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Motivation

Let x(t) be the state of a system at time t ≥ 0. Assume that the time
evolution of x(·) can be described via

{
d
dt x(t) = b(x(t)), for t > 0
x(0) = x0

(1)

where b(·) is a given, smooth function. Under conditions which will not
be discussed here, the problem above can be solved, i.e., one can find a
function x(t) satisfying (1). This function is necessarily smooth and its
graph may take the following form.

CHAPTER 1: INTRODUCTION

A. MOTIVATION
Fix a point x0 ∈ Rn and consider then the ordinary differential equation:

(ODE)

{
ẋ(t) = b(x(t)) (t > 0)

x(0) = x0,

where b : Rn → Rn is a given, smooth vector field and the solution is the trajectory
x(·) : [0, ∞) → Rn.
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Trajectory of the differential equation

Notation. x(t) is the state of the system at time t ≥ 0, ẋ(t) := d
dtx(t). !

In many applications, however, the experimentally measured trajectories of
systems modeled by (ODE) do not in fact behave as predicted:
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Sample path of the stochastic differential equation

Hence it seems reasonable to modify (ODE), somehow to include the possibility of
random effects disturbing the system. A formal way to do so is to write:

(1)

{
Ẋ(t) = b(X(t)) + B(X(t))ξ(t) (t > 0)

X(0) = x0,

where B : Rn → Mn×m (= space of n × m matrices) and

ξ(·) := m-dimensional “white noise”.

This approach presents us with these mathematical problems:
• Define the “white noise” ξ(·) in a rigorous way.
• Define what it means for X(·) to solve (1).
• Show (1) has a solution, discuss uniqueness, asymptotic behavior, dependence

upon x0, b, B, etc.
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Figure: Trajectory of a solution x(·).



In many cases, one can obtain measurements of the variable x (at many
time points). When plotted against time, trajectories behave as follows:
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Figure: Trajectory of a “measured” solution X (·).

Note that

I We are plotting observations X , not the variable x ;
I There are many dissimilarities between the two graphs;
I There are many similarities between the two graphs;



I Our goal is to understand how X changes in time, accounting for
various sources of uncertainty: measurement error, approximate
dynamics, etc.

I Why ? Ultimately we would like to predict the value of the system
at a a future time point, or a spatial location of interest. For the
time being, we will ignore the fact that X may contain
measurement error – this can be dealt with later.

I Clearly x and X are different and one cannot use (1) to describe
how X behaves in time.

I On the other hand one can observe that the evolution of X is very
similar to that of x , which indicates that

d

dt
X (t) = b(X (t))

is a “good” place to start in describing how X changes in time.



I The little wiggles that appear in the graph of X can be thought of
as “noise” - something that we cannot explain, but something that
doesn’t seem to change the overall dynamics.

I This suggests the following modification

{
d
dtX (t) = b(X (t)) + ”noise”, for t > 0
X (0) = X0



Questions:

I define “noise” in a rigorous way; define what it means for X (·) to
solve the system above;

I discuss uniqueness, asymptotic behavior, dependence upon X0, b(·),
etc

These questions are addressed by the classical SDE theory. In many
cases, b(·) is also unknown. This raises some additional questions:

I estimate b (parametric, non-parametric, Bayes, etc.);
I if “noise” involves parameters, estimate those too;
I what statistical properties do all the estimators have ? (consistency,

asymptotics);
I computational issues



Outline (part I)

I Primer on stochastic processes

I Brownian Motion

I Stochastic integrals

I Itô proceses, stochastic differential equations, Itô formula

I Solutions of diffusion processes

I Girsanov formula
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Probability spaces, random variables

I Let (Ω,B,P) be a probability space.

I Ω 6= ∅ is the sample space;
I B ⊆ 2Ω is a σ-field (its elements are called events);
I P : B → [0, 1] is a probability measure.

I A Borel-measurable map X : Ω→ Rk is called a random vector (or
variable, if k = 1). In general, a Borel-measurable map X : Ω→ D
is called a random element (of D). Here D is a generic metric space.

I The law of X or, the distribution of X is the probability measure
PX−1 : B(D)→ [0, 1]

PX−1(B) = P(X−1(B))

= P({ω ∈ Ω : X (ω) ∈ B}) ∀ B ∈ B(D)



Stochastic Processes

View 1: A collection of random variables {Xt , t ∈ T }.
Typically T = [0,∞) or T = [0,T ].

Xt : Ω→ R t ∈ T
For each ω ∈ Ω, the map

t 7→ Xt(ω) t ∈ T
is called a sample path.

DEFINITIONS. (i) A collection {X(t) | t ≥ 0} of random variables is called
a stochastic process.

(ii) For each point ω ∈ Ω, the mapping t #→ X(t,ω) is the corresponding sample
path.

The idea is that if we run an experiment and observe the random values of
X(·) as time evolves, we are in fact looking at a sample path {X(t,ω) | t ≥ 0} for
some fixed ω ∈ Ω. If we rerun the experiment, we will in general observe a different
sample path.
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Two sample paths of a stochastic process

B. EXPECTED VALUE, VARIANCE
Integration with respect to a measure. If (Ω, U , P ) is a probability space and

X =
∑k

i=1 aiχAi
is a real-valued simple random variable, we define the integral of

X by ∫

Ω

X dP :=

k∑

i=1

aiP (Ai).

If next X is a nonnegative random variable, we define
∫

Ω

X dP := sup
Y ≤X,Y simple

∫

Ω

Y dP.

Finally if X : Ω → R is a random variable, we write
∫

Ω

X dP :=

∫

Ω

X+ dP −
∫

Ω

X− dP,

provided at least one of the integrals on the right is finite. Here X+ = max(X, 0)
and X− = max(−X, 0); so that X = X+ − X−.

Next, suppose X : Ω → Rn is a vector-valued random variable, X = (X1, X2, . . . , Xn).
Then we write

∫

Ω

X dP =

(∫

Ω

X1 dP,

∫

Ω

X2 dP, · · · ,

∫

Ω

Xn dP

)
.
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Figure: Two sample paths of a stochastic process.



View 2: A map

X : T × Ω→ R (t, ω) 7→ X (t, ω) ≡ Xt(ω)

View 3: A map

X : Ω→ RT ω 7→ Xω where Xω : T → R

Unless otherwise specified, we will assume that T = [0,T ].



I A family of σ-fields (Ft), t ∈ T such that Ft1 ⊂ Ft2 if t1 < t2 is
called a filtration.

I A σ-field Ft is viewed as “information”. Thus, Ft1 ⊂ Ft2 can be
interpreted as “information accumulates in time”.

I The process (Xt), t ∈ T is adapted to the filtration Ft if

Xt ∈ Ft/B(R)

I The process (Xt), t ∈ T is measurable if the map

(t, ω) 7→ X (t, ω) t ∈ [0,T ] ω ∈ Ω

is measurable wrt the product σ-field B([0,T ])× B.

I The process (Xt) is progressively measurable if , for each t ∈ [0,T ]
the map

(s, ω) 7→ X (s, ω) s ∈ [0, t] ω ∈ Ω

is measurable wrt the product σ-field B([0, t])× Bt .



Some classes of stochastic processes

Stationary processes.
The process XT = {Xt , t ∈ T } is called stationary in a narrow sense if

P(Xt1 ∈ A1, . . . ,Xtn ∈ An) = P(Xt1+δ ∈ A1, . . .Xtn+δ ∈ An)

The process XT = {Xt , t ∈ T } is called stationary in a wide sense if

E(Xt) <∞ E(Xt) = E(Xt+δ) E(XsXt) = E(Xs+δXt+δ)

The process XT has independent increments if, for any
t1 < t1 < · · · < tn, the increments

X (t2)− X (t1),X (t3)− X (t2), . . . ,X (tn)− X (tn−1)

are independent.



Markov processes

The stochastic process XT is called Markov wrt the filtration (Ft) if

P(A ∩ B |Xt) = P(A |Xt)P(B |Xt)

for any t ∈ T , A ∈ Ft , B ∈ F[t,∞) ≡ σ(Xs , s ≥ t).

Theorem(1.12, L&S)
The process Xt is Markov iff for each measurable function f (x) with
supx |f (x)| <∞ and any 0 ≤ t1 ≤ . . . ,≤ tn ≤ t,

E(f (Xt) | Xt1 , . . . ,Xtn) = E(f (Xt) | Xtn)

Stochastic processes with independent increments are an important
subclass of Markov processes.



Martingales

The stochastic process (Xt), t ∈ T is called a martingale with
respect to the filtration (Ft) if E (Xt) <∞, t ∈ T and

E(Xt | Fs) = Xs a.s. t ≥ s.

Exercise Let Y1,Y2, . . . be such that
(Y1,Y2, . . . ,Yn) ∼ pn(y1, . . . , yn) wrt λ.
Let qn(y1, . . . , yn) be an alternative pdf (wrt λ). Then

Xn =
qn(Y1, . . . ,Yn)

pn(Y1, . . . ,Yn)

is a martingale wrt Fn = σ(Y1, . . . ,Yn).



Brownian Motion (BM)

I discovered by Robert Brown (1828);

I first quantitative work on BM due to Bachelier (1900) – in
the context of stock price fluctuations;

I Einstein (1905) derived the transition density for BM from
molecular-kinetic theory of heat;

I Wiener (1923,1924) – first rigorous treatment of BM; first
proof of existence;

I P. Lévy (1939, 1948) – most profound work (construction by
interpolation, first passage times, more).



Definition of a BM

A real-valued continuous time stochastic process WT = {Wt , t ≥ 0} is
called a Brownian motion if

I W0 = 0 a.s.;

I WT has stationary and independent increments;

I If s < t, Wt −Ws is a Gaussian variate with

E(Wt −Ws) = 0 Var(Wt −Ws) = σ2(t − s)

I For almost all ω ∈ Ω, the sample path t 7→Wt(ω) is a continuous
function of t ≥ 0

If σ = 1 the process (Wt) is called a standard BM.



Simulation



Properties

Let WT be a SBM.

I The natural filtration generated by a BM process is

Ft = σ
(
Ws , 0 ≤ s ≤ t

)

I E(Wt) = 0, Var(Wt) = t

I SBM is a martingale wrt (Ft)

I Independent increments ⇒ Markov process.

Exercise Let t1 < t2 < · · · < tn. Derive the joint distribution of
(W(t1),W(t2), . . . ,W(tn)).



Existence

Constructive method.
Let η1, η2, . . . be iid N(0, 1) variates and φ1(t), φ2(t), . . . be an arbitrary
complete orthonormal sequence in L2[0,T ]. Define

Φj(t) =

∫ t

0

φj(s) ds j = 1, 2, . . .

Theorem. The series

Wt =
∞∑

j=1

ηjΦj(t)

converges P-a.s. and defines a Brownian motion process on [0,T ].



Brownian motion as a limit of a random walk

Let Xn = ±1 with probability 1/2 and consider the partial sum

Sn = X1 + X2 + · · ·+ Xn .

Then, as n→∞,

P
(S[nt]√

n
< x

)
→ P(Wt < x)

(discussion)



Strong Markov property

Let τ be a Markov time wrt Ft , assume that P(τ ≤ T ) = 1.
Fix s such that P(s + τ ≤ T ) = 1.

E(f (Wτ+s) | Fτ ) = E(f (Wτ+s) |Wτ )

This is equivalent to saying that

W̃t = Wτ+t −Wτ

is a SBM, independent of Fτ .



Reflection principle

Let WT be a SBM and τ a Markov time. The process

W∗(t) =

{
Wt if t ≤ τ
Wτ − (Wt −Wτ ) if t ≥ τ

is a SBM.

Let τ = inf{t ≥ 0, Wt ≥ x} where x > 0, and let

Mt = sup
0≤s≤t

Ws

Then,
P(Mt ≥ x) = P(τ ≤ t) = 2P(Wt ≥ x)



Stochastic Integral

Let (Ω,B,P) be a prob. space, WT be a SBM.
The quadratic variation (on [0,T ]) is defined as

[WT ,WT ] = lim
‖Π‖→0

n−1∑

i=0

|Wti+1 −Wti |2

where Π = (0 = t0 < t1 < · · · < tn = T ) is a partition of [0,T ].

Lemma. The quadratic variation of a Brownian motion is

[WT ,WT ] = T a.s.



Differential forms (stochastic calculus)

Recall that [WT ,WT ] = T a.s.. In short, we write that

dWt dWt = dt

It can also be shown that

dt dWt = 0 and dt dt = 0

Higher order variations are all equal to zero.



Stochastic integrals

Let XT be a stochastic process (random function). Define

MT =
{
XT − prog. meas. : P

(∫ T

0
X 2(t, ω)dt <∞

)
= 1
}

This is the class of all progressively measurable functions which are
square integrable a.s. Also, define

M2
T =

{
XT ∈MT : E

(∫ T

0
X 2(t, ω)dt

)
<∞

}

Consider h ∈M2
T and WT – Brownian motion. We aim to define

the Itô integral

IT (h) =

∫ T

0
h(s, ω)dWs



Case 1: h is a simple function.

h : [0,T ]× Ω→ R (t, ω) 7→ h(t, ω)

Assume that there exists 0 = t0 < t1 < · · · < tn = T such that

h(t) = hi if t ∈ [ti , ti+1)



The Itô integral IT (h) is defined as

IT (h) =

∫ T

0
h(t, ω)dWt

= h0(Wt1 −Wt0) + h1(Wt2 −Wt1) + · · ·+ hn−1(Wtn −Wtn−1)

=
n−1∑

i=0

hi (Wti+1 −Wti )



Properties of the Itô integral

I IT (h) is a martingale. That is,

E (IT (h)) = 0, E
(
IT (h) | Ft

)
= It(h), , t < T ,

where Ft = σ(Wu, 0 ≤ u ≤ t).

I For any simple functions h, g ∈M2
T ,

E
(
IT (h) · IT (g)

)
= E

(∫ T

0

h(t, ω)g(t, ω)dt
)

thus,

E
(
IT (h)2

)
= E

(∫ T

0

h(t, ω)2dt
)

I The quadratic variation is

[IT (h), IT (h)] =

∫ T

0

h(t, ω)2dt



Case 2: General h.

Lemma There exists a sequence of simple random functions hn such that

∫ T

0

|hn(t, ω)− h(t, ω)|2dt P−→ 0 as n→∞



The stochastic integral IT (h) is defined as the limit

∫ T

0
hn(t, ω)dWt

P−→ IT (h) =

∫ T

0
h(t, ω)dWt as n→∞

Important observation: The Ito integral is defined as a limit of a
Riemann-Stieltjes sum, where the intermediate points are taken to
be the lower limits of the partition intervals.

n−1∑

i=0

h(ti )
(
W(ti+1)−W(ti )

) P−→ IT (h) =

∫ T

0
ht dWt



Properties

I As a function of t, the paths It(h) are continuous;
I for each t, It(h) is measurable wrt Ft ;
I αIt(h) + βIt(g) = It(αh + βg)
I It(h) is a martingale;
I

E (I 2
t (h)) = E

∫ t

0

h2(s) ds

I

[I , I ](t) =

∫ t

0

h2(s) ds

Differential form

It(h) =

∫ t

0

h(u, ω)dWu ⇔ dIt(h) = h(t, ω) dWt



Exercise

Show that: ∫ T

0

WtdWt =
1

2
W2

T −
1

2
T



Itô processes

Let h ∈M2
T and g be such that P

(∫ T

0

|g(t, ω)|dt <∞
)

= 1.

The stochastic process

Xt = X0 +

∫ t

0

g(s, ω)ds +

∫ t

0

h(s, ω)dWs

is called an Itô process.

In differential form,

dXt = g(t, ω)dt + h(t, ω)dWt X (0) = X0, t ∈ [0,T ]



Examples

I The Ornstein-Uhlenbeck (OU) process is defined as

dXt = (θ1 − θ2Xt)dt + θ3dWt X (0) = X0, t ∈ [0,T ]

where θ1, θ2 ∈ R, θ3 > 0.

I The Geometric Brownian Motion (GBM) process is defined as

dXt = θ1Xtdt + θ2XtdWt X (0) = X0, t ∈ [0,T ]

where θ1 ∈ R, θ2 > 0

I The Cox-Ingersoll-Ross (CIR) process is defined as

dXt = (θ1 − θ2Xt)dt + θ3

√
XtdWt X (0) = X0, t ∈ [0,T ]

where θ1, θ2 ∈ R, θ3 > 0.



Stochastic integral wrt an Itô process

As before, let f ∈M2
T and XT be an Itô process defined via the SDE

dXt = g(t, ω)dt + h(t, ω)dWt X (0) = X0, t ∈ [0,T ]

The Itô integral wrt XT is defined as

∫ T

0

f (t, ω)dXt =

∫ T

0

f (t, ω)g(t, ω)dt +

∫ T

0

f (t, ω)h(t, ω)dWt

Here we assume that all the above integrals are well defined.



Itô formula

The class of Itô processes is closed with respect to smooth
transformations, in the following sense. Let XT be an Itô process defined
by

dXt = g(t, ω)dt + h(t, ω)dWt X (0) = X0, t ∈ [0,T ]

Also let G (t, x) be a “smooth” function: the derivatives Gt , Gx , Gxx exist
and are continuous. Then the stochastic process Yt = G (t,Xt) is an Itˆo
process with the stochastic differential

dYt =
[
Gt(t,Xt) + Gx(t,Xt)g(t, ω) +

1

2
Gxx(t,Xt)h(t, ω)2

]
dt +

+
[
Gx(t,Xt)h(t, ω)

]
dWt

or,

dYt =
[
Gt(t,Xt) +

1

2
Gxx(t,Xt)h(t, ω)2

]
dt +

[
Gx(t,Xt)

]
dXt



Application

Consider the OU process

dXt = (θ1 − θ2Xt)dt + θ3dWt X (0) = X0, t ∈ [0,T ]

and the transformation Y (t) = X (t)eθ2t .



Application

Consider the OU process

dXt = (θ1 − θ2Xt)dt + θ3dWt X (0) = X0, t ∈ [0,T ]

and the transformation Y (t) = X (t)eθ2t .

The solution is

Xt = X0e
−θ2t +

θ1

θ2

(
1− e−θ2t

)
+ θ3

∫ t

0

e−θ2(t−s)dWs



Application

Consider the Geometric Brownian Motion (GBM)

dXt = θ1Xtdt + θ2XtdWt X (0) = X0, t ∈ [0,T ]

and the transformation Y (t) = log(X (t)).



Application

Consider the Geometric Brownian Motion (GBM)

dXt = θ1Xtdt + θ2XtdWt X (0) = X0, t ∈ [0,T ]

and the transformation Y (t) = log(X (t)).

The solution is
Xt = X0e

(θ1−(1/2)θ2
2)t+θ2Wt



Another (important) application of Itô formula

dXt = S(Xt)dt + σ(Xt)dWt X (0) = X0, 0 ≤ t ≤ T

If h(·) is a smooth function, show that

∫ T

0

h(Xs) dXs =

∫ XT

X0

h(s)ds − 1

2

∫ T

0

h′(Xs)σ(Xs)2 ds

Solution: Define G (x) =
∫ x

0
h(s)ds and use Itô formula for

Y (t) = G (X (t)).



Diffusion processes

A homogeneous diffusion process is a particular case of an Itô process,
defined as the solution of the stochastic differential equation (SDE)

dXt = S(Xt)dt + σ(Xt)dWt X (0) = X0, 0 ≤ t ≤ T

Notation: {Xt , 0 ≤ t ≤ T} ≡ XT .

The functions S(·) and σ(·) are called the drift and diffusion coefficients,
respectively. In integral form, the process XT is represented as

Xt = X0 +

∫ t

0

S(Xu)du +

∫ t

0

σ(Xu)dWu, 0 ≤ t ≤ T



Strong solution of an SDE

dXt = S(Xt)dt + σ(Xt)dWt , X (0) = X0, 0 ≤ t ≤ T

The SDE above has a strong solution {Xt , t ∈ [0,T ]} on (Ω,F ,P) wrt
the Wiener process {Wt , t ∈ [0,T ] and initial condition X0 if:

I {Xt , t ∈ [0,T ]} is adapted to Ft = σ(X0,Wu, u ∈ [0, t]);
I P(X (0) = X0) = 1;
I {Xt , t ∈ [0,T ]} has continuous sample paths;
I

P
{∫ T

0

[
S(Xt) + σ(Xt)

2
]
dt <∞

}
= 1

I

Xt = X0 +

∫ t

0

S(Xu)du +

∫ t

0

σ(Xu)dWu

holds a.s. for each 0 ≤ t ≤ T .



The crucial requirement of this definition is captured in the highlighted
condition; it corresponds to our intuitive understanding of Xt as the
output of a dynamical system described by [S(·), σ(·)], whose input is
WT and X0. The principle of causality for dynamical systems requires
that the output Xt at time t depend only on X0 and the input
{Wu, 0 ≤ u ≤ t}.

(GL) Globally Lipschitz condition

|S(x)− S(y)|+ |σ(x)− σ(y)| ≤ L|x − y | ∀ x , y ∈ Rk

This implies a linear growth condition

|S(x) + σ(x)| ≤ L̃(1 + |x |)

Theorem. Let the condition GL be fulfilled and P(|X0| <∞) = 1. Then
the SDE above has a unique strong solution.

Proof can be found in L&S, Theorem 4.6.



(LL) Locally Lipschitz condition. For any N <∞ and |x |, |y | < N, there
exists a constant LN > 0 such that

|S(x)− S(y)|+ |σ(x)− σ(y)| ≤ LN |x − y |

and
2xS(x) + σ(x)2 ≤ B(1 + x2) .

Theorem Let the condition LL be fulfilled and P(|X0| <∞) = 1. Then
the SDE above has a unique strong solution.

Proof can be found in K&S.



Weak Solution of an SDE

dXt = S(Xt)dt + σ(Xt)dWt , X (0) = X0, 0 ≤ t ≤ T

A weak solution to the SDE above is a triplet
(Ω,F ,P), {Ft , 0 ≤ t ≤ T}, (XT ,WT ) where

I (Ω,F ,P) is a probability space and
{Ft , 0 ≤ t ≤ T} is a filtration of F ;

I XT = {Xt , 0 ≤ t ≤ T} is a continuous, adapted process;
I WT = {Wt , 0 ≤ t ≤ T} is a Brownian motion;
I

P
{∫ T

0

[
S(Xt) + σ(Xt)

2
]
dt <∞

}
= 1

I

Xt = X0 +

∫ t

0

S(Xt)dt +

∫ t

0

σ(Xt)dWt

holds a.s. for each 0 ≤ t ≤ T .



Uniqueness of solutions for SDEs

Suppose (Ω,F ,P), {Ft , 0 ≤ t ≤ T}, (XT ,WT ) and (Ω,F ,P),
{F̃t , 0 ≤ t ≤ T}, (X̃T ,WT ) are two weak solutions with common initial
value P(X0 = X̃0) = 1. We say that pathwise uniqueness holds if

P(Xt = X̃t ∀ 0 ≤ t ≤ T ) = 1

Suppose (Ω,F ,P), {Ft , 0 ≤ t ≤ T}, (XT ,WT ) and (Ω̃, F̃ , P̃),
{F̃t , 0 ≤ t ≤ T}, (X̃T , W̃T ) are two weak solutions with the same initial
distribution L(X0) = L(X̃0). We say that uniqueness in the sense of
probability law holds if the two processes XT and X̃T have the same law.



(ES) The function S(·) is locally bounded, the function σ2(·) is
continuous and for some A > 0

xS(x) + σ(x)2 ≤ A(1 + x2)

Theorem. Suppose that condition ES is fulfilled, then the SDE has a
unique (in law) weak solution.

Proof can be found in K&S.



Absolute continuity of measures on C([0,T ])

Preamble

I Assume that X = 3.5 is one observation, generated from one of two
possible probability distributions P1 and P2 (over R)

I Q: Is X likely to be a draw from P1 or P2 ?



Absolute continuity of measures on C([0,T ])

Preamble

I Assume that X = 3.5 is one observation, generated from one of two
possible probability distributions P1 and P2 (over R)

I Q: Is X likely to be a draw from P1 or P2 ?

I A: Calculate the likelihood ratio

dP1

dP2
(X ) =

dP1

dP2
(3.5)

I If this quantity is “large”, X is likely a draw from P1

I Otherwise, X is likely a draw from P2



Absolute continuity of measures on C([0,T ])

Similar ideas can be applied to stochastic processes.
(Reference: L&S, Chapter 7)

I (Ω,F ,P) - prob. space, (Ft) - filtration, (Wt) - SBM

I C([0,T ]) = space of continuous functions on [0,T ]

I Let Xt be a homogeneous Itô process

dXt = β(Xt)dt + dWt X0 = 0

dWt = dWt W0 = 0

I let µX , µW be the probability measures on CT ([0,T ]) induced by
Xt ,Wt .

I Task : define
dµX

dµW

Does it exist ?



Theorem

Under some conditions, µX ∼ µW and

dµW
dµX

(X ) = exp

{
−
∫ T

0
β(Xt) dXt +

1

2

∫ T

0
β(Xt)

2 dt

}

(Girsanov formula)



Example

dXt = −θdt + dWt 0 ≤ t ≤ 1 X0 = 0

Assume θ > 0.



Girsanov formula, more general case

dXt = A(Xt)dt + b(Xt)dWt

dYt = a(Yt)dt + b(Yt)dWt

Assume that X0 = Y0. Under some conditions,

dµY

dµX
(X ) = exp

{
−
∫ T

0

A(Xt)− a(Xt)

b(Xt)2
dXt +

1

2

∫ T

0

A(Xt)
2 − a(Xt)

2

b(Xt)2
dt

}


