Mail:
Dept. of Chemistry
Ohio State University
100 W. 18th Ave.
Columbus, OH 43210

Office:
412 CBEC

Email:
herbert@
chemistry.ohio-state.edu

Simultaneous benchmarking of ground- and excited-state properties with long-range-corrected density functional theory

M. A. Rohrdanz and J. M. Herbert
J. Chem. Phys. 129, 034107:1–8 (2008)

Abstract

We present benchmark calculations using several long-range-corrected (LRC) density functionals, in which Hartree-Fock exchange is incorporated asymptotically using a range-separated Coulomb operator, while local exchange is attenuated using an ansatz introduced by Iikura et al. [J. Chem. Phys. 115, 3540 (2001)]. We calculate ground-state atomization energies, reaction barriers, ionization energies, and electron affinities, each as a function of the range-separation parameter, μ. In addition, we calculation excitation energies of small- and medium-sized molecules, again as a function of μ, by applying the LRC to time-dependent density functional theory. Representative examples of both pure and hybrid density functionals are tested. On the basis of these results, there does not appear to be a single range-separation parameter that is reasonable for both ground-state properties and vertical excitation energies. Reasonable errors in atomization energies and barrier heights are achieved only at the expense of excessively high excitation energies, at least for the medium-sized molecules, whereas values of μ that afford reasonable excitation energies yield some of the largest errors for ground-state atomization energies and barrier heights in small molecules. Notably, this conclusion is obscured if the database of excitation energies includes only small molecules, as has been the case in previous benchmark studies of LRC functionals.

[DOI] [PDF]
[Supporting Information]
Last modified December 16, 2011. Proudly powered by Words. By which we mean, hand-written HTML.

This page best viewed with a browser