on [0, T]

> Let X; be a homogeneous It6 process

dXt - B(Xt)dt + th XO - 0
dW; = dW, Wy=20

> let ux, pw be the probability measures on Cr([0, T]) induced by
Xl’7 Wt-

» Task : define
dux
d
Does it exist ?



Theorem

Under some conditions, px ~ gy and

ZZ\\;(V(X) = exp {— /OTB(Xt) dX; + ;/OTB(Xt)2 dt}

(Girsanov formula)



Example

dX; = —0dt+dW, 0<t<1 Xp=0

Assume 6 > 0.



Girsanov formula, more general case

dYt = a( Yt)dt + b( Yt)th

Assume that Xy = Y;. Under some conditions,

duy . T AXe) — a(Xe) 1 [T AX)? = a(X,)?
cmi(x)‘exp{_/o i dt}



