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1 Cumulants, extensivity, and the
connected formulation of the
contracted Schr̈odinger equation

JOHN M. HERBERT† and JOHN E. HARRIMAN‡

Department of Chemistry, The Ohio State University, Columbus, OH 43210
Department of Chemistry, University of Wisconsin, Madison, WI 53706

1.1 INTRODUCTION

In recent years, several groups1–16have explored the possibility of circumventing the
wave function and the electronic Schrödinger equation in quantum chemical calcula-
tions, instead solving the so-called contracted Schrödinger equation (CSE)16–19for the
two-electron reduced density matrix (2-RDM). Within the set ofN -representable20–24

RDMs, the CSE is an equivalent16,18 formulation of theN -electron, clamped-nuclei
Schr̈odinger equation, and couples the 2-, 3-, and 4-RDM elements via a linear equa-
tion that does not involve the electronic wave function explicitly. Direct calculation
of the 2-RDM, and thereby electronic properties, is accomplished using approximate
reconstruction functionals,7–9,15,25–27by means of which the 3- and 4-RDMs are
expressed in terms of the 2-RDM, leading to closed nonlinear equations for matrix
elements of the latter.

Much of the recent literature on RDM reconstruction functionals is couched
in terms of cumulant decompositions.13,27–38 Insofar as thep-RDM represents a
quantum-mechanical probability distribution forp-electron subsystems of anN -
electron super-system, the RDM cumulant formalism bears much similarity to the
cumulant formalism of classical statistical mechanics, as formalized long ago by
by Kubo.39 (Quantum mechanics introduces important differences, however, as we
shall discuss.) Within the cumulant formalism, thep-RDM is decomposed into “con-
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2 CONNECTED CONTRACTED SCHR ÖDINGER EQUATIONS

nected” and “unconnected” contributions, with the latter obtained in a known way
from the lower-orderq-RDMs, q < p. The connected part defines thepth-order
RDM cumulant (p-RDMC). In contrast to thep-RDM, thep-RDMC is anextensive
quantity, meaning that it is additively separable in the case of a composite system
composed of non-interacting subsystems. (Thep-RDM is multiplicatively separable
in such cases.28,32) The implication is that the RDMCs, and the connected equations
that they satisfy, behave correctly in the limit of non-interacting subsystemsby con-
struction, whereas a 2-RDM obtained by approximate solution of the CSE may fail
to preserve extensivity, or in other words may not besize-consistent.40–42

In this work, we derive—via explicit cancellation of unconnected terms in the
CSE—a pair of simultaneous, connected equations that together determine the 1-
and 2-RDMCs, which in turn determine the 2-RDM in a simple way. Because the
cancellation of unconnected terms is exact, we have in a sense done nothing; the
connected equations are equivalent to the CSE and, givenN -representability bound-
ary conditions, they are also equivalent to the electronic Schrödinger equation. The
important difference is that the connected equations for the cumulants automatically
yield a size-consistent 2-RDM, even when solved approximately, because every term
in these equations is manifestly extensive.

The derivation of the connected equations that is presented here is an expanded ver-
sion of the one we published previously.43 Our derivation utilizes a diagram technique
and a “first-quantized” formalism, in which the CSE is expressed in terms of position-
space kernels and Hilbert-space operators. Equations that couple the RDMCs have
also been published in second quantization, by Kutzelnigg and Mukherjee29–31and by
Nooijenet al.,44 but the derivation presented here has the conceptual advantage that
it explicitly demonstrates the cancellation of all unconnected terms, and furthermore
does not require the introduction of a basis set (as is tacitly assumed in second quanti-
zation). Our derivation thus proves that the final, connected equations are equivalent
to the CSE as well as to the ordinary electronic Schrödinger equation. Moreover,
our derivation clarifies several important differences between the connected and the
unconnected equations. As explained in Section 1.5.2, the connected CSE is in fact
a pair ofimplicit equations for the 1- and 2-RDMCs, whereas the original CSE is an
explicit equation for the RDMs. In addition, the electronic energy—an explicit pa-
rameter in the CSE—is absent from this equation’s connected analogues. Formally
speaking, the connected equations that we ultimately obtain are equivalent to the
“irreducible” CSEs introduced by Kutzelnigg and Mukherjee,29–31who derived con-
nected equations starting from the fermion anticommutation relations, in a manner
that does not rely upon the original CSE at all.

The remainder of this chapter is organized as follows. Section 1.2 introduces the
CSE as a special case of a more general class ofreduced eigenvalue equations, and
Section 1.3 formally defines the RDMCs. In the interest of motivating our derivation
of connected CSEs, we include in Section 1.3 a survey of the quantum-mechanical
cumulant formalism and the basic properties of the RDMCs, focusing especially
on their additive separability for non-interacting subsystems. In Section 1.4, we
develop a diagram technique to facilitate formal manipulation of terms that appear
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in the CSE. These diagrams also clarify the relationship between the CSE and older,
Green’s function methods in many-body theory, a connection that is examined in
Section 1.5. In that section we also present the main result of this work, a derivation
of the connected form of the CSE, along with a discussion of procedures for solving
the connected equations.

1.2 REDUCED EIGENVALUE EQUATIONS

Employing the abbreviated notation “j” ≡ xj for the composite space/spin coordi-
nates of thejth electron, let

Ŵ (1,...,N) =
N∑

j=1

ĥ(j) +
N∑

j<k

ĝ(j,k) (1.1)

be a symmetric operator on theN -electron Hilbert space. This implies thatĝ(j,k) =
ĝ(k,j), which reflects the indistinguishability of electrons. We wish to consider RDM
analogues of theN -electron eigenvalue equation

ŴΨ = wΨ . (1.2)

Let the eigenvaluew be fixed and assume thatΨ is nondegenerate and unit-
normalized. The restriction to nondegenerate eigenstates will be relaxed in Sec-
tion 1.5, but for now we consider only pure-state density matrices. TheN -electron
density matrix for the pure stateΨ is

DN (1,...,N ;1′,...,N ′)
def= Ψ(1,...,N) Ψ∗

(1′,...,N ′) . (1.3)

Forp < q ≤ N , we define apartial trace operator

trp+1,...,q
def=

∫
dxp+1 · · · dxq dx′p+1 · · · dx′q δ(xp+1 − x′p+1) · · · δ(xq − x′q) (1.4)

that generates thep-RDM from theq-RDM,

Dp =
[
q!(N − q)!
p!(N − p)!

]
trp+1,...,q Dq , (1.5)

and furthermore establishes the normalization

trDp ≡ tr1,...,pDp =
(
N

p

)
. (1.6)
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This is the convention that is most convenient for calculating expectation values,
since in this case〈Ψ|Ŵ |Ψ〉 = tr (Ŵ2D2), where

Ŵ2(1,2)
def= ĝ(1,2) +

ĥ(1) + ĥ(2)

N − 1
(1.7)

is the two-electronreduced operatorcorresponding tôW .45,46

Most of this chapter utilizes the first-quantized formulation of the RDMs intro-
duced above. However, some concepts related to separability and extensivity are
more easily discussion in second quantization, and the second-quantized formal-
ism is therefore employed in Section 1.3. Introducing an orthonormal spin orbital
basis|φj〉 = â†j |0〉, the elements of thep-RDM are expressed directly in second
quantization as

Di1,...,ip;j1,...,jp
=

1
p!
〈Ψ| â†i1 · · · â

†
ip
âjp

· · · âj1 |Ψ〉 . (1.8)

We denote the tensor of such elements asDp, which is the tensor representation of the
kernelDp in a basis ofp-electron direct products of the spin orbitals{|φj〉}.46 The
convention introduced in Eq. (1.8), that the number of indices implicitly specifies the
tensor rank, is followed wherever tensors are used in this chapter.

From theN -electron Hilbert-space eigenvalue equation, Eq. (1.2), follows a hier-
archy ofp-electronreducedeigenvalue equations,13,17,18,47for 1 ≤ p ≤ N − 2. The
pth equation of this hierarchy couplesDp,Dp+1, andDp+2, and can be expressed as

Ωp(1,...,p;1′,...,p′) ≡ 0 , (1.9)

in whichΩp is thep-electron kernel11

Ωp(1,...,p;1′,...,p′)
def=

[
p∑

j=1

ĥ(j) + (1− δp,1)
p∑

j<k

ĝ(j,k)− w

]
Dp

+ (p+ 1)trp+1

{[
ĥ(p+1) +

p∑
j=1

ĝ(j,p+1)

]
Dp+1

}

+
(
p+ 2

2

)
trp+1,p+2

{
ĝ(p+1,p+2)Dp+2

}
.

(1.10)

HereDn = Dn(1,...,n;1′,...,n′). The quantityΩp is called thepth-orderenergy density
matrix.

Following Kutzelnigg and Mukherjee,29–31 we refer to Eq. (1.9) thepth-order
CSE, or CSE(p) for brevity. [CSE(p) has also been called the(p, p + 2)-CSE.13]
Strictly speaking, the term “CSE” implies that̂W is an electronic Hamiltonian,
which is clearly the most important case, but the formal structure of Eqs. (1.9) and
(1.10) is the same for anŷW having the form specified in Eq. (1.1). In the case of
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spin eigenstates, for example, the reduced equations forŴ = Ŝ2 may be useful as
boundary conditions to enforce while solving CSE(p).3

The remarkable fact, first demonstrated by Nakatsuji,18 is that for eachp ≥ 2,
CSE(p) is equivalent (in a necessary and sufficient sense) to the original Hilbert-space
eigenvalue equation, Eq. (1.2), provided that CSE(p) is solved subject to boundary
conditions (N -representability conditions) appropriate for the(p+2)-RDM. CSE(p),
in other words, is a closed equation for the(p + 2)-RDM [which determines the
(p + 1)- andp-RDMs by partial trace], and has a uniqueN -representable solution
Dp+2 for each electronic state, including excited states. AbsentN -representability
constraints, however, this equation has many spurious solutions.48,49 CSE(2) is the
most tractable reduced equation that is still equivalent to the original Hilbert-space
equation, and ultimately it is CSE(2) that we wish to solve. Importantly, we do not
wish to solve CSE(2) for the 4-RDM, as this quantity is an eight-index tensor subject
to four-electronN -representability conditions. Rather, we wish to solve CSE(2) in
terms of the 2-RDM, via reconstruction of the 3- and 4-RDMs.

1.3 REDUCED DENSITY MATRIX CUMULANTS

In this section we introduce thep-RDMC, ∆p, which encapsulates the part of thep-
RDM that is additively separable in the limit of non-interacting subsystems. Although
the RDMCs have been discussed at length in the literature,27–38 this section provides
an introduction and summary of the most important points. In this section we use the
second-quantized formulation of the RDMs [see Eq. (1.8)], as separability properties
are most easily introduced using this formalism.

1.3.1 Additive versus multiplicative separability

Although the RDMs provide a compact and appealing description of electronic struc-
ture, this description is unsatisfactory in at least one respect, namely, expectation
values calculated from RDMs are notmanifestlyextensive, so do not necessarily
become additively separable in the limit of non-interacting subsystems. This basic
flaw ultimately arises because the RDMs are multiplicatively separable rather than
additively separable.28,32

To illustrate this point, consider a composite system composed of two non-
interacting subsystems, one withp electrons (subsystem A) and the other with
q = N − p electrons (subsystem B). This would be the case, for example, in the
limit that a diatomic molecule A–B is stretched to infinite bond distance. Because
subsystems A and B are non-interacting, there must exist disjoint setsBA andBB

of orthonormal spin orbitals, one set associated with each subsystem, such that the
composite system’s Hamiltonian matrix can be written as a direct sum

H = HA ⊕ HB , (1.11)
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whereHX (X ∈ {A,B}) consists of matrix elements between determinantsΦX

constructed exclusively from spin orbitals inBX. Thus〈ΦA|Ĥ|ΦB〉 = 0.

Let ΨX be an eigenfunction ofHX, normalized to unity. Then the wave function
for the composite system is

Ψ(1,...,N) =
1√
N !

P̂N

(
ΨA(1,...,p) ΨB(p+1,...,N)

)
, (1.12)

in which the operator̂PN antisymmetrizes the product functionΨAΨB by generat-
ing all N ! signed permutations of the coordinatesx1, . . . , xN . In Dirac notation,
|Ψ〉 = |ΨAΨB〉, and one says thatΨ is multiplicatively separablein the two subsys-
tems, recognizing that in quantum mechanics|Ψ〉 is separable only up to an overall
antisymmetrization (or a symmetrization, in the case of bosons) that renders all co-
ordinates equivalent. The separation of the wave function in Eq. (1.12) is equivalent,
in a necessary and sufficient sense, to the block structure of the Hamiltonian in
Eq. (1.11).32,50–52

Because subsystems A and B do not interact, it must be thatΨA consists of a
determinantal expansion in functionsΦA taken solely from the setBA, and similarly
ΨB uses only those spin orbitals inBB. It follows that ΨA andΨB are strongly
orthogonal.53 Two antisymmetric functionsf(x1, . . . , xp) andg(y1, . . . , yq) are said
to bestrongly orthogonalif∫

dz f∗(x1, . . . , xp−1, z) g(y1, . . . , yq−1, z) ≡ 0 . (1.13)

Note that the integral above is nominally a function ofp+q−2 coordinates. Further-
more, because the functions of interest are antisymmetric, it does not matter which
coordinates are chosen for the dummy integration variablez.

Consider the RDMs obtained from the separable wave function in Eq. (1.12). Since
ΨA andΨB are strongly orthogonal, it follows from Eq. (1.8) that〈ΨAΨB|â

†
i âj |ΨAΨB〉 =

0 unlessφi andφj are associated with the same subsystem. Thus the 1-RDM separates
into subsystem 1-RDMs,

D1(x; x′) = DA
1 (x; x′) +DB

1 (x; x′) . (1.14)

The casep = 1 is the unique example for whichDp is additively separable. This is
equivalent to the statement thatD1 equals its own cumulant (see Section 1.3.2).

To obtainD2, we need to evaluate matrix elements〈ΨAΨB|â
†
i â

†
j âl âk|ΨAΨB〉.

For reasons that will become clear, let us introduce the quantity

∆ij;kl
def= Dij;kl − 1

2

(
Di;k Dj;l − Di;l Dj;k

)
. (1.15)

The interesting scenario is when two of the four indices in this equation refer to
subsystem A and the other two refer to subsystem B. Suppose, for definiteness, that
φi, φj ∈ BA andφk, φl ∈ BB. Then the strong orthogonality ofΨA andΨB implies
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that Dij;kl = 0. More interesting is the case whenφi, φk ∈ BA andφj , φl ∈ BB.
In this caseDij;kl is generally nonzero, henceD2 mixes indices from different non-
interacting subsystems, and thus fails to be additively separable. What about∆ij;kl?
According to Eq. (1.14),Di;l = 0 sincei and l refer to different subsystems, and
therefore∆ij;kl = Dij;kl − 1

2 Di;k Dj;l. The 2-RDM part of this expression can be
simplified using the anticommutation relations, noting thati 6= l andj 6= k. The
result is

Dij;kl ≡ 1
2 〈ΨAΨB|â

†
i âk â

†
j âl|ΨAΨB〉

= 1
2 〈ΨA|â

†
i âk|ΨA〉 〈ΨB|â

†
j âl|ΨB〉 ,

(1.16)

which is a product of 1-RDM elements from different subsystems. It follows that
∆ij;kl = 0 for the case in question, and since∆ij;kl as defined in Eq. (1.15) is
antisymmetric, this quantity must in fact be zero unless all four indices refer to the
same subsystem. Thus, unlikeDij;kl, the quantity∆ij;kl is additively separable in
the two non-interacting subsystems A and B,

∆2(x1, x2; x′1, x
′
2) = ∆A

2(x1, x2; x′1, x
′
2) + ∆B

2(x1, x2; x′1, x
′
2) . (1.17)

∆2 is precisely the 2-RDMC, and from Eq. (1.15) we note that expectation values
for the compositeA+B system can be computed using eitherD2 alone, orD1 ≡ ∆1

together with∆2. From the standpoint ofexactquantum mechanics, either method
yields exactly the same expectation value and, in particular, both methods respect the
extensivity of the electronic energy. IfD2 is calculated by means ofapproximate
quantum mechanics, however, one cannot generally expect that extensivity will be
preserved, since exchange terms mingle the coordinates on different subsystems, and
exact cancellation cannot be anticipated unless built in from the start. Methods that
respect this separability by construction are said to be size-consistent.40–42

In careful usage, extensivity is actually a more general concept than size con-
sistency.42 The former term implies a complete absence of unconnected terms in
one’s working equations, while size-consistency merely indicates that the energy
is additively separable for non-interacting subsystems, a necessary consequence of
extensivity. Methods that violate extensivity will yield per-particle correlation en-
ergies that tend to zero in the limit of an infinite system.42 Hence the conventional
wisdom is that use of manifestly extensive methods (coupled-cluster theory being
the canonical example) is crucial for “large” systems containing sub-units so distant
as to be essentially non-interacting. It is not entirely clear how large one can go
before this becomes a problem, though the effective range of the spin-traced 1-RDM
may provide an indication. Computational studies suggest that for linear alkanes
(i.e., one-dimensional insulators) the effective range|r − r ′| over whichD1(r ; r ′) is
non-negligible is about 15–20 carbon atoms,54 depending on drop tolerances, and
we may judge that for larger systems extensivity violations may have important
consequences. Lack of size-consistency is also a concern when breaking bonds, dis-
sociating clusters, or comparing correlation energies between systems with different
numbers of electrons.
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In the present context, the way to insure extensivity is to reformulate the CSE so
that the RDMCs and not the RDMs are the basic variables. One can always recover
the RDMs from the cumulants, but only the cumulants satisfy connected equations
that do not admit the possibility of mixing non-interacting subsystems. Connected
equations are derived in Section 1.5. Before introducing that material, we first provide
a general formulation of thep-RDMC for arbitraryp.

1.3.2 Cumulant formalism

Following Ziesche,35,55 in order to develop the theory of cumulants for noncom-
muting creation and annihilation operators (as opposed to classical variables), we
introduce field operatorsf(x) andf†(x) satisfying the anticommutation relations for
a Grassmann field, [

f(x), f(x′)
]
+

= 0 (1.18a)[
f(x), f†(x′)

]
+

= 0 . (1.18b)

These field operators are sometimes termedprobe variablesbecause they function as
dummy placeholders in the formal differentiations that follow but do not appear in
the final expressions for the cumulants, which are obtained formally in the limit that
f, f† → 0.

First, we define a functionalG[f, f†] whose derivatives generate the RDMs. In
terms of the usual field operatorŝψ(x) andψ̂†(x′),

ψ̂(x) =
∑

k

φk(x) âk , (1.19)

the RDM generating functional is55

G[f, f†] =
〈

Ψ
∣∣∣∣ N̂ exp

(∫
dx

[
f(x) ψ̂†(x) + f†(x) ψ̂(x)

])∣∣∣∣ Ψ
〉
. (1.20)

This is an analogue of the classical moments-generating functional discussed by
Kubo.39 Upon expanding the exponential as a power series, the operatorN̂ acts to
place each term in so-called normal order, in which all creation operatorsψ̂† are to
the left of all annihilation operatorŝψ. By virtue of this ordering (andonlyby virtue
of this ordering),

G[f, f†] =
〈

exp
(∫

dx f(x) ψ̂†(x)
)

exp
(∫

dx′ f†(x′) ψ̂(x′)
)〉

= 1 + F [f, f†] ,
(1.21)
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where〈· · · 〉 = 〈Ψ| · · · |Ψ〉 and

F [f, f†] =
∞∑

p=1

1
p!2

〈∫
dx1 · · · dxp dx′1 · · · dx′p f(x1) ψ̂

†(x1) · · · f(xp) ψ̂
†(xp)

× f†(x′p) ψ̂(x′p) · · · f†(x′1) ψ̂(x′1)

〉
.

(1.22)

The expectation value in Eq. (1.21) eliminates terms that do not conserve particle
number, hence the two exponentials in Eq. (1.21) yield only a single summation in
Eq. (1.22). The factor of1/p!2 insures that trDp =

(
N
p

)
.

Formally, the logarithmlnG provides a generating functional for the cumulants.
That is, a formal expression for thep-RDMC is

∆p(1,...,p;1′,...,p′) =
1
p!

(
lim

f,f†→0

δ2p

δf (1) δf†(1′) · · · δf (p) δf†(p′)
lnG

)
. (1.23)

(The normalization of the cumulants is more complicated that that of the RDMs, but
some specific examples are given in Section 1.3.3.) Although ostensibly tedious,
the above definition of∆p is operationally easy to use. In a formal expansion of
lnG = ln(1 + F), the functional derivatives in Eq. (1.23) serve to select all terms
consisting of exactlyp creation operatorŝψ† and exactlyp annihilation operatorŝψ,
while at the same time eliminating the integrals and replacing the dummy integration
variables with particle coordinatesx1, . . . , xp andx′1, . . . , x

′
p.

As introduced above, the functionallnG[f, f†]generates the cumulants as position-
space kernels. As an alternative, Mazziotti13,33has introduced a generating functional
for the expansion coefficients∆i1,...,ip;j,...,jp

of ∆p in a basis{φk} of orthonormal
spin orbitals. Mazziotti’s formalism can be obtained from the expressions above by
expanding the Grassmann fieldsf andf† in this basis,

f(x) =
∑

k

Jk φk(x) . (1.24)

TheJk are the probe variables in this formulation (which Mazziotti33 terms “Schwinger
probes”). We mention also Kutzelnigg and Mukherjee’s treatment of RDMCs,28

which utilizes an antisymmetrized logarithm function, along with some special cre-
ation and annihilation operators, to generate the elements∆i1,...,ip;j1,...,jp

.

Using either Eq. (1.23) or Mazziotti’s adaptation of it, one may derive exact
expression for the RDMs in terms of their cumulants. The first few such expressions
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are

D1 = ∆1 , (1.25a)

D2 = ∆∧2
1 + ∆2 , (1.25b)

D3 = ∆∧3
1 + 3 ∆2 ∧∆1 + ∆3 , (1.25c)

D4 = ∆∧4
1 + 6 ∆2 ∧∆∧2

1 + 3 ∆∧2
2 + 4 ∆3 ∧∆1 + ∆4 , (1.25d)

D5 = ∆∧5
1 + 10 ∆2 ∧∆∧3

1 + 10 ∆3 ∧∆∧2
1 + 5 ∆4 ∧∆1 (1.25e)

+ 15 ∆1 ∧∆∧2
2 + 10 ∆2 ∧∆3 .

Here “∧” denotes an antisymmetrized product (Grassmann product47,56)(
∆p∧∆q

)
(1,...,p+q;1′,...,(p+q)′)

=
1

(p+ q)!2
P̂p+q P̂′p+q

[
∆p(1,...,p;1′,...,p′)

×∆q(p+1,...,p+q;(p+1)′,...,(p+q)′)

]
, (1.26)

where P̂′p+q and P̂p+q indicate sums over signed permutations of the primed and
unprimed coordinates, respectively [cf. Eq. (1.12)]. “Wedge” exponents appearing
in Eqs. (1.25) are defined according to

∆∧n
p

def= ∆p∧∆p∧ · · · ∧∆p︸ ︷︷ ︸
n factors

(1.27)

and should not be confused with matrix products such as∆n
1 , the matrix product of

n copies of∆1.

The decomposition ofD2 in Eq. (1.25b) is sometimes called the Levy-Lieb parti-
tion of the 2-RDM.57,58 Formulas essentially equivalent to Eqs. (1.25) were known
long ago, in the context of time-dependent Green’s functions,59–61but this formalism
was rediscovered in the present context by Mazziotti.33

Implicit in Eqs. (1.25) are definitions of the cumulants in terms of the RDMs, for
example,

∆2 = D2 −D1 ∧D1 , (1.28a)

∆3 = D3 − 2D∧3
1 − 3D1 ∧D2 , (1.28b)

∆4 = D4 + 13D1 ∧D3 + 6D∧2
1 ∧D2 − 4D1 ∧D3 . (1.28c)

These equationsdefinethe RDMCs in terms of the RDMs, and do not depend upon
the validity of perturbative expansions of the RDMs, although insofar as perturbation
theory is applicable,∆p is precisely the sum of connected diagrams in the expansion
of Dp.

The cumulant formulas in Eqs. (1.28) can be generated easily using a convenient
mnemonic introduced by Harris.62 To obtain the cumulant decomposition ofDp+1
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from that ofDp, one sums—for each term in theDp—all possible ways in which the
particle number can be increased by one. Particle number can be increased either by
replacing∆n with ∆n+1, or by incorporating an additional Grassmann product with
∆1. As an example, consider generatingD3 [Eq. (1.25c)] fromD2 [Eq. (1.25b)].
Given the first term in Eq. (1.25b),∆1 ∧ ∆1, one can increase particle number in
three ways, and from these one obtains∆2 ∧∆1 + ∆1 ∧∆2 + ∆1 ∧∆1 ∧∆1. The
second term in Eq. (1.25b),∆2, affords∆3 + ∆2 ∧ ∆1 upon increase in particle
number. Together, these terms afford Eq. (1.25c).

This mnemonic emphasizes the combinatorial nature of the cumulants. For exam-
ple, the term3D2 ∧D1 in D3 carries a coefficient that reflects the fact that there are
three ways to obtain a three-particle distribution from one- and two-particle distribu-
tions, namely,D1 ∧D1 ∧D1,D1 ∧D2, andD2 ∧D1. In contrast, the termD∧3

1 in
D3 has a coefficient of unity because there is only one way to combine one-particle
distributions.

The combinatorial point of view is reminiscent of the classical cumulant formalism
developed by Kubo,39 and indeed the structure of Eqs. (1.25) and (1.28) is essentially
the same as the equations that define the classical cumulants, up to the use of an
antisymmetrized product in the present context. In further analogy to the classical
cumulants, thep-RDMC is identically zero if simultaneousp-electron correlations
are negligible. In that case, thep-RDM is precisely an antisymmetrized product of
lower-order RDMs.

1.3.3 Extensivity

For a multiplicatively-separable wave function like the one in Eq. (1.12), the matrix
elements of∆p vanish unless all indices correspond to the same subsystem.28,32

Using the notation introduced previously, this means that∆j1,...,jp;k1,...,kp
= 0

unlessφm ∈ BA for each indexm or elseφm ∈ BB for eachm. This is the
essential difference that allows for an extensive formulation of quantum mechanics
in terms of the RDMCs but not in terms of the RDMs. From the standpoint of
extensivity, the basic problem with the RDMs is the manner in which the exchange
terms in their unconnected parts mix the coordinates corresponding to non-interacting
subsystems. Such exchange terms are identified by the presence of a Grassmann
product. Examining the cumulant decompositions of the RDMs in Eqs. (1.25),
it is evident that any term containing a Grassmann product scales asymptotically
(N →∞) like Nn, for somen > 1. For example, the Grassmann product

[∆1 ∧∆1](1,2;1′,2′) = 1
2

[
∆1(1;1′) ∆1(2;2′)−∆1(1;2′) ∆1(2;1′)

]
(1.29)

appearing as part ofD2 has a trace given by

tr
(
∆1 ∧∆1

)
= N2 − tr (∆2

1) . (1.30)

AsN →∞, tr (∆1 ∧∆1) ∼ N2. One says that∆1 ∧∆1 scales likeN2.
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One convenient consequence of binomial normalization for the RDMs [Eq. (1.6)]
is that when this convention is followed, extensive quantities such as∆p have traces
proportional toN , while non-extensive quantities possess traces that scale as some
higher power ofN (trDp ∼ Np, for example). Let us define a set of quantities

τk
def=

tr
(
∆k

1

)
N

(1.31)

that satisfy the property

1 = τ1 ≥ τ2 ≥ τ3 ≥ · · · ≥ 0 , (1.32)

which follows from the fact that all eigenvalues of∆1 lie in the interval[0, 1].
Equation (1.32) is valid even for extended systems, whereN →∞. In fact, without
loss of generality one may assume thatτk > 0 for eachk, since theN -electron wave
function can always be expanded in terms of natural spin orbitals having strictly
positive occupation numbers.24 The limiting case in whichτk = 1 for all k is
obtained if and only if the two-electron interaction̂g ≡ 0. In this case, the wave
function is a single determine,D1 is idempotent, and45

Dp = D∧p
1 (single determinant). (1.33)

This form ofDp implies that∆p ≡ 0 for eachp > 1, a reflection of the fact that
an independent-electron wave function consists of one-electron subsystems coupled
only by exchange.

Traces of the RDMCs can be expressed conveniently in terms of theτk. For
example,

tr ∆2 = 1
2N(τ2 − 1) (1.34)

and
tr ∆3 = 1

3N (1− 3τ2 + 2τ3) . (1.35)

Given the inequalities in Eq. (1.32), these trace expressions make it clear that tr∆2 ∼
N and tr∆3 ∼ N , even asN → ∞, and furthermore they demonstrate that the
normalization of thep-RDMC depends upon the system in question. (In particular,
the traces depend upon how farD1 deviates from idempotency.) A few absolute
bounds can be derived, such as

− 1
2N ≤ tr ∆2 ≤ 0 . (1.36)

These inequalities do not exclude the possibility that∆2 has both positive and negative
eigenvalues, which is generally the case. Traces of∆2 and∆3 have been examined
for some model problems by Kutzelnigg and Mukherjee.28
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Partial traces of cumulants are also extensive, unlike those of the RDMs them-
selves. Starting from Eq. (1.25c), for example, one may show that

tr3 ∆3 = − 2
3∆2 + 1

6

[
P̂′2

(
∆1∆2

)
+ P̂2

(
∆2∆1

)]
, (1.37)

where the matrix products are defined, for example, as

(∆1∆2)i1,i2;j1,j2 =
∑

k

∆i1;k
∆i2,k;j1,j2

. (1.38)

One may verify directly that tr(∆1∆2) = N(τ3 − τ2)/2 and therefore tr(∆1∆2) ∼
N .

A word about notation is in order, regarding Eq. (1.37). Previously [cf. Eq. (1.26)],
P̂′n andP̂n were defined to act upon primed and unprimed coordinates ofn-electron
kernels. Where tensors are involved, such as in Eq. (1.37),P̂′n represents signed
permutations over the row indices,i.e., the first set of indices) and̂Pn denotes signed
permutations over column indices. Thus, for example, whenP̂′2 acts on∆1∆2

in Eq. (1.37), this operation antisymmetrizes the indicesi1 and i2 appearing in
Eq. (1.38). The column indices (j1 andj2) of this product are already antisymmetric,
having inherited this property from∆2.

As noted above, tr∆n ∼ N when binomial normalization is used for the RDMs,
while non-extensive terms have traces that scale as higher powers ofN . This
is certainly a convenient means to recognize terms that are not extensive, but in
some sense this trick overlooks the physical picture behind extensivity, which does
not depend upon any particular normalization convention. Similarly, insofar as
perturbation theory is applicable, the fact that the RDMCs scale asN can be viewed as
a consequence of the linked-cluster theorem,63,64but the deeper concept of extensivity
does not depend upon the validity of perturbation theory. Mathematically, extensivity
is a statement about connectivity in the sense of matrix products, as in Eq. (1.38).
In Section 1.5, we introduce a nonperturbative diagram notation that emphasizes
connectivity and extensivity, and demonstrates thatDn (as opposed to∆n) contains
unconnected products, up to and including the product ofn unconnected one-electron
diagrams.

Thus far we have discussed connectivity and extensivity in terms of the RDMs and
RDMCs, but our ultimate goal is to apply these concepts to CSE(2). Replacing the
RDMs in Ω2 with their cumulant decompositions elucidates the unconnected terms
in CSE(2). Consider, as an example, the following term inΩ2(1,2;1′,2′):

ĥ(1)D2(1,2;1′,2′)

= ĥ(1)

[
∆2(1,2;1′,2′) + 1

2∆1(1;1′) ∆1(2;2′)− 1
2∆1(1;2′) ∆1(2;1′)

]
. (1.39)

[This is the first term on the right side of Eq. (1.10), for the casep = 2.] The first
term on the right in Eq. (1.39) is obviously connected, and we may deduce that the
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second term is unconnected because its trace equalsN2〈ĥ〉/2. The third term, which
constitutes atransvection27,62of ∆1 with itself, is actually connected, but differs from
the second term by a coordinate permutation. If the second term is removed from
CSE(2) then the third term ought to be removed as well, for otherwise we destroy
the antisymmetry ofΩ2. This example illustrates the complexity of formulating an
extensive version of CSE(2). It is not enough to eliminate unconnected terms; on
must eliminate their exchange counterparts as well.

1.3.4 Independence of the cumulants

Before deriving equations that determine the RDMCs, we ought to clarify precisely
which are the RDMCs of interest. It is clear, from Eqs. (1.25a) and (1.25b), that∆1

and∆2 contain the same information asD2 and can therefore be used to calculate
expectation values〈Ŵ 〉, whereŴ is any symmetric two-electron operator of the
form given in Eq. (1.1). Whereas the 2-RDM contains all of the information available
from the 1-RDM, and affords the value of〈Ŵ 〉 with no additional information, the
2-RDMC in general does not determine the 1-RDM,43,65so both∆1 and∆2 must be
determined independently in order to calculate〈Ŵ 〉. More generally,∆1, . . . ,∆n are
all independent quantities, whereas the RDMsD1, . . . , Dn are related by the partial
trace operation. Then-RDM determines all of the lower-order RDMs and lower-
order RDMCs, but∆n alone is insufficient to specifyanyof the other cumulants, or
any RDMs at all (save for the trivialn = 1 case).

A simple proof that∆1 and∆2 are independent proceeds as follows. First, observe
that

tr2 ∆2 = 1
2

(
∆2

1 −∆1

)
, (1.40)

from which it follows that∆1 and tr2 ∆2 share a common set of eigenvectors, namely,
the natural spin orbitals. Let{nk} be the natural occupation numbers (eigenvalues
of ∆1), and for eachnk, let ek be the eigenvalue of tr2 ∆2 associated with the same
eigenvector. These two eigenvalues are related according to

ek = 1
2 nk(nk − 1) , (1.41)

or in other words
nk = 1

2

(
1±

√
1 + 8 ek

)
. (1.42)

Thusnk is a double-valued function ofek, as depicted in Fig. 1.1. Strictly speaking,
then, the eigenvalues of tr2 ∆2 do not determine those of∆1, and consequently∆1

cannot be determined from∆2 alone.

That being said, in reality each eigenvalue of∆1 will likely be near either 0 or
1, except in certain open-shell systems with significant multideterminant character.
Excluding such cases, it may be possible that, given∆2 (and thus theek), one can
choose, for eachk, one of the two solutionsnk in Eq. (1.42), based upon whether
the kth natural spin orbital is expected to be strongly or weakly occupied. (This
could be determined by its expansion in Hartree-Fock orbitals.) Suppose that either
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Fig. 1.1 An eigenvaluenk of ∆1 as a (double-valued) function of the corresponding eigen-
valueek of tr2 ∆2.

nk = ε or nk = 1 − ε, whereε is small. Upon calculatingek corresponding to
each, and substituting this back into Eq. (1.42), one obtains in either case a choice
between solutionsnk = 1− ε+O(ε2) andnk = ε+O(ε2). So long asε2 � ε, and
assuming that one can ascertain which natural spin orbitals are strongly occupied,
∆2 effectively does determine∆1. In such cases,〈Ŵ 〉 can be determined from∆2

alone.

1.4 DIAGRAMMATIC REPRESENTATIONS

As outlined above, our task is to eliminate from CSE(2) both the unconnected terms
and their exchange counterparts. These are readily identified using diagrammatic
representations ofΩ1 andΩ2 that we introduce in this section. The diagrams are not
strictly necessary, but are quite convenient and (in the authors’ opinion) easier to check
for mistakes than lengthy algebraic formulas. In addition, certain reconstruction
functionals for the 3- and 4-RDMs have been derived using diagrammatic many-
body perturbation theory,7,8,11and a diagrammatic representation for CSE(2) clarifies
the role of this equation in improving approximate reconstruction functionals (see
Section 1.5.3). Our diagram conventions are conceived with this purpose in mind,
and are unrelated to the CSE diagrams introduced by Mukherjee and Kutzelnigg.30,31

The basic diagram elements representingD1 ≡ ∆1, ĥ ĝ and∆p (for p ≥ 2)
are illustrated in Fig. 1.2. Recall that CSE(p) is given by the equationΩp ≡ 0,
where theΩp is thep-electron kernel defined in Eq. (1.10). The terms in this kernel

consist ofĥ and ĝ acting on RDMs, followed in some cases by a trace over one or
two coordinate indices. Upon replacing the RDMs with their cumulant expansions
[Eqs. (1.28)], we construct a diagrammatic representation of each term by connecting
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1′

1

(a) (d)(b) (c)

1 2 1

2′

2

1′

1

p′

p

Fig. 1.2 Basic diagram elements used in this work: (a)D1(1;1′); (b) ĝ(1,2); (c) ĥ(1); and (d)
∆p(1,...,p;1′,...,p′), for p ≥ 2.

operator diagrams to cumulant diagrams, at the coordinates on which the operators
act. For instance,

1′ 3′

32

2′

1

= ĝ(2,3) ∆1(1;2′) ∆2(2,3;1′,3′) (1.43)

is obtained by attaching âg diagram at the lower endpoints of a∆2(2,3;1′,3′) diagram,
since according to Fig. 1.2(d) these endpoints represent coordinatesx2 andx3. A
factor of∆1(1;2′) is present, as indicated, but becauseĝ(2,3) operates on neitherx1

nor x′2, this part of the diagram is not connected to the rest. Inspection of either the
diagram of the algebra in Eq. (1.43) reveals that this term is unconnected.

A trace over coordinatexn is indicated by connecting the line labeledn to the line
labeledn′. The labelsn andn′ are then deleted, since these coordinates become a
single dummy integration variable. Diagrammatically, this creates a loop in the case
that bothxn andx′n are arguments of the same cumulant. As an example, we apply
tr3 to Eq. (1.43) to obtain

1′
2′

1
2

= ∆1(1;2′) tr3
{
ĝ(2,3) ∆2(2,3;1′,3′)

}
. (1.44)

If, on the other hand,xn andx′n are arguments of different cumulants, then a trace
overxn serves to connect two cumulant diagrams:

1′2′

1 2

= ∆1(1;2′) tr3,4

{
ĝ(3,4) ∆1(2;3′) ∆2(3,4;1′,4′)

}
. (1.45)

Note carefully the subtle difference between this diagram and the previous one, at
the position labeled “2”. These two examples illustrate thatinternaloperator vertices
(those not appearing at the endpoint of a cumulant line) are each associated with a
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coordinate integration, whereas a vertex that appears at the endpoint of a cumulant
line does not imply an integration. Thus, in Eq. (1.45), both ends of theĝ diagram are
internal vertices, reflecting the fact that both arguments ofĝ are integration variables.
In Eq. (1.44), only one argument ofĝ is an integration variable and thus theĝ diagram
has one internal and one external vertex, the latter associated withx2.

In close analogy to diagrammatic perturbation theory (although our diagrams are
not perturbative), we have transformed the problem of generating terms inΩp into a
problem of generating topologically distinct diagrams, which makes it relatively easy
to incorporate symmetries such asĝ(j,k) = ĝ(k,j) that reduce the number of terms in
Ωp. The nontrivial terms inΩ1 andΩ2 that involve only the one-electron cumulant
are

6 tr3
{
ĥ(3) ∆∧3

1 (1,2,3;1′,2′,3′)

}
= P̂′2


1′ 2′

1 2

− P̂2

1′ 2′

1 2

 , (1.46)

6 tr3
{[
ĝ(1,3) + ĝ(2,3)

]
∆∧3

1 (1,2,3;1′,2′,3′)

}
= P̂2 P̂′2


1′ 2′

1 2

−
1′ 2′

1

2 −
1′ 2′

1

2

 ,
(1.47)

6 tr2,3

{
ĝ(2,3) ∆∧3

1 (1,2,3;1′,2′,3′)

}
= 2


1′

1

−
1′

1

 + ( − )
1′

1

, (1.48)

and

24 tr3,4

{
ĝ(3,4) ∆∧4

1 (1,2,3,4;1′,2′,3′,4′)

}
= P̂2

2
1′ 2′

1 2

+ ( − )
1′ 2′

1 2

+ 2 P̂′2

1′ 2′

1 2

−
1′ 2′

1 2

 .
(1.49)

These expressions are highly compact compared to brute-force expansions of the
Grassmann products∆∧3

1 and∆∧4
1 . For example,∆∧4

1 ostensibly contains4!2 = 576
terms, as compared to the 14 terms that appear in Eq. (1.49) if one writes out all
permutations.

Certain diagrams in the expressions above have no coordinate dependence, and
are related to the eigenvaluew in Eq. (1.2). Let us decomposew = w1 + w2 into a
one-electron contribution

w1 = N〈ĥ〉 (1.50)

and a two-electron contribution

w2 =
(
N

2

)
〈ĝ〉 . (1.51)
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with 〈ĥ〉 = tr (ĥD1) and〈ĝ〉 = tr (ĝ D2). These equations are expressed diagram-
matically as

w1 = tr
{
ĥ(1) ∆1(1;1′)

}
= (1.52)

and
w2 = tr

{
ĝ(1,2)D2(1,2;1′,2′)

}
= 1

2 − 1
2 + . (1.53)

Whenw is the electronic energy, the first two terms on the right side of Eq. (1.53) are
the Coulomb and exchange energies, respectively, while the third term defines what
we term thecumulant correlation energy. The cumulant decomposition ofD2 thus
provides universal, extensive definitions for the exchange and correlation energies,
and these definitions do not depend upon any independent-electron (Hartree-Fock
or Kohn-Sham) reference state. According to this definition, the (exact) Coulomb
and exchange energies are available from the (exact) 1-RDM, while the cumulant
correlation energy requires the 2-RDM.

For expressions involving higher-order cumulants, one can utilize the antisymme-
try of ∆p to reduce the number of terms. For example, the identity

1′ 2′

1

2

= −

1′ 2′

1 2

(1.54)

is obtained by exchanging the lines entering the top of∆2, which corresponds to a
permutation of the primed coordinates in∆2. After gaining some facility with the
diagrams, one can write down the remaining terms inΩ2:

9 tr3
{
ĥ(3)

(
∆1 ∧∆2

)
(1,2,3;1′,2′,3′)

}

= P̂2 P̂′2

1′ 2′

1 2

+
1′ 2′

1 2

− P̂′2

1′2′

12

− P̂2

1′ 2′

1 2

, (1.55)

9 tr3
{
ĝ(1,3)

(
∆1 ∧∆2

)
(1,2,3;1′,2′,3′)

}

= P̂′2


1′2′

1

2

+

1′
2′

1
2

−

1′ 2′

1 2

 +
1′ 2′

1 2

−

1′ 2′

1

2

−
1′ 2′

1

2

,

(1.56)
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16 tr3,4

{
ĝ(3,4)

(
∆1 ∧∆3

)
(1,2,3,4;1′,2′,3′,4′)

}

= P̂2 P̂′2

2′

2

1′

1

− 2 P̂2

2′

2

1′

1

− 2 P̂′2

2′

2

1′

1

+ 2

1′ 2′

1 2

− 2

1′ 2′

1 2

,

(1.57)

72 tr3,4

{
ĝ(3,4)

(
∆∧2

1 ∧∆2

)
(1,2,3,4;1′,2′,3′,4′)

}

= ( − )
1′ 2′

1 2

+ P̂′2


1′ 2′

1 2

+ 2

1′ 2′

1 2

− 2

1′ 2′

1 2


+ P̂2


1′ 2′

1 2

+ 2

1′ 2′

1 2

− 2

1′ 2′

1 2

+
1′ 2′

1 2


+ 2 P̂2 P̂′2

−
1′ 2′

1 2

−

1′ 2′

1 2

+

1′ 2′

1 2

−

1′ 2′

1 2

−

1′ 2′

1 2

−

1′ 2′

1 2

 ,

(1.58)

and

18 tr3,4

{
ĝ(3,4) ∆∧2

2 (1,2,3,4;1′,2′,3′,4′)

}

= 2 P̂2


1′ 2′

1 2

−
1′ 2′

1 2

−

1′ 2′

1 2



− 2 P̂′2

1′ 2′

1 2

+

1′ 2′

1 2

+
1′ 2′

1 2

.

(1.59)
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1.5 THE CONNECTED EQUATIONS

Recall that the equation CSE(p) is written asΩp(1,...,p;1′,...,p′) ≡ 0, whereΩp is the
pth-order energy density matrix. Yasuda11 has introduced a generating functional
for the energy density matrices and used this functional to demonstrate thatΩp =
ΩC

p + ΩU
p can be decomposed into a connected partΩC

p and an unconnected partΩU
p .

The diagrammatic technique introduced in the previous section brings this to the
forefront, and in this section we use diagrammatic representations ofΩ1 andΩ2 to
formulate connected versions of CSE(1) and CSE(2). Whereas CSE(1) is necessarily
satisfied if CSE(2) is satisfied (since the former is merely a partial trace of the latter47),
the connected versions of CSE(1) and CSE(2) are independent conditions on the 1-
and 2-RDMCs, which must be satisfied simultaneously.

1.5.1 Cancellation of unconnected terms

Clearly Ω1, as defined in Eq. (1.10), contains unconnected terms, including for
example

wD1(1;1′) =
(

+ + 1
2 − 1

2

) 1′

1

, (1.60)

but these terms cancel exactly andΩU
1 ≡ 0. Since an approximate solution of CSE(1)

may not lead to exact cancellation of the unconnected terms, instead of solving the
equationΩ1 ≡ 0, one ought to solve the manifestly extensive equation

ΩC
1 ≡ 0 . (1.61)

The connected part ofΩ1 is found to be

ΩC
1 (1;1′) =

1′

1

+
1′

1

−
1′

1

−
1′

1

−
1′

1

+
1′

1

+ 3

1′

1

+ 2


1′

1

+

1′

1

−

1′

1

+

1′

1

−

1′

1

−

1′

1

 .

(1.62)

Since the unconnected terms cancel exactly, Eq. (1.61) is equivalent, in a necessary
and sufficient sense, to CSE(1). Following Kutzelnigg and Mukherjee29–31we refer
to Eq. (1.61) as the first-orderirreduciblecontracted Schrödinger equation, ICSE(1).
To obtain an equation that is equivalent, within a finite basis set, to our ICSE(p), one
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must solve the Kutzelnigg-Mukherjee version30 of ICSE(p) simultaneously with its
adjoint equation, whereas our version of ICSE(p) is equal to its own adjoint, thus
insuring that its solution∆p is self-adjoint.

Neither CSE(1) nor ICSE(1) is equivalent to the original Hilbert-space eigenvalue
equation; for that we need CSE(2). The unconnected part ofΩ2 is11

ΩU
2 = D1 ∧ Ω1 = D1 ∧ ΩC

1 . (1.63)

This relationship can be verified directly using the expressions in the previous section.
Thus, ifD1 satisfies CSE(1)—a necessary condition ifD2 is to satisfy CSE(2)—then
ΩU

2 = 0 and we obtain the extensive equation

ΩC
2 ≡ 0 , (1.64)

which we call ICSE(2). Carrying out the cancellation is relatively easy using dia-
grams, and one obtains

ΩC
2 (1,2;1′,2′) =

1′ 2′

1 2

+
1′ 2′

1 2

+

1′ 2′

1 2

+

1′ 2′

1 2

+ 3 P̂2

 2′

2

1′

1

+

2′

2

1′

1



+ 3 P̂′2

2′

2

1′

1

+ 3

2′

2

1′

1

+ 3

2′

2

1′

1

− 3

2′

2

1′

1

+ 6
2′

2

1′

1

+ P̂′2

 1
2

1′ 2′

1 2

− 2

1′ 2′

1 2

+ 1
2

1′ 2′

1 2

+

1′ 2′

1 2

−

1′ 2′

1 2

+ P̂2

 1′2′

1

2

−

1′ 2′

1 2

−
1′ 2′

1 2

+

1′ 2′

1 2

− 1
2

1′ 2′

1

2




+ P̂2

 1
2

1′ 2′

1 2

+

1′ 2′

1 2

−

1′ 2′

1 2

−

1′ 2′

1 2

−

1′2′

12

+

1′ 2′

1 2

−
1′ 2′

1

2

−
1′ 2′

1

2

+ 1
2

1′ 2′

1 2

+ 2
1′ 2′

1 2

− 2

1′ 2′

1 2

− 2
1′ 2′

1 2

 .

(1.65)

Including permutations, this expression forΩC
2 contains 68 terms, a significant re-

duction as compared to the unsimplified Grassmann products.



22 CONNECTED CONTRACTED SCHR ÖDINGER EQUATIONS

Equations (1.62) and (1.65), expressed in diagrammatic notation, are the only
forms of ICSE(1) and ICSE(2) that appear in our original publication of the connected
equations,43 although a short time later a connected, algebraic version of CSE(2) was
published by Nooijen and co-workers.44 Here, we translate our diagrammatic versions
equations into algebraic ones, using the diagram rules introduced in Section 1.4.
For pedagogical purposes, and owing to the complexity of the result, we break up
Eqs. (1.62) and (1.65) line-by-line, and present each line as a separate algebraic
expression. In addition, certain obvious factorizations are bypassed in the algebraic
formulation that follows, in order that diagrams on the left side of the equality match
up with algebraic expressions on the right side term-by-term and in the same order.
This facilitates comparison between the diagrammatic and the algebraic equations.

The algebraic form ofΩC
1 is contained in the equations
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,

(1.66a)
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and
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(1.66c)
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The kernelΩC
2 (1;1′) is equal to the sum of the terms given in Eqs. (1.66a)–(1.66c).

The various terms in ICSE(2) are
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(1.67a)
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(1.67b)
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(1.67f)

The kernelΩC
2 (1,2;1′,2′) is equal to the sum of the terms given in Eqs. (1.67a)–(1.67f).
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1.5.2 Discussion of the connected equations

Perhaps the most striking feature of ICSE(1) and ICSE(2) is the absence of the eigen-
valuew in these equations. In hindsight its disappearance should not be surprising,
sincew appears inΩp as the productwDp. The observablew scales asN , as does
the connected part ofDp, hence no part ofwDp exhibits correct scaling, and this
entire term must cancel with some other part of CSE(p). (This is analogous to the
fact that the coupled-cluster amplitude equations, which are extensive, contain the
cluster amplitudes but not the electronic energy.) Certainly,w is specifiedimplicitly
in ICSE(1) and ICSE(2), insofar as the cumulants∆1 and∆2 together determineD2

and thus also determinew = tr (Ŵ2D2). The absence ofw in ICSE(p) has important
consequences, to which we shall return later in this section.

In deriving ICSE(1) and ICSE(2) from the corresponding CSEs, we have merely
identified and removed terms that cancel exactly; as such, these two connected
equations, when solved simultaneously, are entirely equivalent to CSE(2) and thus
equivalent to the original Hilbert-space eigenvalue equation (Schrödinger equation),
provided that appropriateN -representability constraints are enforced. Since neces-
sary and sufficientN -representability constraints are not known, one must in practice
contend with an infinite number of spurious solutions to these equations. Recent
calculations7,9,34,66in which CSE(2) is solved starting from anN -representable (ac-
tually, Hartree-Fock) 2-RDM indicate that, for ground states, the solution usually
converges to a 2-RDM that is nearly consistent with the necessaryP -, Q-, and
G-conditions24,66,67for N -representability. (These conditions demand that the two-
particle density matrix, the two-hole density matrix, and the particle-hole density
matrix, respectively, be positive semi-definite, and by “nearly consistent” we mean
that any negative eigenvalues are small in magnitude.)

Even given a hypothetical set of necessary and sufficientN -representability con-
straints, however, the solution of CSE(2) is only unique provided that the eigenvalue
w is specified and fixed. Becausew does not appear in the ICSEs, a unique solution
of ICSE(1) and ICSE(2) is obtained only by simultaneous solution of these equations
subject not only toN -representability constraints but also subject to the constraint
thatw = tr (Ŵ2D2) remains fixed. For auxiliary constraint equations, such as the
reduced eigenvalue equation for the operatorŜ2, one would know the target expec-
tation value〈Ŝ2〉 in advance, and could therefore constrain〈Ŝ2〉 = tr (Ŝ2

2 D2). In
the basic equations of our theory, however,Ŵ is an electronic Hamiltonian and such
a constraint would require us to know the electronic energy in advance. Foregoing
the energy constraint, ICSE(1) and ICSE(2) possessN -representable solutions cor-
responding to the ground state, the excited states, and also all superposition states
that can be formed from degenerate eigenfunctions ofŴ . This is again analogous
to coupled-cluster theory, whose connected working equations do not contain the
electronic energy explicitly, and have solutions corresponding to both ground and ex-
cited electronic states;68 the ground-state solution is selected by means of the initial
guess. Compared to CSE(2), the absence of the electronic energy in the ICSEs is
not a serious disadvantage, since in the former case the energy is not knowna priori
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and thereforew appearing in CSE(2) must be iteratively updated during the course
of achieving a self-consistent solution.

Before discussing further how ICSE(1) and ICSE(2) can be solved, let us first
discuss the solution of CSE(2). Forw 6= 0, CSE(2) may be written

D2 = w−1Fw[D2, D3, D4] , (1.68)

where the functionalFw ≡ Ω2 + wD2 [cf. Eq. (1.10)]. Assuming that one posesses
approximate reconstruction functionalsD3[D2] andD4[D2], Eq. (1.68) can be solved
for D2 by one of two means. The first option is to substitute the reconstruction
functionals directly intoFw, effectively makingFw a functional ofD2 only. Upon
expanding Eq. (1.68) in a finite basis set, this leads to a closed set of nonlinear
equations for the tensor elements ofD2, and these equations can be solved, for
example, by a Newton-Raphson procedure.7,9,11 Alternatively, Eq. (1.68) can be
solved by self-consistent iteration, employing the reconstruction functionals at each
iteration to generate updated 3- and 4-RDMs from the current 2-RDM, and using
the current 2-RDM to estimatew. Several algorithms for carrying out this iteration
scheme have been described.1,2,6,14

It does not appear that the ICSEs can be solved by self-consistent iteration, how-
ever. In Eq. (1.68), CSE(2) is expressed in a form that affords the 2-RDM as anexplicit
functional of the 2-, 3-, and 4-RDMs, but no analogous formulation of ICSE(1) or
ICSE(2) is possible, since the 1- and 2-RDMCs appearing in these equations are
always acted upon bŷh or ĝ [cf. Eqs. (1.66) and (1.67)]. Thus, the ICSEs areimplicit
equations for the cumulants.

Using cumulant reconstruction functionals∆3[∆1,∆2] and∆4[∆1,∆2], one can
certainly derive closed, nonlinear equations for the elements of∆1 and∆2, which
could be solved using an iterative procedure that does not exploit the reconstruction
functionals at each iteration. Of the RDM reconstruction functionals derived to date,
several7,8,11utilize the cumulant decompositions in Eqs. (1.25c) and (1.25d) to obtain
the unconnected portions ofD3 andD4 exactly (in terms of the lower-order RDMs),
then use many-body perturbation theory to estimate the connected parts∆3 and∆4 in
terms of∆1 and∆2, the latter essentially serving as a renormalized pair interaction.
Reconstruction functionals of this type are equally useful in solving ICSE(1) and
ICSE(2), but the reconstruction functionals introduced by Valdemoro and cowork-
ers25,26 cannot be used to solve the ICSEs because they contain no connected terms
in D3 orD4 (and thus no contributions to∆3 or ∆4).

1.5.3 Reconstruction and solution of the reduced equations

Next we present some observations concerning the connection between the recon-
struction process and the iterative solution of either CSE(p) or ICSE(p). The per-
turbative reconstruction functionals mentioned above each constitutes a finite-order
ladder-type approximation to the 3- and 4-RDMCs;46,69examples of the lowest-order
corrections of this type are shown in Fig. 1.3. The hatched squares in these diagrams
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(a) (b)

1′ 2′ 3′ 1′ 2′ 3′ 4′

1 2 3 41 2 3

Fig. 1.3 Lowest order connected corrections to (a)∆3 and (b)∆4, within a renormalized
ladder-type approximation.

(a)

1ʹ 2ʹ 3ʹ

1 2 3

2ʹ

2

1ʹ

1

(d)

1ʹ 2ʹ

1 2

(b) (c)

1ʹ 2ʹ 3ʹ

1 2 3

Fig. 1.4 Diagrams illustrating the connection between reconstruction and solution of the
CSEs or ICSEs. See the text for an explanation.

can be thought of as arising from the 2-RDM, which serves as an effective pair
interaction in for a form of many-body perturbation theory. Ordinarily, ladder-type
perturbation expansions neglect three-electron (and higher) correlations, even when
extended to infinite order in the effective pair interaction,46,69but iterative solution of
the CSEs (or ICSEs) helps to build these correlations back into the cumulants. This
becomes clear upon examination of the diagrammatic representations of these equa-
tions, together with diagrammatic representations of the reconstruction functionals.

In Fig. 1.4(a) we show a typical diagram in the expansion of∆3 that cannot be
incorporated into any ladder-type diagram because it involves simultaneous correla-
tion between three particles.69 As it appears in CSE(2) and ICSE(2), however,∆3

is always traced over coordinatex3, and in Fig. 1.4(b) we show the effect of tr3 on
the diagram in 1.4(a). Diagram 1.4(b)is included in the partial trace of athird-order
ladder-type diagram, namely the one shown in Fig. 1.4(c). Thus the presence of
tr3 in the two-particle equations allows one to incorporate three- and higher-body
effects that would not otherwise be present in a ladder approximation for the three-
and four-electron cumulants.

Actually three-particle correlations such as that in Fig. 1.4(a) are introduced by the
CSEs and ICSEs, even within a second-order ladder approximation. To understand
why, consider the diagram in Fig. 1.4(d), which represents one of the terms inΩC

2 .
Within a second-order ladder approximation to∆3, diagram 1.4(b) is included within
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1.4(d). Thus three- and higher-body effects are incorporated into the cumulants∆3

and∆4 by the CSEs or ICSEs, even when these effects are absent from approximate
reconstruction functionals. In effect, solution of these equations corresponds to a
partial summation of the perturbation series forD2, in the case of CSE(2), or∆1 and
∆2, in the case that ICSE(1) and ICSE(2) are solved simultaneously. The connection
between reconstruction and solution of coupled Green’s function equations of motion,
which are time-dependent hierarchies analogous to the CSE(p) hierarchy, has received
some attention,70,71 though a more thorough exploration of this connection would be
welcome.
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