Statistical Inference for Diffusion Processes

Radu Herbei

The Ohio State University
The Mathematical Biosciences Institute

July 7, 2015

Quick review

- ▶ $(\Omega, \mathcal{F}, \mathbb{P})$, $\{\mathbb{W}_t, t \in [0, T]\}$ is a SBM, \mathcal{F}_t standard filtration
- ▶ If a stochastic process (h_t) , $t \in [0, T]$ is carefully chosen, one can define the Itô integral

$$\int_0^T h_t \ d\mathbb{W}_t$$

 \blacktriangleright A homogeneous diffusion process (X_t) is characterized via

$$dX_t = S(X_t)dt + \sigma(X_t)dW_t$$
 $X(0) = X_0, t \in [0, T]$

Weak solutions, existence, uniqueness, Girsanov formula.

What's next

- Numerical methods for SDEs
- Ergodicity, LLN, CLTs
- Statistical inference for SDEs (high frequency data)
- ► Statistical inference for SDEs (discrete data)

Numerical methods for SDEs

A "discretization" of a stochastic process $X^T = \{X_t, t \in [0, T]\}$ is a process X_{δ}^T , which "approximates" X^T in some way.

The discretization X_{δ} has strong order of convergence γ if for any T > 0,

$$E(|X_{\delta}(T) - X(T)|) \le c\delta^{\gamma}$$
 for all $\delta < \delta_0$

The discretization X_{δ}^{T} has weak order of convergence β if for any function g which is $2(\beta+1)$ continuously differentiable, it is true that

$$|E(g(X_{\delta}(T))) - E(g(X(T)))| \le c\delta^{\beta}$$
 for all $\delta < \delta_0$

Euler scheme

$$dX_t = S(t, X_t)dt + \sigma(t, X_t)dW_t$$

Given a collection of time points $0 = t_0 < t_1 \cdots < t_n = T$, the Euler discretization is the process $X^E(\cdot)$ such that

$$X^{E}(t_{i+1}) = X^{E}(t_{i}) + S(t_{i}, X^{E}(t_{i}))(t_{i+1} - t_{i}) + \sigma(t_{i}, X^{E}(t_{i}))(\mathbb{W}(t_{i+1}) - \mathbb{W}(t_{i}))$$

For $t \in [t_i, t_{i+1})$, the process $X^E(t)$ can be defined in any way – typically by linear interpolation.

The Euler scheme has strong order of convergence $\gamma=1/2$ and weak order $\beta=1.$

Euler scheme

- Most popular approach to approximate a diffusion process
- Vast majority of research using SDE models actually use the Euler approximation for the computing implementation
- Very easy to implement; very fast to simulate
 - ▶ Simulate $Z \sim \mathcal{N}(0,1)$
 - ▶ Given $X^{E}(t_i)$, set

$$X^{E}(t_{i+1}) = X^{E}(t_{i}) + S(t_{i}, X^{E}(t_{i}))(t_{i+1} - t_{i}) + \sqrt{t_{i+1} - t_{i}}\sigma(t_{i}, X^{E}(t_{i}))Z$$

▶ With a little "trick", can achieve weak order of convergence $\beta = 1$.

Milstein scheme

$$X^{M}(t_{i+1}) =$$

$$= X^{M}(t_{i}) + S(t_{i}, X^{M}(t_{i}))(t_{i+1} - t_{i}) + \sigma(t_{i}, X^{M}(t_{i}))(\mathbb{W}(t_{i+1}) - \mathbb{W}(t_{i}))$$

$$+ \frac{1}{2}\sigma(t_{i}, X^{M}(t_{i}))\sigma_{X}(t_{i}, X^{M}(t_{i}))((\mathbb{W}(t_{i+1}) - \mathbb{W}(t_{i}))^{2} - (t_{i+1} - t_{i}))$$

Milstein scheme has strong order of convergence $\gamma=1$ and weak order of convergence $\beta=1.$

Note that for the OU process, $\sigma_x \equiv 0$ thus, the Euler and Milstein schemes are identical.

Geometric BM

$$dX_t = \theta_1 X_t dt + \theta_2 X_t dW_t$$

Euler scheme:

$$X_{i+1}^{E} = X_{i}^{E} (1 + \theta_1 \Delta) + \theta_2 X_{i}^{E} \sqrt{\Delta} Z = X_{i}^{E} (1 + \theta_1 \Delta + \theta_2 \sqrt{\Delta} Z)$$

Milstein scheme

$$X_{i+1}^{M} = X_{i}^{M} + \theta_{1} X_{i}^{M} \Delta + \theta_{2} X_{i}^{M} \sqrt{\Delta} Z + \frac{1}{2} \theta_{2}^{2} X_{i}^{M} (\Delta Z^{2} - \Delta)$$
$$= X_{i}^{M} \left(1 + \left(\theta_{1} + \frac{1}{2} \theta_{2}^{2} (Z^{2} - 1) \right) \Delta + \theta_{2} \sqrt{\Delta} Z \right)$$

Exact solution

$$\begin{aligned} X_{t+\Delta} &= X_t \exp\left\{\left(\theta_1 - \frac{\theta_2^2}{2}\right) \Delta + \theta_2 \sqrt{\Delta} Z\right\} \\ &= X_t \left(1 + \left(\theta_1 - \frac{\theta_2^2}{2}\right) \Delta + \theta_2 \sqrt{\Delta} Z + \frac{1}{2}\theta_2^2 \Delta Z^2 + \mathcal{O}(\Delta)\right) \end{aligned}$$

Connection between Euler and Milstein schemes

$$dX_t = S(t, X_t)dt + \sigma(t, X_t)dW_t$$

Consider the Lamperti transformation $Y_t = F(X_t)$ where

$$F(x) = \int_{z}^{x} \frac{1}{\sigma(t, u)} du$$

Note that

$$F'(x) = \frac{1}{\sigma(t,x)} \qquad F''(x) = -\frac{\sigma_x(t,x)}{\sigma(t,x)^2}$$

Use Itô formula to derive that

$$dY_t = \left(\frac{S(t, X_t)}{\sigma(t, X_t)} - \frac{1}{2}\sigma_x(t, X_t)\right)dt + dW_t$$

The Euler scheme for the transformed process gives

$$\Delta Y = Y_{i+1} - Y_i = \left(\frac{S(t_i, X_i)}{\sigma(t_i, X_i)} - \frac{1}{2}\sigma_x(t_i, X_i)\right)\Delta t + \sqrt{\Delta t}Z$$

Write the Taylor expansion for the inverse transformation X = G(Y)

$$G(Y + \Delta Y) = G(Y) + G'(Y)\Delta Y + \frac{1}{2}G''(Y)\Delta Y^{2} + \mathcal{O}(\Delta Y^{3})$$

where

$$G'(y) = \frac{1}{F'(G(y))} = \sigma(t, G(y))$$

$$G''(y) = G'(y)\sigma_x(t, G(y)) = \sigma(t, G(y))\sigma_x(t, G(y))$$

This gives

$$\begin{split} G(Y_i + \Delta Y) - G(Y_i) &= \text{ (after some algebra)} \\ &= \left(S - \frac{1}{2}\sigma_{\mathsf{X}}\sigma\right)\Delta + \sigma\sqrt{\Delta}Z + \frac{1}{2}\sigma\sigma_{\mathsf{X}}\Delta Z^2 + \dots \\ &= \text{ Milstein for the } X \text{ process} \end{split}$$

CIR process

$$dX_t = (\theta_1 - \theta_2 X_t) dt + \theta_3 \sqrt{X_t} dW_t$$

Milstein scheme (after some re-ordering):

$$X_{i+1} = X_i + \left((\theta_1 - \theta_2 X_i) - \frac{1}{4} \theta_3^2 \right) \Delta + \theta_3 \sqrt{X_i} \sqrt{\Delta} Z + \frac{1}{4} \theta_3^2 \Delta Z^2$$

Transform using $Y = F(X) = \sqrt{X}$. Itô formula gives

$$dY_{t} = \frac{1}{2Y_{t}} \left((\theta_{1} - \theta_{2}Y_{t}^{2}) - \frac{1}{4}\theta_{3}^{2} \right) dt + \frac{1}{2}\theta_{3}dW_{t}$$

for which the Euler scheme is

$$\Delta Y = \frac{1}{2Y_i} \left((\theta_1 - \theta_2 Y_i^2) - \frac{1}{4} \theta_3^2 \right) \Delta + \frac{1}{2} \theta_3 \sqrt{\Delta} Z$$

CIR process

The inverse transformation is $x = G(y) = y^2$. Then

$$G(Y_i + \Delta Y) - G(Y_i) = (Y_i + \Delta Y)^2 - Y_i^2 = (\Delta Y)^2 + 2Y_i \Delta Y$$

Replace ΔY with the expression above, ignore high order terms, obtain

$$\Delta X = G(Y_i + \Delta Y) - G(Y_i)$$

$$= \left(\theta_1 - \theta_2 X_i - \frac{1}{4}\theta_3^2\right) \Delta + \theta_3 \sqrt{X_i} \sqrt{\Delta} Z + \frac{1}{4}\theta_3^2 \Delta Z^2 + \dots$$

(Milstein scheme for the X process ...)

Predictor-corrector method

Tries to correct the fact that $S(t, X_t)$ and $\sigma(t, X_t)$ are not constant on the interval $[t_i, t_{i+1})$.

Step 1: predictor:

$$\tilde{X}_{i+1} = X_i + S(t_i, X_i)\Delta t + \sigma(t_i, X_i)\sqrt{\Delta t}Z;$$

Step 2: corrector:

$$X_{i+1} = X_i + \left(\alpha \tilde{S}(t_{i+1}, \tilde{X}_{i+1}) + (1 - \alpha) \tilde{S}(t_i, X_i)\right) \Delta t$$
$$+ \left(\eta \sigma(t_{i+1}, \tilde{X}_{i+1}) + (1 - \eta) \sigma(t_i, X_i)\right) \sqrt{\Delta t} Z$$

where

$$\tilde{S}(t_i, X_i) = S(t_i, X_i) - \eta \sigma(t_i, X_i) \sigma_{x}(t_i, X_i)$$

This reduces to Euler method when $\alpha = \eta = 0$.

Second Milstein scheme

$$\begin{split} X_{i+1} &= X_i + \left(S(t_i, X_i) - \frac{1}{2} \sigma(t_i, X_i) \sigma_X(t_i, X_i) \right) \Delta t + \sigma(t_i, X_i) \sqrt{\Delta t} \ Z \\ &+ \frac{1}{2} \sigma(t_i, X_i) \sigma_X(t_i, X_i) \Delta t \ Z^2 \\ &+ \Delta t^{3/2} \left(\frac{1}{2} S(t_i, X_i) \sigma_X(t_i, X_i) + \frac{1}{2} S_X(t_i, X_i) \sigma(t_i, X_i) + \frac{1}{4} \sigma(t_i, X_i)^2 \sigma_{XX}(t_i, X_i) \right) \ Z \\ &+ \Delta t^2 \left(\frac{1}{2} S(t_i, X_i) S_X(t_i, X_i) + \frac{1}{4} S_{XX}(t_i, X_i) \sigma(t_i, X_i)^2 \right) \end{split}$$

It has weak order of convergence $\beta = 2$.

Local linearization methods

Euler method assumes that the drift and diffusion coefficients and constant on small time intervals;

Assume that locally, the drift and diffusion coefficients are linear;

Ozaki method

$$dX_t = b(X_t)dt + \sigma dW_t$$

Start with the corresponding deterministic system

$$\frac{dx_t}{dt} = b(x_t)$$

which admits the following numerical approximation

$$x_{t+\Delta t} = x_t + \frac{b(x_t)}{b_x(x_t)} \left(e^{b_x(x_t)\Delta t} - 1 \right)$$

Assuming that $b(x) = K_t x$ on the interval $[t, t + \Delta t]$ gives

$$X_{t+\Delta t} = X_t e^{K_t \Delta t} + \sigma \int_t^{t+\Delta t} e^{K_t (t+\Delta t - u)} d\mathbb{W}_u$$

The constant K_t is determined from the assumption

$$E(X_{t+\Delta t}\mid X_t) = X_t e^{K_t \Delta t} = X_t + \frac{b(X_t)}{b_x(X_t)} \left(\exp\{b_x(X_t) \Delta t\} - 1 \right)$$

(solve for K_t)

This gives

$$\mathcal{L}(X_{t+\Lambda t} \mid X_t = x) = N(E_x, V_x)$$

where

$$E_{x} = x + \frac{b(x)}{b_{x}(x)} \left(\exp\{b_{x}(x)\Delta t\} - 1 \right) \qquad V_{x} = \sigma^{2} \frac{e^{2K_{x}\Delta t} - 1}{2K_{x}}$$

Shoji-Ozaki method

$$dX_t = b(t, X_t)dt + \sigma(X_t)dW_t$$

Use the Lamperti transform to transform this SDE into

$$dX_t = b(t, X_t)dt + \sigma dW_t$$

Use a "better" local approximation for $b(t, X_t)$ using first and second derivatives of $b(\cdot, \cdot)$. The corresponding discretization is given by

$$X_{t+\Delta t} = A(X_t)X_t + B(X_t)Z$$

where

$$A(X_s) = 1 + \frac{b(s, X_s)}{X_s L_s} (e^{L_s \Delta s} - 1) + \frac{M_s}{X_s L_s^2} (e^{L_s \Delta s} - 1 - L_s \Delta s)$$

$$B(X_s) = \sigma \sqrt{\frac{e^{2L_s \Delta s} - 1}{2L_s}}$$

Where

$$L_s = b_x(s, X_s)$$
 $M_s = \frac{1}{2}b_x x(s, X_s) + b_t(s, X_s);$

Thus

$$\mathcal{L}(X_{t+\Delta t} \mid X_t = x) = \mathcal{N}(A(x)x, B^2(x))$$

Asymptotics (LLN and CLT)

▶ In this section we present a few results about quantities like

$$\int_0^T h(X_t)dt \qquad \int_0^T h(X_t)d\mathbb{W}_t$$

as $T \to \infty$.

▶ These are the continuous time versions of

$$\sum_{i=1}^n h(X_i)$$

- When appropriately normalized, we expect the "usual" limits, if the process X^T is well-behaved.
- Why do we care ? Many estimators (based on high-freq. data) are expressed using such quantities, thus, one can expect to establish asymptotic properties of these estimators.

Preliminaries

$$dX_t = S(X_t)dt + \sigma(X_t)dW_t$$

Denote

$$\tau_{a}=\inf\{t\geq0,X_{t}=a\}\qquad\tau_{ab}=\inf\{t\geq\tau_{a}:X_{t}=b\}$$

Definition The process X_t is called

- recurrent if $P(\tau_{ab} < \infty) = 1$;
- positive recurrent if $E(\tau_{ab}) < \infty$.
- null recurrent if $E(\tau_{ab}) = \infty$.

Proposition. The process X is recurrent if and only if

$$V(x) = \int_0^x \exp\left\{-2\int_0^y \frac{S(u)}{\sigma(u)^2} du\right\} dy \to \pm \infty \tag{1}$$

as $x \to \pm \infty$. The recurrent process is positive if and only if

$$G = \int_{-\infty}^{\infty} \sigma(y)^{-2} \exp\left\{2 \int_{0}^{y} \frac{S(u)}{\sigma(u)^{2}} du\right\} dy < \infty \tag{2}$$

The process is null recurrent if it is recurrent and

$$G = \infty$$

If $\sigma \equiv 1$ then (2) implies (1). In this case, the condition

$$\limsup_{|x|\to\infty} xS(x) < -1/2$$

is sufficient for (1) and (2).

Example

$$dX_t = (\theta_1 - \theta_2 X_t)dt + \theta_3 dW_t \qquad \theta_2, \theta_3 > 0$$

Verify that

$$G = \int_{-\infty}^{\infty} \sigma(y)^{-2} \exp\left\{2 \int_{0}^{y} \frac{S(u)}{\sigma(u)^{2}} du\right\} dy < \infty$$

It is also true that $V(x) \to \pm \infty$ as $x \to \pm \infty$. (exercise)

Ergodicity

The process X is ergodic if there exists an (invariant) distribution $F(\cdot)$ such that for any measurable $h(\cdot)$ such that $E(h(\xi)) < \infty$, we have the convergence

$$rac{1}{T}\int_0^T h(X_t)dt o E(h(\xi))$$
 as $T o \infty$ a.s.

Here we assume that $\xi \sim F(\cdot)$. From now on, we assume that

$$(\mathcal{RP})$$
 $V(x) \to \pm \infty$ as $x \to \pm \infty$ and $G < \infty$.

Theorem. (Law of Large Numbers) Let the conditions (\mathcal{RP}) be fulfilled. Then, the process X is ergodic with invariant density given by

$$f(x) = \frac{1}{G\sigma(x)^2} \exp\left\{2 \int_0^x \frac{S(y)}{\sigma(y)^2} dy\right\}$$

Example

$$dX_t = (\theta_1 - \theta_2 X_t)dt + \theta_3 dW_t \quad \theta_2, \theta_3 > 0$$

The invariant density is

$$f(x) \propto \exp\left\{\frac{2}{\theta_3^2} \int_0^x (\theta_1 - \theta_2 y) \, dy\right\}$$

$$= \exp\left\{\frac{2}{\theta_3^2} (\theta_1 x - \theta_2 x^2 / 2)\right\}$$

$$= \mathcal{N}\left(\text{mean } = \frac{\theta_1}{\theta_2} \text{ var } = \frac{\theta_3^2}{2\theta_2}\right)$$

CLTs

Assume that $h \in \mathcal{M}_T^2$, that is $\int_0^T h(t, \omega) d\mathbb{W}_t$ is well defined.

Theorem. Say there exists a (non-random) function $\varphi(T)$ such that

$$\varphi(T)^2 \int_0^T h(t,\omega)^2 dt \xrightarrow{P} \rho^2 < \infty$$

Then,

$$\varphi(T)\int_0^T h(t,\omega) \ d\mathbb{W}_t \Rightarrow N(0,\rho^2)$$

(see Kutoyants, p.43)

CLT fo SDEs

$$dX_t = S(X_t)dt + \sigma(X_t)dW_t$$

Assume that the (\mathcal{RP}) conditions hold, i.e., (X_t) is positive recurrent and LLN holds

$$rac{1}{T}\int_0^T g(X_t)^2 dt \stackrel{\mathrm{P}}{\longrightarrow} \mathsf{E}(g(\xi)^2) \equiv
ho^2$$

It follows that

$$\frac{1}{\sqrt{T}} \int_0^T g(X_t) \ d\mathbb{W}_t \Rightarrow N(0, \rho^2)$$

More asymptotics

One can also formulate a CLT for the ordinary integral

$$\frac{1}{\sqrt{T}}\int_0^T h(X_t)dt$$

How?

$$\frac{1}{\sqrt{T}}\int_0^T h(X_t)dt = \frac{H(X_T) - H(X_0)}{\sqrt{T}} - \frac{1}{\sqrt{T}}\int_0^T H'(X_t)\sigma(X_t)d\mathbb{W}_t$$

where

$$H(x) = \int_0^x \frac{2}{\sigma(v)^2 f(v)} \int_{-\infty}^y h(v) f(v) dv dy$$

Statistical inference based on high frequency data

Assume that $X^T = \{X_t, t \in [0, T]\}$ is a diffusion process satisfying

$$dX_t = S(\theta, X_t)dt + \sigma(\theta, X_t)dW_t \quad X(0) = X_0 \ t \in [0, T]$$

Assume that we observe an **entire function** $\{X(t) | t \in [0, T]\}.$

Goal: estimate θ .

Estimating the diffusion coefficient

Given $\{X(t) \ t \in [0, T]\}$, $\sigma(\theta, X_t)$ can be estimated with **high accuracy**, based on the quadratic variation. We have

$$\sum_{j=0}^{n-1} \left(X(u_{j+1} - X(u_j))^2 \to \int_0^t \sigma(\theta, X_s)^2 ds \right)$$

where $0 = u_0 < u_1 < \cdots < u_n = t$ is a partition of [0, t].

It follows that the RHS (the limit) can be "approximated" with any level of accuracy. Thus, the diffusion coefficient is determined.

Example: OU model

$$dX_t = (\theta_1 - \theta_2 X_t)dt + \theta_3 dW_t \quad t \in [0, T]$$

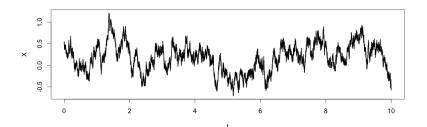
The quadratic variation of an observed path X^T is

$$\int_0^T \theta_3^2 ds = \theta_3^2 T \approx \sum_{i=1}^N (X(t_i) - X(t_{i-1}))^2$$

where $0 = t_0 < t_1 < \cdots < t_N = T$ is a fine partition of [0, T]. The RHS above can be evaluated with any level of precision, and thus one can estimate

$$\hat{\theta}_3^2 = \frac{1}{T} \sum_{i=1}^N (X(t_i) - X(t_{i-1}))^2$$

A short simulation



$$\theta_1 = 1, \theta_2 = 2, \theta_3 = 1, T = 10,$$

The estimate is $\hat{\theta}_3^2 = (1/T) \sum (X_{i+1} - X_i)^2$.

- ▶ 1,000 discretization steps $\hat{\theta}_3 = 1.033$
- ▶ 10,000 discretization steps $\hat{\theta}_3 = 1.006$

Estimating the drift coefficient

$$dX_t = S(\theta, X_t)dt + \sigma(X_t)dW_t \quad X(0) = X_0 \ t \in [0, T]$$

Assume that we observe an **entire function** $X^T = \{X(t) | t \in [0, T]\}$. (note that no parameters appear in the diffusion coefficient)

We work under the assumption that X^T was generated by a **true** model, say

$$dX_t = S(5, X_t) + \sigma(X_t)dW_t \quad X(0) = X_0 \ t \in [0, T]$$
 ?

How do we estimate θ ?

Likelihood function

$$dX_{t} = S(\theta, X_{t})dt + \sigma(X_{t})dW_{t} \quad X(0) = X_{0} \ t \in [0, T]$$

$$dX_{t} = S(\theta^{*}, X_{t})dt + \sigma(X_{t})dW_{t} \quad X(0) = X_{0} \ t \in [0, T]$$
(4)

- ▶ The observed path $X^T = \{X_t, t \in [0, T]\}$ is an element of $\mathcal{C}([0, T])$ and is generated by model (4), θ^* =truth.
- ▶ Model (3) induces a probability measure \mathbb{Q}_{θ} over $\mathcal{C}([0, T])$.
- ▶ Model (4) induces a probability measure \mathbb{Q}_{θ^*} over $\mathcal{C}([0, T])$.
- The likelihood function is

$$\frac{d\mathbb{Q}_{\theta}}{d\mathbb{Q}_{\theta^*}}(X^T)$$

Recall the Girsanov formula

$$\frac{d\mathbb{Q}_{\theta}}{d\mathbb{Q}_{\theta^*}}(X^T) = \exp\Big\{\int_0^T \frac{S(\theta, X_t) - S(\theta^*, X_t)}{\sigma(X_t)^2} dX_t - \frac{1}{2} \int_0^T \frac{S(\theta, X_t)^2 - S(\theta^*, X_t)^2}{\sigma(X_t)^2} dt\Big\}$$

The Maximum Likelihood Estimate (MLE) is then

$$\hat{\theta}_{MLE} = \operatorname{argmax}_{\theta} \frac{d\mathbb{Q}_{\theta}}{d\mathbb{Q}_{\theta^*}} (X^T)$$

Example: OU model

$$dX_t = (\theta_1 - \theta_2 X_t) dt + \theta_3 dW_t$$

$$dX_t = (\theta_1^* - \theta_2^* X_t) dt + \theta_3 dW_t$$

Data $X^T = \{X_t, t \in [0, T]\}$. Here $\theta = (\theta_1, \theta_2)$, $\theta^* = (\theta_1^*, \theta_2^*)$ and θ_3 is assumed known (from the quadratic variation). Maximize the likelihood function wrt θ . For this example, assume that θ_2 is also known, $\theta_2 = \theta_2^*$.

$$\frac{d\mathbb{Q}_{\theta}}{d\mathbb{Q}_{\theta^*}}(X^T) = \exp\Big\{\int_0^T \frac{S(\theta, X_t) - S(\theta^*, X_t)}{\sigma(X_t)^2} dX_t - \frac{1}{2} \int_0^T \frac{S(\theta, X_t)^2 - S(\theta^*, X_t)^2}{\sigma(X_t)^2} dt\Big\}$$

Note: $\sigma(X_t) = \theta_3$ and $S(\theta, X_t) = \theta_1 - \theta_2 X_t$.

Example

Ignore terms in θ^* , θ_3 , maximize

$$\int_0^T S(\theta, X_t) dX_t - \frac{1}{2} \int_0^T S(\theta, X_t)^2 dt$$

Ignore terms in θ_2 (assumed known here), maximize

$$\int_0^T \theta_1 dX_t - \frac{1}{2} \left(t\theta_1^2 - 2 \int_0^T \theta_1 \theta_2 X_t dt \right)$$

Observe the quadratic, which is maximized at

$$\hat{\theta}_1^{MLE} = \frac{X_T - X_0 + \theta_2 \int_0^T X_t dt}{T}$$

Example: asymptotics

$$\hat{\theta}_{1}^{MLE} = \frac{X_{T} - X_{0} + \theta_{2} \int_{0}^{T} X_{t} dt}{T}$$

$$= \frac{1}{T} \left(\int_{0}^{T} \theta_{1}^{*} - \theta_{2}^{*} X_{t} dt + \theta_{3} \int_{0}^{T} d \mathbb{W}_{t} + \theta_{2} \int_{0}^{T} X_{t} dt \right)$$

$$= \theta_{1}^{*} + \frac{\theta_{3}}{T} \mathbb{W}_{T}$$

And thus

$$\sqrt{T}(\hat{\theta}_1^{MLE} - \theta_1^*) = \theta_3 \frac{\mathbb{W}_T}{\sqrt{T}} = N(0, \theta_3^2)$$

Exercises:

- **assume that** θ_1 is known and estimate θ_2
- ightharpoonup assume that both (θ_1, θ_2) are unknown

Statistical inference based on discrete data

Consider a diffusion process

$$dX_t = S(\theta, X_t)dt + \sigma(\theta, X_t)dW_t \quad X(0) = X_0 \ t \in [0, T]$$

Assume that we observe

$$\mathbf{X} = (X(t_0), X(t_1), \dots, X(t_n))$$

= (X_0, X_1, \dots, X_n) where $X_i = X(t_i)$

and
$$0 = t_0 < t_1 < \cdots < t_n = T$$
.

Goal: estimate θ .

Likelihood inference

Notation $[\cdot]$ – "distribution of ..." (typically referring to the pdf)

Inference on θ is based on the likelihood function

$$L_n(\theta) = [\mathbf{X} \mid \theta] = [X_0, X_1, \dots, X_n \mid \theta]$$
$$= [X_0 \mid \theta] \prod_{i=1}^n [X_i \mid X_{i-1}, \theta] \qquad \text{(Markov process)}$$

where $[X_i | X_{i-1}, \theta]$ = probability density of X_i given X_{i-1}, θ and t_{i-1}, t_i . We use the general notation

$$p_{\theta}(x \mid \Delta, X_t = x_0) = \mathbb{P}_{\theta}(X_{t+\Delta} \in dx \mid X_t = x_0)$$

This quantity is called the **transition density**, and plays an extremely important role.

$$L_n(\theta) = p_{\theta}(X_0) \prod_{i=1}^n p_{\theta}(X_i \mid \Delta_i, X_{i-1})$$

Maximum likelihood estimation

▶ The MLE of θ is defined as

$$\hat{\theta}_{MLE} = argmax_{\theta} L_n(\theta)$$
 or $\hat{\theta}_{MLE} = argmax_{\theta} \log(L_n(\theta))$

 Exact likelihood inference can only be done in a handful of cases, where the transition density is known.
 (recall)

$$L_n(\theta) = p_{\theta}(X_0) \prod_{i=1}^n p_{\theta}(X_i \mid \Delta_i, X_{i-1})$$

OU model

$$dX_t = (\theta_1 - \theta_2 X_t)dt + \theta_3 dW_t \qquad X(0) = X_0, \ t \in [0, T] \ \theta_2, \theta_3 > 0$$

The transition density is

$$p_{\theta}(x \mid X_t = x_0, \Delta) = \phi(x; m_{\theta}(x_0, \Delta), \nu_{\theta}(x_0, \Delta))$$

 $\phi(x;\mu,\gamma^2)$ is the Gaussian pdf with mean μ , variace γ^2 evaluated at x. Above,

$$m_{\theta}(x_0, \Delta) = \frac{\theta_1}{\theta_2} + \left(x_0 - \frac{\theta_1}{\theta_2}\right) e^{-\theta_2 \Delta}$$
$$v_{\theta}(x_0, \Delta) = \frac{\theta_3^2 (1 - e^{-2\theta_2 \Delta})}{2\theta_2}$$

- ▶ Likelihood inference will work well, without much trouble
- In certain cases, once can even get closed form expressions for $\hat{\theta}_{MLE}$ $(\theta_1 = 0)$
- Asymptotic properties of $\hat{\theta}_{MLE}$ can also be obtained, typically one requires $n\Delta_n \to \infty$.

GBM model

$$dX_t = \theta_1 X_t dt + \theta_2 X_t dW_t, \qquad X(0) = X_0, t \in [0, T] \quad \theta_2 > 0$$

The transition distribution in this case is

$$p_{\theta}(x \,|\, X_t = x_0, \Delta) \sim \log - \operatorname{Normal}(\operatorname{mean} = \operatorname{m}_{\theta}(x_0, \Delta), \operatorname{var} = \operatorname{v}_{\theta}(x_0, \Delta))$$

where

$$m_{\theta}(x_0, \Delta) = x_0 e^{\theta_1 \Delta}$$

 $v_{\theta}(x_0, \Delta) = x_0^2 e^{2\theta_1 \Delta} \left(e^{\theta_2^2 \Delta} - 1 \right)$

CIR model

$$dX_t = (\theta_1 - \theta_2 X_t) dt + \theta_3 \sqrt{X_t} dW_t \qquad X(0) = X_0, t \in [0, T] \ \theta_1, \theta_2, \theta_3 > 0$$

The transition density in this case is a non-central χ^2 .

Pseudo-likelihood methods

- In most cases, the transition density is unknown and thus the likelihood function is intractable.
- In all these cases, one has to resort to a way to approximate the likelihood function.
- ► These pseudo-likelihood methods are of four types:
 - methods based on numerical discretizations of the SDE
 - methods based on a simulated likelihood
 - closed form approximations (not included in these notes)
 - methods based on exact sampling (EA) algorithms

Likelihood approximations based on the Euler scheme

$$dX_t = S(\theta, X_t)dt + \sigma(\theta, X_t)dW_t$$
 $X(0) = X_0$ $t \in [0, T]$

Consider the Euler approximation

$$X_{t+\Delta} - X_t = S(\theta, X_t)\Delta + \sigma(\theta, X_t)(\mathbb{W}_{t+\Delta} - \mathbb{W}_t)$$

Observing that $W_{t+\Delta} - W_t$ is independent of X_t , it follos that

$$X_{t+\Delta} \mid X_t, \theta \sim \mathcal{N}\Big(X_t + S(\theta, X_t), \Delta \sigma(\theta, X_t)^2\Big)$$

The transition density is then approximated with

$$p_{\theta}(x \mid \Delta, X_0 = x_0) \approx \phi(x; m_{\theta}(x_0, \Delta), v_{\theta}(x_0, \Delta))$$

where

$$m_{\theta}(x_0, \Delta) = x_0 + S(\theta, x_0)\Delta$$
 $v_{\theta}(x_0, \Delta) = \Delta \sigma(\theta, x_0)^2$

 $\phi(x; \mu, \gamma^2)$ is the Gaussian pdf with mean μ , variance γ^2 evaluated at x.

The effect of Δ

Consider the OU process

$$dX_t = (\theta_1 - \theta_2 X_t) dt + \theta_3 dW_t$$
 $X(0) = X_0, \ t \in [0, T] \ \theta_2, \theta_3 > 0$

Recall that the exact transition density is Gaussian, with parameters

$$m_{\theta}(x_0, \Delta) = \frac{\theta_1}{\theta_2} + \left(x_0 - \frac{\theta_1}{\theta_2}\right) e^{-\theta_2 \Delta}$$
$$v_{\theta}(x_0, \Delta) = \frac{\theta_3^2 (1 - e^{-2\theta_2 \Delta})}{2\theta_2}$$

The **Euler** transition density is also Gaussian, with parameters

$$m_{\theta}(x_0, \Delta) = x_0(1 - \theta_2 \Delta) + \theta_1 \Delta$$

 $v_{\theta}(x_0, \Delta) = \theta_3^2 \Delta$

The two are "close", only as $\Delta \to 0$.

Simulated likelihood approximations

Focus again on the transition density and note that, informally

$$[X_{\Delta} \mid X_{0}] = \int [X_{\Delta}, X_{\Delta - \delta} \mid X_{0}] dX_{\Delta - \delta}$$

$$= \int [X_{\Delta} \mid X_{\Delta - \delta}] [X_{\Delta - \delta} \mid X_{0}] dX_{\Delta - \delta}$$

$$= E \Big(p_{\theta}(X_{\Delta} \mid X_{\Delta - \delta}, \delta) \Big)$$

where the expectation is taken wrt $X_{\Delta-\delta}$ (and X_{Δ} is held fixed). Idea :

- ▶ If δ is v. small, then p_{θ} can be approximated with the Euler transition density
- ▶ The expectation above can be estimated using a Monte Carlo approach (sample many many $X_{\Delta-\delta}$...)

Importance sampling approach

Formally,

$$\begin{aligned} & p_{\theta}(x \mid x_{0}, \Delta) = \\ & = \int p_{\theta}(z_{1}, z_{2}, \dots, z_{N} \mid x_{0}, \delta) p_{\theta}(x \mid z_{N}, \delta) dz_{1} dz_{2} \dots dz_{N} \\ & = \int \frac{p_{\theta}(z_{1} \mid x_{0}, \delta) p_{\theta}(z_{2} \mid z_{1}, \delta) \dots p(z_{N} \mid z_{N-1}, \delta) p_{\theta}(x \mid z_{N}, \delta)}{q(z_{1}, z_{2}, \dots, z_{N})} q(z_{1}, z_{2}, \dots, z_{N}) dz_{1} dz_{2} \dots dz_{N} \end{aligned}$$

where $q(\cdot)$ is some importance sampling density. The choice of $q(\cdot)$ is very important !

- ▶ The **main** idea is to make q depend on x and x_0 !!!!
- ▶ Elerian(2001) suggests a mutivariate Gaussian (or t) distribution
- ▶ Durham and Gallant (2002) propose Brownian Bridge samplers
- ▶ Stramer and Yan (2007) presents a good overview of this approach.

Approximations based on the exact sampling algorithms

EA (1,2 and 3) is a series of algorithms giving exact (no discretization error) draws from a large class of diffusion processes. See Beskos and Roberts (2005), Beskos et al. (2006), Beskos et al. (2008)

EA algorithms are rejection sampling algorithms!

Recall the likelihood function

$$L_n(\theta) = p_{\theta}(X_0) \prod_{i=1}^n p_{\theta}(X_i \mid \Delta_i, X_{i-1})$$

Ideea: given $X_{i-1}, X_i, \Delta, \theta$, one can simulate a random variable Ψ such that

$$\mathsf{E}(\Psi) = p_{\theta}(X_i \,|\, X_{i-1}, \Delta)$$

Approximations based on the exact sampling algorithms

That is, each contribution to the likelihood function can be estimated unbiasedly: simulate iid Ψ_1, \dots, Ψ_B and estimate

$$\hat{\rho}_{\theta}(X_i \mid X_{i-1}, \Delta) = \frac{1}{B} \sum_{i=1}^{B} \Psi_i$$

This leads to an unbiased estimate of the likelihood function, which can be consequently optimized over θ .

Why EA? The idea is that

$$p_{\theta}(X_i \mid X_{i-1}, \Delta) = \mathsf{E}(\text{"acceptance probability from EA algorithm"})$$