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Quick review

I (Ω,F ,P), {Wt , t ∈ [0,T ]} is a SBM, Ft - standard filtration

I If a stochastic process (ht), t ∈ [0,T ] is carefully chosen, one
can define the Itô integral∫ T

0
ht dWt

I A homogeneous diffusion process (Xt) is characterized via

dXt = S(Xt)dt + σ(Xt)dWt X (0) = X0, t ∈ [0,T ]

I Weak solutions, existence, uniqueness, Girsanov formula.



What’s next

I Numerical methods for SDEs

I Ergodicity, LLN, CLTs

I Statistical inference for SDEs (high frequency data)

I Statistical inference for SDEs (discrete data)



Numerical methods for SDEs

A “discretization” of a stochastic process XT = {Xt , t ∈ [0,T ]} is a
process XT

δ , which “approximates” XT in some way.

The discretization Xδ has strong order of convergence γ if for any T > 0,

E (|Xδ(T )− X (T )|) ≤ cδγ for all δ < δ0

The discretization XT
δ has weak order of convergence β if for any

function g which is 2(β + 1) continuously differentiable, it is true that

|E (g(Xδ(T )))− E (g(X (T )))| ≤ cδβ for all δ < δ0



Euler scheme

dXt = S(t,Xt)dt + σ(t,Xt)dWt

Given a collection of time points 0 = t0 < t1 · · · < tn = T , the Euler
discretization is the process XE (·) such that

XE (ti+1) = XE (ti )+S(ti ,X
E (ti ))(ti+1−ti )+σ(ti ,X

E (ti ))(W(ti+1)−W(ti ))

For t ∈ [ti , ti+1), the process XE (t) can be defined in any way – typically
by linear interpolation.

The Euler scheme has strong order of convergence γ = 1/2 and weak
order β = 1.



Euler scheme

I Most popular approach to approximate a diffusion process

I Vast majority of research using SDE models actually use the
Euler approximation for the computing implementation

I Very easy to implement; very fast to simulate

I Simulate Z ∼ N (0, 1)
I Given XE (ti ), set

XE (ti+1) = XE (ti )+S(ti ,X
E (ti ))(ti+1−ti )+

√
ti+1 − tiσ(ti ,X

E (ti ))Z

I With a little “trick”, can achieve weak order of convergence
β = 1.



Milstein scheme

XM(ti+1) =

= XM(ti ) + S(ti ,X
M(ti ))(ti+1 − ti ) + σ(ti ,X

M(ti ))(W(ti+1) −W(ti ))

+
1

2
σ(ti ,X

M(ti ))σx(ti ,X
M(ti ))

(
(W(ti+1)−W(ti ))2 − (ti+1 − ti )

)

Milstein scheme has strong order of convergence γ = 1 and weak order of
convergence β = 1.

Note that for the OU process, σx ≡ 0 thus, the Euler and Milstein
schemes are identical.



Geometric BM

dXt = θ1Xtdt + θ2XtdWt

Euler scheme:

XE
i+1 = XE

i (1 + θ1∆) + θ2X
E
i

√
∆Z = XE

i (1 + θ1∆ + θ2

√
∆Z )

Milstein scheme

XM
i+1 = XM

i + θ1X
M
i ∆ + θ2X

M
i

√
∆Z +

1

2
θ2

2X
M
i (∆Z 2 −∆)

= XM
i

(
1 +

(
θ1 +

1

2
θ2

2(Z 2 − 1)

)
∆ + θ2

√
∆Z

)

Exact solution

Xt+∆ = Xt exp

{(
θ1 −

θ2
2

2

)
∆ + θ2

√
∆Z

}
= Xt

(
1 +

(
θ1 −

θ2
2

2

)
∆ + θ2

√
∆Z +

1

2
θ2

2∆Z 2 +O(∆)

)



Connection between Euler and Milstein schemes

dXt = S(t,Xt)dt + σ(t,Xt)dWt

Consider the Lamperti transformation Yt = F (Xt) where

F (x) =

∫ x

z

1

σ(t, u)
du

Note that

F ′(x) =
1

σ(t, x)
F ′′(x) = −σx(t, x)

σ(t, x)2

Use Itô formula to derive that

dYt =

(
S(t,Xt)

σ(t,Xt)
− 1

2
σx(t,Xt)

)
dt + dWt



The Euler scheme for the transformed process gives

∆Y = Yi+1 − Yi =

(
S(ti ,Xi )

σ(ti ,Xi )
− 1

2
σx(ti ,Xi )

)
∆t +

√
∆tZ

Write the Taylor expansion for the inverse transformation X = G (Y )

G (Y + ∆Y ) = G (Y ) + G ′(Y )∆Y +
1

2
G ′′(Y )∆Y 2 +O(∆Y 3)

where

G ′(y) =
1

F ′(G (y))
= σ(t,G (y))

G ′′(y) = G ′(y)σx(t,G (y)) = σ(t,G (y))σx(t,G (y))

This gives

G (Yi + ∆Y )− G (Yi ) = ( after some algebra)

=

(
S − 1

2
σxσ

)
∆ + σ

√
∆Z +

1

2
σσx∆Z 2 + . . .

= Milstein for the X process



CIR process

dXt = (θ1 − θ2Xt)dt + θ3

√
XtdWt

Milstein scheme (after some re-ordering):

Xi+1 = Xi +

(
(θ1 − θ2Xi )−

1

4
θ2

3

)
∆ + θ3

√
Xi

√
∆Z +

1

4
θ2

3∆Z 2

Transform using Y = F (X ) =
√
X . Itô formula gives

dYt =
1

2Yt

(
(θ1 − θ2Y

2
t )− 1

4
θ2

3

)
dt +

1

2
θ3dWt

for which the Euler scheme is

∆Y =
1

2Yi

(
(θ1 − θ2Y

2
i )− 1

4
θ2

3

)
∆ +

1

2
θ3

√
∆Z



CIR process

The inverse transformation is x = G (y) = y2. Then

G (Yi + ∆Y )− G (Yi ) = (Yi + ∆Y )2 − Y 2
i = (∆Y )2 + 2Yi∆Y

Replace ∆Y with the expression above, ignore high order terms, obtain

∆X = G (Yi + ∆Y )− G (Yi )

=

(
θ1 − θ2Xi −

1

4
θ2

3

)
∆ + θ3

√
Xi

√
∆Z +

1

4
θ2

3∆Z 2 + ...

(Milstein scheme for the X process . . . )



Predictor-corrector method

Tries to correct the fact that S(t,Xt) and σ(t,Xt) are not
constant on the interval [ti , ti+1).
Step 1: predictor:

X̃i+1 = Xi + S(ti ,Xi )∆t + σ(ti ,Xi )
√

∆tZ ;

Step 2: corrector:

Xi+1 = Xi+
(
αS̃(ti+1, X̃i+1) + (1− α)S̃(ti ,Xi )

)
∆t

+
(
ησ(ti+1, X̃i+1) + (1− η)σ(ti ,Xi )

)√
∆tZ

where
S̃(ti ,Xi ) = S(ti ,Xi )− ησ(ti ,Xi )σx(ti ,Xi )

This reduces to Euler method when α = η = 0.



Second Milstein scheme

Xi+1 = Xi +

(
S(ti , Xi )−

1

2
σ(ti , Xi )σx (ti , Xi )

)
∆t + σ(ti , Xi )

√
∆t Z

+
1

2
σ(ti , Xi )σx (ti , Xi )∆t Z2

+ ∆t3/2
(

1

2
S(ti , Xi )σx (ti , Xi ) +

1

2
Sx (ti , Xi )σ(ti , Xi ) +

1

4
σ(ti , Xi )

2
σxx (ti , Xi )

)
Z

+ ∆t2
(

1

2
S(ti , Xi )Sx (ti , Xi ) +

1

4
Sxx (ti , Xi )σ(ti , Xi )

2
)

It has weak order of convergence β = 2.



Local linearization methods

Euler method assumes that the drift and diffusion coefficients and
constant on small time intervals;
Assume that locally, the drift and diffusion coefficients are linear;
Ozaki method

dXt = b(Xt)dt + σdWt

Start with the corresponding deterministic system

dxt
dt

= b(xt)

which admits the following numerical approximation

xt+∆t = xt +
b(xt)

bx(xt)

(
ebx (xt)∆t − 1

)
Assuming that b(x) = Ktx on the interval [t, t + ∆t) gives

Xt+∆t = Xte
Kt∆t + σ

∫ t+∆t

t

eKt(t+∆t−u)dWu



The constant Kt is determined from the assumption

E (Xt+∆t | Xt) = Xte
Kt∆t = Xt +

b(Xt)

bx(Xt)
(exp{bx(Xt)∆t} − 1)

(solve for Kt)

This gives
L(Xt+∆t | Xt = x) = N(Ex ,Vx)

where

Ex = x +
b(x)

bx(x)
(exp{bx(x)∆t} − 1) Vx = σ2 e

2Kx∆t − 1

2Kx



Shoji-Ozaki method

dXt = b(t,Xt)dt + σ(Xt)dWt

Use the Lamperti transform to transform this SDE into

dXt = b(t,Xt)dt + σdWt

Use a “better” local approximation for b(t,Xt) using first and second
derivatives of b(·, ·). The corresponding discretization is given by

Xt+∆t = A(Xt)Xt + B(Xt)Z

where

A(Xs) = 1 +
b(s,Xs)

XsLs
(eLs∆s − 1) +

Ms

XsL2
s

(eLs∆s − 1− Ls∆s)

B(Xs) = σ

√
e2Ls∆s − 1

2Ls



Where

Ls = bx(s,Xs) Ms =
1

2
bxx(s,Xs) + bt(s,Xs);

Thus
L(Xt+∆t | Xt = x) = N(A(x)x ,B2(x))



Asymptotics (LLN and CLT)

I In this section we present a few results about quantities like∫ T

0

h(Xt)dt

∫ T

0

h(Xt)dWt

as T →∞.

I These are the continuous time versions of

n∑
i=1

h(Xi )

I When appropriately normalized, we expect the “usual” limits, if the
process XT is well-behaved.

I Why do we care ? Many estimators (based on high-freq. data) are
expressed using such quantities, thus, one can expect to establish
asymptotic properties of these estimators.



Preliminaries

dXt = S(Xt)dt + σ(Xt)dWt

Denote

τa = inf{t ≥ 0,Xt = a} τab = inf{t ≥ τa : Xt = b}

Definition The process Xt is called

I recurrent if P(τab <∞) = 1;

I positive recurrent if E (τab) <∞.

I null recurrent if E (τab) =∞.



Proposition. The process X is recurrent if and only if

V (x) =

∫ x

0

exp

{
−2

∫ y

0

S(u)

σ(u)2
du

}
dy → ±∞ (1)

as x → ±∞. The recurrent process is positive if and only if

G =

∫ ∞
−∞

σ(y)−2 exp

{
2

∫ y

0

S(u)

σ(u)2
du

}
dy <∞ (2)

The process is null recurrent if it is recurrent and

G =∞

If σ ≡ 1 then (2) implies (1). In this case, the condition

lim sup
|x|→∞

xS(x) < −1/2

is sufficient for (1) and (2).



Example

dXt = (θ1 − θ2Xt)dt + θ3dWt θ2, θ3 > 0

Verify that

G =

∫ ∞
−∞

σ(y)−2 exp

{
2

∫ y

0

S(u)

σ(u)2
du

}
dy <∞

It is also true that V (x)→ ±∞ as x → ±∞. (exercise)



Ergodicity

The process X is ergodic if there exists an (invariant) distribution F (·)
such that for any measurable h(·) such that E (h(ξ)) <∞, we have the
convergence

1

T

∫ T

0

h(Xt)dt → E (h(ξ)) as T →∞ a.s.

Here we assume that ξ ∼ F (·). From now on, we assume that

(RP) V (x)→ ±∞ as x → ±∞ and G <∞.

Theorem. (Law of Large Numbers) Let the conditions (RP) be fulfilled.
Then, the process X is ergodic with invariant density given by

f (x) =
1

Gσ(x)2
exp

{
2

∫ x

0

S(y)

σ(y)2
dy

}



Example

dXt = (θ1 − θ2Xt)dt + θ3dWt θ2, θ3 > 0

The invariant density is

f (x) ∝ exp

{
2

θ2
3

∫ x

0

(θ1 − θ2y) dy

}
= exp

{
2

θ2
3

(θ1x − θ2x
2/2)

}
= N

(
mean =

θ1

θ2
var =

θ2
3

2θ2

)



CLTs

Assume that h ∈M2
T , that is

∫ T

0
h(t, ω) dWt is well defined.

Theorem. Say there exists a (non-random) function ϕ(T ) such that

ϕ(T )2

∫ T

0

h(t, ω)2 dt
P−→ ρ2 <∞

Then,

ϕ(T )

∫ T

0

h(t, ω) dWt ⇒ N(0, ρ2)

(see Kutoyants, p.43)



CLT fo SDEs

dXt = S(Xt)dt + σ(Xt)dWt

Assume that the (RP) conditions hold, i.e., (Xt) is positive recurrent
and LLN holds

1

T

∫ T

0

g(Xt)
2 dt

P−→ E(g(ξ)2) ≡ ρ2

It follows that
1√
T

∫ T

0

g(Xt) dWt ⇒ N(0, ρ2)



More asymptotics

One can also formulate a CLT for the ordinary integral

1√
T

∫ T

0

h(Xt)dt

How ?

1√
T

∫ T

0

h(Xt)dt =
H(XT )− H(X0)

√
T

− 1√
T

∫ T

0

H ′(Xt)σ(Xt)dWt

where

H(x) =

∫ x

0

2

σ(y)2f (y)

∫ y

−∞
h(v)f (v)dvdy



Statistical inference based on high frequency data

Assume that XT = {Xt , t ∈ [0,T ]} is a diffusion process satisfying

dXt = S(θ,Xt)dt + σ(θ,Xt)dWt X (0) = X0 t ∈ [0,T ]

Assume that we observe an entire function {X (t) t ∈ [0,T ]}.

Goal: estimate θ.



Estimating the diffusion coefficient

Given {X (t) t ∈ [0,T ]}, σ(θ,Xt) can be estimated with high accuracy,
based on the quadratic variation. We have

n−1∑
j=0

(
X (uj+1 − X (uj)

)2

→
∫ t

0

σ(θ,Xs)2 ds

where 0 = u0 < u1 < · · · < un = t is a partition of [0, t].

It follows that the RHS (the limit) can be “approximated” with any level
of accuracy. Thus, the diffusion coefficient is determined.



Example: OU model

dXt = (θ1 − θ2Xt)dt + θ3dWt t ∈ [0,T ]

The quadratic variation of an observed path XT is∫ T

0

θ2
3ds = θ2

3T ≈
N∑
i=1

(X (ti )− X (ti−1))2

where 0 = t0 < t1 < · · · < tN = T is a fine partition of [0,T ].
The RHS above can be evaluated with any level of precision, and thus
one can estimate

θ̂2
3 =

1

T

N∑
i=1

(X (ti )− X (ti−1))2



A short simulation

θ1 = 1, θ2 = 2, θ3 = 1, T = 10,
The estimate is θ̂2

3 = (1/T )
∑

(Xi+1 − Xi )
2.

I 1, 000 discretization steps θ̂3 = 1.033
I 10, 000 discretization steps θ̂3 = 1.006



Estimating the drift coefficient

dXt = S(θ,Xt)dt + σ(Xt)dWt X (0) = X0 t ∈ [0,T ]

Assume that we observe an entire function XT = {X (t) t ∈ [0,T ]}.
(note that no parameters appear in the diffusion coefficient)

We work under the assumption that XT was generated by a true model,
say

dXt = S(5,Xt) + σ(Xt)dWt X (0) = X0 t ∈ [0,T ] ?

How do we estimate θ ?



Likelihood function

dXt = S(θ,Xt)dt + σ(Xt)dWt X (0) = X0 t ∈ [0,T ] (3)

dXt = S(θ∗,Xt)dt + σ(Xt)dWt X (0) = X0 t ∈ [0,T ] (4)

I The observed path XT = {Xt , t ∈ [0,T ]} is an element of
C([0,T ]) and is generated by model (4), θ∗ =truth.

I Model (3) induces a probability measure Qθ over C([0,T ]).

I Model (4) induces a probability measure Qθ∗ over C([0,T ]).

I The likelihood function is

dQθ

dQθ∗
(XT )



Recall the Girsanov formula

dQθ

dQθ∗
(XT ) = exp

{∫ T

0

S(θ,Xt)− S(θ∗,Xt)

σ(Xt)2
dXt

− 1

2

∫ T

0

S(θ,Xt)
2 − S(θ∗,Xt)

2

σ(Xt)2
dt
}

The Maximum Likelihood Estimate (MLE) is then

θ̂MLE = argmaxθ

dQθ

dQθ∗
(XT )



Example: OU model

dXt = (θ1 − θ2Xt)dt + θ3dWt

dXt = (θ∗1 − θ∗2Xt)dt + θ3dWt

Data XT = {Xt , t ∈ [0,T ]}. Here θ = (θ1, θ2), θ∗ = (θ∗1 , θ
∗
2 ) and θ3 is

assumed known (from the quadratic variation). Maximize the likelihood
function wrt θ. For this example, assume that θ2 is also known, θ2 = θ∗2 .

dQθ

dQθ∗
(XT ) = exp

{∫ T

0

S(θ,Xt)− S(θ∗,Xt)

σ(Xt)2
dXt

− 1

2

∫ T

0

S(θ,Xt)
2 − S(θ∗,Xt)

2

σ(Xt)2
dt
}

Note: σ(Xt) = θ3 and S(θ,Xt) = θ1 − θ2Xt .



Example

Ignore terms in θ∗, θ3, maximize∫ T

0

S(θ,Xt)dXt −
1

2

∫ T

0

S(θ,Xt)
2dt

Ignore terms in θ2 (assumed known here), maximize∫ T

0

θ1dXt −
1

2

(
tθ2

1 − 2

∫ T

0

θ1θ2Xtdt

)

Observe the quadratic, which is maximized at

θ̂MLE
1 =

XT − X0 + θ2

∫ T

0
Xtdt

T



Example: asymptotics

θ̂MLE
1 =

XT − X0 + θ2

∫ T

0
Xtdt

T

=
1

T

(∫ T

0

θ∗1 − θ∗2Xtdt + θ3

∫ T

0

dWt + θ2

∫ T

0

Xtdt

)

= θ∗1 +
θ3

T
WT

And thus √
T (θ̂MLE

1 − θ∗1 ) = θ3
WT√
T

= N(0, θ2
3)

Exercises :

I assume that θ1 is known and estimate θ2

I assume that both (θ1, θ2) are unknown



Statistical inference based on discrete data

Consider a diffusion process

dXt = S(θ,Xt)dt + σ(θ,Xt)dWt X (0) = X0 t ∈ [0,T ]

Assume that we observe

X = (X (t0),X (t1), . . . ,X (tn))

= (X0,X1, . . . ,Xn) where Xi = X (ti )

and 0 = t0 < t1 < · · · < tn = T .

Goal: estimate θ.



Likelihood inference

Notation [ · ] – “distribution of . . . ” (typically referring to the pdf)

Inference on θ is based on the likelihood function

Ln(θ) = [X | θ] = [X0,X1, . . . ,Xn | θ]

= [X0 | θ]
n∏

i=1

[Xi |Xi−1, θ] (Markov process)

where [Xi |Xi−1, θ] = probability density of Xi given Xi−1, θ and ti−1, ti .
We use the general notation

pθ(x |∆,Xt = x0) = Pθ(Xt+∆ ∈ dx |Xt = x0)

This quantity is called the transition density, and plays an extremely
important role.

Ln(θ) = pθ(X0)
n∏

i=1

pθ(Xi |∆i ,Xi−1)



Maximum likelihood estimation

I The MLE of θ is defined as

θ̂MLE = argmaxθLn(θ) or θ̂MLE = argmaxθ log(Ln(θ))

I Exact likelihood inference can only be done in a handful of cases,
where the transition density is known.

(recall)

Ln(θ) = pθ(X0)
n∏

i=1

pθ(Xi |∆i ,Xi−1)



OU model

dXt = (θ1 − θ2Xt)dt + θ3dWt X (0) = X0, t ∈ [0,T ] θ2, θ3 > 0

The transition density is

pθ(x |Xt = x0,∆) = φ(x ;mθ(x0,∆), vθ(x0,∆))

φ(x ;µ, γ2) is the Gaussian pdf with mean µ, variace γ2 evaluated at x .
Above,

mθ(x0,∆) =
θ1

θ2
+

(
x0 −

θ1

θ2

)
e−θ2∆

vθ(x0,∆) =
θ2

3(1− e−2θ2∆)

2θ2

I Likelihood inference will work well, without much trouble
I In certain cases, once can even get closed form expressions for θ̂MLE

(θ1 = 0)
I Asymptotic properties of θ̂MLE can also be obtained, typically one

requires n∆n →∞.



GBM model

dXt = θ1Xtdt + θ2XtdWt , X (0) = X0, t ∈ [0,T ] θ2 > 0

The transition distribution in this case is

pθ(x |Xt = x0,∆) ∼ log −Normal(mean = mθ(x0,∆), var = vθ(x0,∆))

where

mθ(x0,∆) = x0e
θ1∆

vθ(x0,∆) = x2
0 e

2θ1∆
(
eθ

2
2∆ − 1

)
CIR model

dXt = (θ1−θ2Xt)dt+θ3

√
XtdWt X (0) = X0, t ∈ [0,T ] θ1, θ2, θ3 > 0

The transition density in this case is a non-central χ2.



Pseudo-likelihood methods

I In most cases, the transition density is unknown and thus the
likelihood function is intractable.

I In all these cases, one has to resort to a way to approximate the
likelihood function.

I These pseudo-likelihood methods are of four types:

I methods based on numerical discretizations of the SDE
I methods based on a simulated likelihood
I closed form approximations (not included in these notes)
I methods based on exact sampling (EA) algorithms



Likelihood approximations based on the Euler scheme

dXt = S(θ,Xt)dt + σ(θ,Xt)dWt X (0) = X0 t ∈ [0,T ]

Consider the Euler approximation

Xt+∆ − Xt = S(θ,Xt)∆ + σ(θ,Xt)(Wt+∆ −Wt)

Observing that Wt+∆ −Wt is independent of Xt , it follos that

Xt+∆ |Xt , θ ∼ N
(
Xt + S(θ,Xt), ∆σ(θ,Xt)

2
)

The transition density is then approximated with

pθ(x |∆,X0 = x0) ≈ φ(x ;mθ(x0,∆), vθ(x0,∆))

where

mθ(x0,∆) = x0 + S(θ, x0)∆ vθ(x0,∆) = ∆σ(θ, x0)2

φ(x ;µ, γ2) is the Gaussian pdf with mean µ, variance γ2 evaluated at x .



The effect of ∆

Consider the OU process

dXt = (θ1 − θ2Xt)dt + θ3dWt X (0) = X0, t ∈ [0,T ] θ2, θ3 > 0

Recall that the exact transition density is Gaussian, with parameters

mθ(x0,∆) =
θ1

θ2
+

(
x0 −

θ1

θ2

)
e−θ2∆

vθ(x0,∆) =
θ2

3(1− e−2θ2∆)

2θ2

The Euler transition density is also Gaussian, with parameters

mθ(x0,∆) = x0(1− θ2∆) + θ1∆

vθ(x0,∆) = θ2
3∆

The two are “close”, only as ∆→ 0.



Simulated likelihood approximations

Focus again on the transition density and note that, informally

[X∆ |X0] =

∫
[X∆,X∆−δ |X0] dX∆−δ

=

∫
[X∆ |X∆−δ][X∆−δ |X0]dX∆−δ

= E
(
pθ(X∆ |X∆−δ, δ)

)
where the expectation is taken wrt X∆−δ (and X∆ is held fixed).
Idea :

I If δ is v. small, then pθ can be approximated with the Euler
transition density

I The expectation above can be estimated using a Monte Carlo
approach (sample many many X∆−δ . . . )



Importance sampling approach
Formally,

pθ(x | x0,∆) =

=

∫
pθ(z1, z2, . . . , zN | x0, δ)pθ(x | zN , δ)dz1dz2 . . . dzN

=

∫
pθ(z1 | x0, δ)pθ(z2 | z1, δ) . . . p(zN | zN−1, δ)pθ(x | zN , δ)

q(z1, z2, . . . , zN)
q(z1, z2, . . . , zN)dz1dz2 . . . dzN

where q(·) is some importance sampling density. The choice of q(·) is
very important !

I The main idea is to make q depend on x and x0 !!!!
I Elerian(2001) suggests a mutivariate Gaussian (or t) distribution
I Durham and Gallant (2002) propose Brownian Bridge samplers
I Stramer and Yan (2007) presents a good overview of this approach.



Approximations based on the exact sampling algorithms

EA (1,2 and 3) is a series of algorithms giving exact (no discretization
error) draws from a large class of diffusion processes.
See Beskos and Roberts (2005), Beskos et al. (2006), Beskos et al. (2008)

EA algorithms are rejection sampling algorithms !

Recall the likelihood function

Ln(θ) = pθ(X0)
n∏

i=1

pθ(Xi |∆i ,Xi−1)

Ideea: given Xi−1,Xi ,∆, θ, one can simulate a random variable Ψ such
that

E(Ψ) = pθ(Xi |Xi−1,∆)



Approximations based on the exact sampling algorithms

That is, each contribution to the likelihood function can be
estimated unbiasedly: simulate iid Ψ1, . . . ,ΨB and estimate

p̂θ(Xi |Xi−1,∆) =
1

B

B∑
j=1

Ψj

This leads to an unbiased estimate of the likelihood function,
which can be consequently optimized over θ.

Why EA ? The idea is that

pθ(Xi |Xi−1,∆) = E(”acceptance probability from EA algorithm”)


