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Quick review

v

(Q,F,P), {W;,t €[0, T|} is a SBM, F; - standard filtration

If a stochastic process (h;), t € [0, T] is carefully chosen, one
can define the It6 integral

-
/ he dW¢
0

A homogeneous diffusion process (X;) is characterized via

v

v

v

Weak solutions, existence, uniqueness, Girsanov formula.



What's next

» Numerical methods for SDEs

» Ergodicity, LLN, CLTs

» Statistical inference for SDEs (high frequency data)
» Statistical inference for SDEs (discrete data)



Numerical methods for SDEs

A ‘“discretization” of a stochastic process X' = {X;,t € [0, T]} is a
process X5T, which “approximates” X7 in some way.

The discretization X; has strong order of convergence ~y if for any T > 0,

E(1Xs(T) = X(T)|) <6 forall &< 6

The discretization X6T has weak order of convergence (5 if for any
function g which is 2(3 + 1) continuously differentiable, it is true that

|E(g(Xs5(T))) — E(g(X(T)))| < c6? forall §<dy



Euler scheme

dXt = S(t, Xt)dt + O'(t.-7 Xt)th

Given a collection of time points 0 = tp < t;--- < t, = T, the Euler
discretization is the process X£(-) such that

XE(tisn) = XE(t)+S(ti, XE(t) (tir1—ti)+o(ti, XE (1)) (W(ti1)—W(t))

For t € [t;, ti+1), the process XE(t) can be defined in any way — typically
by linear interpolation.

The Euler scheme has strong order of convergence v = 1/2 and weak
order g = 1.



Euler scheme

» Most popular approach to approximate a diffusion process

» Vast majority of research using SDE models actually use the
Euler approximation for the computing implementation

» Very easy to implement; very fast to simulate

» Simulate Z ~ N(0,1)
» Given XE(t;), set

XE(tiy1) = XE(6)+S(ti, XE (1)) (tip1—ti)+/tipa — tio(ti, X5())Z

» With a little “trick”, can achieve weak order of convergence

B=1



Milstein scheme

XM(tiy1) =
= XM(t:) + S(ti, XM(8)) (8111 — 1) + o (&5, XM () (W(ti12) — W(t:))

+ %a(t,-vx“”(t,o)ax(thxM(t,->>(<W(t,-+1) ~ W(6)) ~ (ti — 1))

Milstein scheme has strong order of convergence v = 1 and weak order of
convergence 5 = 1.

Note that for the OU process, o, = 0 thus, the Euler and Milstein
schemes are identical.



Geometric BM

dXt - 91Xtdt + 92Xtth

Euler scheme:
XE, = XF(1+01A) + 0.XEVAZ = XF(1 + 6,0 + 0,VAZ)
Milstein scheme

1
XM = XM+ 0. XMA + 0,XMVAZ + 5agx,.M(Az? - A)

= XM (1 + (91 + %95(22 — 1)) A+ ezx/Zz>

Exact solution

2
Xign = Xpexp { (91 — 922> A+ 92\/EZ}

2
=X, (1 + (91 - 922> A+ 0,VAZ + %95AZ2 + O(A))



Connection between Euler and Milstein schemes

dXt = S(t, Xt)dt + O'(t, Xt)th

Consider the Lamperti transformation Y; = F(X;) where

F(x) = /ZX a(tl, u)du

Note that
1 ox(t, x)

F) = o(t, x) Fix) = o(t, x)?

Use Itd formula to derive that

S(t,Xe) 1
Yy = - = X
d t (J(t’Xt) 20')((1._7 t) dt + th




The Euler scheme for the transformed process gives

S(t,',X,') 1
- = X)) ) A VAtZ
o(ti, X;) 2gx(t” ’)) Prvar

AY =Y —Yi= (
Write the Taylor expansion for the inverse transformation X = G(Y)

G(Y +AY)=G(Y)+ G (Y)AY + %G”(Y)AYZ +0(AY?)

where
G"(y) = G'(y)ox(t, G(y)) = o(t, G(y))ox(t, G(y))
This gives

G(Yi+AY)— G(Y;) = ( after some algebra)
— <5 — é(gﬂ) A+ oVAZ + %O’O’XAZ2 +...

= Milstein for the X process



CIR process

dXt = (91 - 92Xt)dt + 93 \V Xtth

Milstein scheme (after some re-ordering):
1 1
Xis1 = Xi + ((91 —0:X;) — 49§> A+ 05/ XiVAZ + Z9§A22

Transform using Y = F(X) = v X. It6 formula gives

1

Y, =
e 2Y,

1 1
((91 — 0, Y?) — 49§> dt + > 03dW.

for which the Euler scheme is

1

AY = —
2Y;

1 1
<(91 —6,Y?) — 49§> A+ E93\/52



CIR process

The inverse transformation is x = G(y) = y2. Then
G(Yi+AY)—G(Y)) = (Yi+AY)> = Y? = (AY)* +2Y;,AY

Replace AY with the expression above, ignore high order terms, obtain
AX =G(Yi+AY)—-G(Y))

1 1
— (91 — 0% — 49§> A+ 03/ XiVAZ + Z¢9§AZZ + ...

(Milstein scheme for the X process ...)



Predictor-corrector method

Tries to correct the fact that S(t, X;) and o(t, X;) are not
constant on the interval [t;, tiy1).
Step 1: predictor:

)~<,'+1 =X;+ S(t;,X,')At + O‘(t,',X;)\/ AtZ;
Step 2: corrector:

Xipn = Xt (a8(tisn, Kia) + (1 - )58, X)) At
( o(tir1, Xit1) (1—n)a(t,-,x,-))\/ﬂz

where 5
S(ti, Xi) = S(ti, Xi) — no(ti, Xi)ox(ti, Xi)

This reduces to Euler method when a =7 = 0.



Second Milstein scheme

Xipr = (S(r,,X>— ot X)ax<rf,x,-)) At + o(t;, X)VAE Z

+ —o(ty, Xp)ox(ti, X;) At 22

1

2
INEYE 1 1 2

+ At 25(f s Xi)ox(ti, Xi) + Esx(tivxi)a(ti‘xi)+ Zo(ti‘xi) oxx(ti, Xi) ) Z

1 1
+ar (Es(thxi)sx(thxi) + stx(tiw Xi)o(ti, Xf)2>

It has weak order of convergence g = 2.



Local linearization methods

Euler method assumes that the drift and diffusion coefficients and
constant on small time intervals;
Assume that locally, the drift and diffusion coefficients are linear;
Ozaki method

dX: = b(X;)dt + odW,

Start with the corresponding deterministic system

dx, t

P b(x)

which admits the following numerical approximation

Xt+At = Xt +

[i(();)) (ebx(xt)At _ 1)

Assuming that b(x) = K;x on the interval [t, t + At) gives

t+At
Xt+At = XteKtAt + O‘/ er(erAt*u)qu
t



The constant K; is determined from the assumption

E(Xerne | Xe) = XAt = X, + :(();t)) (exp{bx(X:)At} — 1)

(solve for K;)

This gives
‘C(Xt—‘rAt ’ Xt = X) = N(EX, VX)
where
b 2K At 1
E = xt+ 29 (epibu(x)Aatt —1) Vo= oS 1




Shoji-Ozaki method

dXt = b(t, Xt)dt + U(Xt)th
Use the Lamperti transform to transform this SDE into
dXt = b(t, Xt)dt + O'th

Use a “better” local approximation for b(t, X;) using first and second
derivatives of b(-,-). The corresponding discretization is given by

Xt+At = A(Xt)Xt + B(Xt)Z

where
b(s, Xs) , 1.a Ms  1.a
AX) =1+ (e —1 85 1 — LA
( ) + XsLs (e )+ Xng (e S)
2L5As_1
B(Xs)=o ez

2L,



Where 1
Ls = by(s,Xs) M= §bXX(S,XS) + be(s, Xs);

Thus
£(Xerae | Xe = x) = N(A(x)x, B(x))



Asymptotics (LLN and CLT)

» In this section we present a few results about quantities like

/0 " (X))t /O " h(X)dW,

as T — oo.

» These are the continuous time versions of

> h(Xi)
i=1

» When appropriately normalized, we expect the “usual” limits, if the
process X is well-behaved.

» Why do we care 7 Many estimators (based on high-freq. data) are
expressed using such quantities, thus, one can expect to establish
asymptotic properties of these estimators.



Preliminaries

dX; = S(X¢)dt + o(X¢)dW,
Denote
T, = inf{t >0, X; = a} Tap = inf{t > 7, : X; = b}
Definition The process X; is called

> recurrent if P(T., < 00) = 1;
> positive recurrent if E(7,p) < 00.

> null recurrent if E(75p) = 00.



Proposition. The process X is recurrent if and only if

V(x) = /O exp {—2 /Oy :((:))2 du} dy — £00

as x — Fo00. The recurrent process is positive if and only if

G= /_0; o(y) 2 exp {2/0}/ :((;)ldu} dy < oo

The process is null recurrent if it is recurrent and

G =00
If o =1 then (2) implies (1). In this case, the condition

limsupxS(x) < —1/2

|x|—o0

is sufficient for (1) and (2).



Example

dX; = (01 — 02X;)dt + 03dW, 6,03 >0

G = /O:Oo(y)2exp {2/0}/ :((5))201”} dy < oo

It is also true that V/(x) — +o00 as x — +o0. (exercise)

Verify that



Ergodicity

The process X is ergodic if there exists an (invariant) distribution F(-)
such that for any measurable h(-) such that E(h(&)) < oo, we have the
convergence

1 [T
7/0 h(Xy)dt — E(h(¢)) a T — oo as.

Here we assume that £ ~ F(-). From now on, we assume that

(RP) V(x) = o0 as x = too and G < 0.

Theorem. (Law of Large Numbers) Let the conditions (RP) be fulfilled.
Then, the process X is ergodic with invariant density given by

0= G o2 sop®)




Example

dX; = (61 — 02X;)dt + 63dW, 05,65 >0

The invariant density is

F(x) o exp {922 | 616 dy}



CLTs
Assume that h € M3, that is [ h(t,w) dW, is well defined.

Theorem. Say there exists a (non-random) function ¢(T) such that
T P
4,9(7’)2/ h(t,w)? dt — p* < o0
0

Then,
)
o(T) / h(t,w) dW, = N(O, /2)
JO

(see Kutoyants, p.43)



CLT fo SDEs

Assume that the (RP) conditions hold, i.e., (X;) is positive recurrent
and LLN holds

T
7| e a e =47

It follows that .
1
—= / g(Xe) dW, = N(0, %)
0



More asymptotics

One can also formulate a CLT for the ordinary integral

i
\% /O h(X:)dt

1 _HXn) —HX) 1 T,
/0 h(X)dt = % e d H (X.)o (Xe)dW,

x 2
H(x):/o W[m h(v)f(v)dvdy



Statistical inference based on high frequency data

Assume that X = {X;, t € [0, T]} is a diffusion process satisfying
dXt = 5(9, Xt)dt + 0'(9, Xt)th X(O) = XO t e [07 T]

Assume that we observe an entire function {X(t) t € [0, T]}.

Goal: estimate 0.



Estimating the diffusion coefficient

Given {X(t) t € [0, T]}, o(f, X;) can be estimated with high accuracy,
based on the quadratic variation. We have

n—1

> (X - x(uj))2 S /Ota(a,xs)2 ds

Jj=0

where 0 = up < uy < -+ < u, =t is a partition of [0, t].

It follows that the RHS (the limit) can be “approximated” with any level
of accuracy. Thus, the diffusion coefficient is determined.



Example: OU model

dX; = (61 — 62X¢)dt + 03dW, t€[0,T]

The quadratic variation of an observed path X7 is

. N
/ 035—0§Tzz ti_1))?
0 :

where 0 =ty < t; < --- < ty = T is a fine partition of [0, T].
The RHS above can be evaluated with any level of precision, and thus
one can estimate

N
Z ti— 1))2



A short simulation

1.0

05 00

0, =1,0,=2.0;=1, T = 10,
The estimate is 02 = (1/T) > (Xir1 — X)2.

» 1,000 discretization steps 63 = 1.033
» 10,000 discretization steps A3 = 1.006



Estimating the drift coefficient
dX; = S(0, X¢)dt + o(X:)dW, X(0) = Xo t € [0, T]

Assume that we observe an entire function X7 = {X(t) t € [0, T]}.
(note that no parameters appear in the diffusion coefficient)

We work under the assumption that X7 was generated by a true model,
say

How do we estimate 6 ?



Likelihood function

dX: = S(0, X;)dt + o(X:)dW, X(0)=Xo t € [0, T] (3)
dX; = S(0*, Xy)dt + o(X;)dW, X(0)=Xo t€[0,T] (4)

v

The observed path X7 = {X;,t € [0, T]} is an element of
C([0, T]) and is generated by model (4), 6* =truth.

Model (3) induces a probability measure Qg over C([0, T]).
Model (4) induces a probability measure Qg+ over C([0, T]).
The likelihood function is

v

v

v

dQy
dQp-

(X7)



Recall the Girsanov formula

T *
dQy (x7) :eXp{/o S(0.Xe) —S(O". %) 4

dQp- o(Xt)?
T 2 * 2
L[S sy
2 Jo o(Xe)?
The Maximum Likelihood Estimate (MLE) is then
A d
Omie = argmaxy Q (XT)

dQg-



Example: OU model

dXt - (91 - 02Xt)dt + 93th

Data X7 = {X;,t € [0, T]}. Here 6 = (6y1,02), 0* = (07,05) and 03 is
assumed known (from the quadratic variation). Maximize the likelihood
function wrt 6. For this example, assume that 65 is also known, 6, = 05.

dQp 7\ 756, X;) — S(6%, X¢)
ags- % )‘exp{/o o (X.)? e

1 756, %)% - S(6%, X,)?
- / (P |

2

Note: U(Xt) = 93 and S(Q,Xt) = 61 — 92Xt-



Example

Ignore terms in 0%, 63, maximize

T 1 T
/ S(6, X:)dX; — 7/ S(0, X;)?dt
0 2 0

Ignore terms in 0, (assumed known here), maximize

T 1 T
/ O1dX; — = | th7 — 2 / 010, X dt
Jo 2 0

Observe the quadratic, which is maximized at

-
é‘MLE _ Xt —Xo+ 6> fO Xedt
! T




Example: asymptotics

juie _ XT = X0+, S Xedt

! T

1 T T T

= — / 07 — 05 Xedt + 63 dW; + 02/ Xedt
T \Jo 0 0

03

=0 + =W

1+ T
And thus

VT — *):%%:N(o,eg)

Exercises :

» assume that #; is known and estimate 6>
> assume that both (61, 6,) are unknown



Statistical inference based on discrete data

Consider a diffusion process
dXt = 5(9, Xt)dt + U(H,Xt)th X(O) = Xo t e [0, T]

Assume that we observe

X = (X(to), X(t1), ..., X(tn))
= (Xo,X1,...,X,)  where X; = X(t;)

and 0=ty <t1 <---<tp=T.

Goal: estimate 6.



Likelihood inference

Notation [ - | — “distribution of ..." (typically referring to the pdf)
Inference on 6 is based on the likelihood function
Ln(e) = [X|9] = [XOaX17~-~7Xn‘9]

= [Xo| 0] H[X; | Xi—1,0] (Markov process)
i=1

where [X;| Xi_1, 0] = probability density of X; given X;_1,0 and t;_1, t;.
We use the general notation

PQ(X ‘ A X = XO) = P@(Xt+A € dx ‘ X¢ = XO)

This quantity is called the transition density, and plays an extremely
important role.

Ln(0) = po(Xo) HP@(X,' | Ar, Xi—1)



Maximum likelihood estimation

» The MLE of 0 is defined as

Omie = argmaxglL,(0)  or Omie = argmaxg log(L,(0))

» Exact likelihood inference can only be done in a handful of cases,
where the transition density is known.

(recall)

L,(0) = po(Xo) H po(Xi | Ai, Xi—1)

i=1



OU model

dX; = (91 — 02Xt)dt+ 03dW, X(O) = Xo, t e [0, T] 92,93 >0
The transition density is
po(x| Xi = x0, A) = ¢(x; mg(x0, A), vo(x0, A))

&(x; 11,+?) is the Gaussian pdf with mean i, variace 72 evaluated at x.
Above,

0 0
my(xo, A) = 9*; (Xo - 9:> e %A
_03(1— e 2028

vo(x0, A) 20,

» Likelihood inference will work well, without much trouble

» In certain cases, once can even get closed form expressions for éMLE
(61 =0)

» Asymptotic properties of Omie can also be obtained, typically one
requires nA, — 0.



GBM model

dX; = 01 X,dt + 0, X, dW, X(0)=Xo,t €1[0,T] 62>0

The transition distribution in this case is

po(x | Xt = xo, A) ~ log — Normal(mean = mp(xg, A), var = vy(xo, A))

where
my(xo, A) = xpe!2
vo(xo, A) = xgewlA (eegA — 1)
CIR model
dXi = (01—02X:)dt+03+/ X dW, X(0) = Xo,t € [0, T] 61,02,05 >0

The transition density in this case is a non-central x?2.



Pseudo-likelihood methods

> In most cases, the transition density is unknown and thus the
likelihood function is intractable.

» In all these cases, one has to resort to a way to approximate the
likelihood function.

» These pseudo-likelihood methods are of four types:

vV v v v

methods based on numerical discretizations of the SDE
methods based on a simulated likelihood

closed form approximations (not included in these notes)
methods based on exact sampling (EA) algorithms



Likelihood approximations based on the Euler scheme

Consider the Euler approximation
Xern — Xe = S(0, Xe)A + 0(0, Xi)(Wepn — W)

Observing that W, o — W, is independent of X, it follos that

Xera | Xe 0~ N (X +S(6, %), Bo(6,X:)?)
The transition density is then approximated with

po(x | A, Xo = x0) = ¢(x; mo(x0, D), vo(x0, A))
where

mg(x0, A) = x0 + S(0,x0)A vo(x0, A) = Ac (6, x0)?

&(x; 11,7?) is the Gaussian pdf with mean i, variance 72 evaluated at x.



The effect of A

Consider the OU process
dX: = (01 — 02X;)dt + O3dW, X(0)=Xo, t€[0,T] 62,053 >0

Recall that the exact transition density is Gaussian, with parameters

0 0 _
mp(x0, A) = 0—; + (Xo — é) e 028

02(1 — e—20:A
vo(x0, D) = ATH

The Euler transition density is also Gaussian, with parameters

mg(Xo, A) = Xo(l - 92A) + 91A
vo(x0, A) = B34

The two are “close”, only as A — 0.



Simulated likelihood approximations

Focus again on the transition density and note that, informally

[Xa [ Xo] = /[XAaXA6|XO] dXa—s
= /[XA | Xa—s][Xa—s | XoldXa—s

— E(po(Xa | Xa—s.9))

where the expectation is taken wrt Xa_s (and Xa is held fixed).
Idea :

» If 0 is v. small, then py can be approximated with the Euler
transition density

» The expectation above can be estimated using a Monte Carlo
approach (sample many many Xao_5 ... )



Importance sampling approach

Formally,

po(x|x0, D) =

= /PG(ZLZL oo 2N | X0, 0)pe(x | zn, 0)dz1dzo . . . dzy

_ / Po(z1] X0, 0)po(2z2] 21,0) ... p(zn | Zn—1,6)Po(x | 2, 5) 921, 20, - 2n)dzrdzs . . oy
q(z1, 22, .-, 2n)

where g(-) is some importance sampling density. The choice of g(-) is

very important !

The main idea is to make g depend on x and xp !!!!

Elerian(2001) suggests a mutivariate Gaussian (or t) distribution
Durham and Gallant (2002) propose Brownian Bridge samplers
Stramer and Yan (2007) presents a good overview of this approach.

vVvyYyysy



Approximations based on the exact sampling algorithms
EA (1,2 and 3) is a series of algorithms giving exact (no discretization

error) draws from a large class of diffusion processes.
See Beskos and Roberts (2005), Beskos et al. (2006), Beskos et al. (2008)

EA algorithms are rejection sampling algorithms !

Recall the likelihood function

Ly(0) = po(Xo) H po(Xi | Ai, Xi—1)
i—1

Ideea: given X;_1, X, A, 0, one can simulate a random variable ¥ such
that
E(W) = po(Xi| Xi-1, )



Approximations based on the exact sampling algorithms

That is, each contribution to the likelihood function can be
estimated unbiasedly: simulate iid W1,..., Vg and estimate

B

R 1

Po(Xi | Xi—1,D) = B Z v;
=1

This leads to an unbiased estimate of the likelihood function,
which can be consequently optimized over 6.

Why EA 7 The idea is that

po(Xi| Xi—1, A) = E(" acceptance probability from EA algorithm")



