Contents

1 Cumulants, extensivity, and the connected formulation of the contracted

Schrddinger equation
John M. Herbert and John E. Harriman

1.1
1.2
1.3
14
15

Introduction

Reduced eigenvalue equations
Reduced density matrix cumulants
Diagrammatic representations
The connected equations
References

1

15
20
28



1 Cumulants, extensivity, and the
connected formulation of the
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JOHN M. HERBERT and JOHN E. HARRIMAN

Department of Chemistry, The Ohio State University, Columbus, OH 43210
Department of Chemistry, University of Wisconsin, Madison, Wl 53706

1.1 INTRODUCTION

In recent years, several grodp¥ have explored the possibility of circumventing the
wave function and the electronic Séldinger equation in quantum chemical calcula-
tions, instead solving the so-called contracted 8dimger equation (CSE1°for the
two-electron reduced density matrix (2-RDM). Within the seNefepresentabfé2*
RDMs, the CSE is an equivaléfit'® formulation of theN-electron, clamped-nuclei
Schiddinger equation, and couples the 2-, 3-, and 4-RDM elements via a linear equa-
tion that does not involve the electronic wave function explicitly. Direct calculation
of the 2-RDM, and thereby electronic properties, is accomplished using approximate
reconstruction functiona)$°1%25-27py means of which the 3- and 4-RDMs are
expressed in terms of the 2-RDM, leading to closed nonlinear equations for matrix
elements of the latter.

Much of the recent literature on RDM reconstruction functionals is couched
in terms of cumulant decompositioA$27-38 Insofar as thep-RDM represents a
guantum-mechanical probability distribution fprelectron subsystems of aN-
electron super-system, the RDM cumulant formalism bears much similarity to the
cumulant formalism of classical statistical mechanics, as formalized long ago by
by Kubo.2 (Quantum mechanics introduces important differences, however, as we
shall discuss.) Within the cumulant formalism, th&DM is decomposed into “con-
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2 CONNECTED CONTRACTED SCHR ODINGER EQUATIONS

nected” and “unconnected” contributions, with the latter obtained in a known way
from the lower-order;-RDMSs, ¢ < p. The connected part defines theh-order

RDM cumulant p-RDMC). In contrast to the-RDM, thep-RDMC is anextensive
guantity, meaning that it is additively separable in the case of a composite system
composed of non-interacting subsystems. (DM is multiplicatively separable

in such case$®%) The implication is that the RDMCs, and the connected equations
that they satisfy, behave correctly in the limit of non-interacting subsystgnesn-
struction whereas a 2-RDM obtained by approximate solution of the CSE may falil
to preserve extensivity, or in other words may nosize-consisterft’® =2

In this work, we derive—via explicit cancellation of unconnected terms in the
CSE—a pair of simultaneous, connected equations that together determine the 1-
and 2-RDMCs, which in turn determine the 2-RDM in a simple way. Because the
cancellation of unconnected terms is exact, we have in a sense done nothing; the
connected equations are equivalent to the CSE and, givegpresentability bound-
ary conditions, they are also equivalent to the electronic@thger equation. The
important difference is that the connected equations for the cumulants automatically
yield a size-consistent 2-RDM, even when solved approximately, because every term
in these equations is manifestly extensive.

The derivation of the connected equations that is presented here is an expanded ver-
sion of the one we published previoudROur derivation utilizes a diagram technique
and a “first-quantized” formalism, in which the CSE is expressed in terms of position-
space kernels and Hilbert-space operators. Equations that couple the RDMCs have
also been published in second quantization, by Kutzelnigg and MukR&riéand by
Nooijenet al.,** but the derivation presented here has the conceptual advantage that
it explicitly demonstrates the cancellation of all unconnected terms, and furthermore
does not require the introduction of a basis set (as is tacitly assumed in second quanti-
zation). Our derivation thus proves that the final, connected equations are equivalent
to the CSE as well as to the ordinary electronic 8dimger equation. Moreover,
our derivation clarifies several important differences between the connected and the
unconnected equations. As explained in Section 1.5.2, the connected CSE is in fact
a pair ofimplicit equations for the 1- and 2-RDMCs, whereas the original CSE is an
explicit equation for the RDMs. In addition, the electronic energy—an explicit pa-
rameter in the CSE—is absent from this equation’s connected analogues. Formally
speaking, the connected equations that we ultimately obtain are equivalent to the
“irreducible” CSEs introduced by Kutzelnigg and Mukherf&&!who derived con-
nected equations starting from the fermion anticommutation relations, in a manner
that does not rely upon the original CSE at all.

The remainder of this chapter is organized as follows. Section 1.2 introduces the
CSE as a special case of a more general classdoiced eigenvalue equatigrend
Section 1.3 formally defines the RDMCs. In the interest of motivating our derivation
of connected CSEs, we include in Section 1.3 a survey of the quantum-mechanical
cumulant formalism and the basic properties of the RDMCs, focusing especially
on their additive separability for non-interacting subsystems. In Section 1.4, we
develop a diagram technique to facilitate formal manipulation of terms that appear
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in the CSE. These diagrams also clarify the relationship between the CSE and older,
Green'’s function methods in many-body theory, a connection that is examined in

Section 1.5. In that section we also present the main result of this work, a derivation

of the connected form of the CSE, along with a discussion of procedures for solving

the connected equations.

1.2 REDUCED EIGENVALUE EQUATIONS

Employing the abbreviated notatiori™= Xx; for the composite space/spin coordi-
nates of theith electron, let

N N
Wa,.. Ny = Z hi) + Zﬁ(j,k) (1.1)
j=1 j<k

be a symmetric operator on ttié-electron Hilbert space. This implies that,x) =
J(k.5), which reflects the indistinguishability of electrons. We wish to consider RDM
analogues of th&/-electron eigenvalue equation

WU =wl . (1.2)

Let the eigenvaluev be fixed and assume that is nondegenerate and unit-
normalized. The restriction to nondegenerate eigenstates will be relaxed in Sec-
tion 1.5, but for now we consider only pure-state density matrices. NHetectron
density matrix for the pure state is

Dy@,...Ni1 N Z U, N U, N (1.3)

Forp < ¢ < N, we define gartial trace operator

U1 o = /dpo coedXy Xy dX 8(Xy g — X ) (X, — X)) (1.4)
that generates the RDM from the¢-RDM,

and furthermore establishes the normalization

N
trD,=try, ,D,= (p) . (1.6)
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This is the convention that is most convenient for calculating expectation values,
since in this caséV|W|¥) = tr (W, D,), where

fz(1) + fz(z)

2 def A
Wy,2) = g(1,2) + N1

(1.7)

is the two-electromeduced operatocorresponding td1/. 4546

Most of this chapter utilizes the first-quantized formulation of the RDMs intro-
duced above. However, some concepts related to separability and extensivity are
more easily discussion in second quantization, and the second-quantized formal-
ism is therefore employed in Section 1.3. Introducing an orthonormal spin orbital
basis|¢;) = A;\o), the elements of thg-RDM are expressed directly in second
guantization as

1

- = P S R
ih...,ip;jh...,jp—p,<‘1’|% a;, @, a

i 1Y) (1.8)
We denote the tensor of such element®gswhich is the tensor representation of the
kernel D,, in a basis ofp-electron direct products of the spin orbitdlg,)}.¢ The
convention introduced in Eq. (1.8), that the number of indices implicitly specifies the
tensor rank, is followed wherever tensors are used in this chapter.

From theN-electron Hilbert-space eigenvalue equation, Eq. (1.2), follows a hier-
archy ofp-electronreducedeigenvalue equation's;1"184%for 1 < p < N — 2. The
pth equation of this hierarchy couplés,, D, ,, andD,_ ,, and can be expressed as

Q,0,..p1,0) =0, (1.9
in which Q,, is thep-electron kerneft

p p
> T ho)y+(1=6,1) > GGk — w] D,
j=1

i<k

def
Qp(1pl’sp) =

p
+(p+ Dtr,y, { [hmn +3 g<j,p+1>] Dp+1} (1.10)

j=1
p+2 X
+ < 9 >trp_‘_17p+2 {g(p+1,p+2) Dp+2} .

HereD,, = D, (1,..,n;1",...,n"). The quantity2, is called thepth-orderenergy density
matrix.

Following Kutzelnigg and Mukherje& 3! we refer to Eq. (1.9) theth-order
CSE, or CSEg) for brevity. [CSEp) has also been called thp, p + 2)-CSE*%]
Strictly speaking, the term “CSE” implies th& is an electronic Hamiltonian,
which is clearly the most important case, but the formal structure of Egs. (1.9) and
(1.10) is the same for aniy’ having the form specified in Eq. (1.1). In the case of
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spin eigenstates, for example, the reduced equatiori’fer S2 may be useful as
boundary conditions to enforce while solving CBE?

The remarkable fact, first demonstrated by NakatSljg that for eachp > 2,
CSE(f) is equivalent (in a necessary and sufficient sense) to the original Hilbert-space
eigenvalue equation, Eq. (1.2), provided that G3k{ solved subject to boundary
conditions (V-representability conditions) appropriate for {pe-2)-RDM. CSEp),
in other words, is a closed equation for the+ 2)-RDM [which determines the
(p + 1)- andp-RDMs by partial trace], and has a unigherepresentable solution
D, ., for each electronic state, including excited states. Absémepresentability
constraints, however, this equation has many spurious solfdi<SE(2) is the
most tractable reduced equation that is still equivalent to the original Hilbert-space
equation, and ultimately it is CSE(2) that we wish to solve. Importantly, we do not
wish to solve CSE(2) for the 4-RDM, as this quantity is an eight-index tensor subject
to four-electronN -representability conditions. Rather, we wish to solve CSE(2) in
terms of the 2-RDM, via reconstruction of the 3- and 4-RDMs.

1.3 REDUCED DENSITY MATRIX CUMULANTS

In this section we introduce theRDMC, A ,, which encapsulates the part of the

RDM that is additively separable in the limit of non-interacting subsystems. Although
the RDMCs have been discussed at length in the liter&ttiPéthis section provides

an introduction and summary of the most important points. In this section we use the
second-quantized formulation of the RDMs [see Eq. (1.8)], as separability properties
are most easily introduced using this formalism.

1.3.1 Additive versus multiplicative separability

Although the RDMs provide a compact and appealing description of electronic struc-
ture, this description is unsatisfactory in at least one respect, namely, expectation
values calculated from RDMs are notanifestlyextensive, so do not necessarily
become additively separable in the limit of non-interacting subsystems. This basic
flaw ultimately arises because the RDMs are multiplicatively separable rather than
additively separablé®32

To illustrate this point, consider a composite system composed of two non-
interacting subsystems, one withelectrons (subsystem A) and the other with
qg = N — p electrons (subsystem B). This would be the case, for example, in the
limit that a diatomic molecule A-B is stretched to infinite bond distance. Because
subsystems A and B are non-interacting, there must exist disjoinBgetsd B
of orthonormal spin orbitals, one set associated with each subsystem, such that the
composite system’s Hamiltonian matrix can be written as a direct sum

H=H, ®Hg, (1.11)



6 CONNECTED CONTRACTED SCHR ODINGER EQUATIONS

whereHy (X € {A,B}) consists of matrix elements between determinants
constructed exclusively from spin orbitalsf.. Thus(® , | H|®) = 0.

Let Uy be an eigenfunction dfiy, normalized to unity. Then the wave function
for the composite system is

1 ~
U(1,...,N) = Nidi Py (A1) U pt1,V)) (1.12)

in which the operato?N antisymmetrizes the product functidn, V' by generat-
ing all N! signed permutations of the coordinates. .., x,. In Dirac notation,
|¥) = |¥, ¥g), and one says that is multiplicatively separablén the two subsys-
tems, recognizing that in quantum mechanig$ is separable only up to an overall
antisymmetrization (or a symmetrization, in the case of bosons) that renders all co-
ordinates equivalent. The separation of the wave function in Eq. (1.12) is equivalent,
in a necessary and sufficient sense, to the block structure of the Hamiltonian in
EQ. (1.11)32:50-52

Because subsystems A and B do not interact, it must bedthatonsists of a
determinantal expansion in functiothg, taken solely from the sed, , and similarly
¥, uses only those spin orbitals ;. It follows that¥, and ¥ are strongly
orthogonal®® Two antisymmetric functiong(z1, . .., z,) andg(yi, . . . , y,) are said
to bestrongly orthogonaif

/dz [z, xp=1,2) 9(W1,- -, Yg—1,2) =0 (1.13)

Note that the integral above is nominally a functiomef ¢ — 2 coordinates. Further-
more, because the functions of interest are antisymmetric, it does not matter which
coordinates are chosen for the dummy integration variable

Considerthe RDMs obtained from the separable wave functionin Eq. (1.12). Since
¥, andW, are strongly orthogonal, it follows from Eq. (1.8) tH{at, ¥ ;|| a;|V\Vp) =
Ounlessp,; andg; are associated with the same subsystem. Thusthe 1-RDM separates
into subsystem 1-RDMs,

Dy (x;X') = D (x;xX') + DE(x; x) . (1.14)

The case = 1 is the unique example for whicP,, is additively separable. This is
equivalent to the statement thaf equals its own cumulant (see Section 1.3.2).

To obtainD,, we need to evaluate matrix elemefs, Up|a] o' a, a, |V, ¥p).
For reasons that will become clear, let us introduce the quantity

A = Dyt — 3(Dig Dy — Dy D) - (1.15)

The interesting scenario is when two of the four indices in this equation refer to
subsystem A and the other two refer to subsystem B. Suppose, for definiteness, that
b,y ¢; € By andey,, ¢, € Bg. Then the strong orthogonality @f, and¥y implies
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thatD,;.,, = 0. More interesting is the case whep, ¢, € B, and¢;, ¢, € Bg.

In this caseD, ;. is generally nonzero, hendg, mixes indices from different non-
interacting subsystems, and thus fails to be additively separable. Whataboy®
According to Eq. (1.14)P,, = 0 sincei and! refer to different subsystems, and
thereforeA,; ;= D,y — 3Dy D,,;. The 2-RDM part of this expression can be
simplified using the anticommutation relations, noting thet [ andj # k. The
result is

(U Uplaf dy,a] )|V, )
(Walaf ay |0 L) (Pgla) 4| g)

D..,., =
i (1.16)

1
2
1
2
which is a product of 1-RDM elements from different subsystems. It follows that
A, = 0 for the case in question, and singe; ;. ,, as defined in Eq. (1.15) is
antisymmetric, this quantity must in fact be zero unless all four indices refer to the
same subsystem. Thus, unlikg;,;, the quantityA,; ,, is additively separable in

the two non-interacting subsystems A and B,

Ag(Xy, X5 X4, X5) = A5 (Xq, Xo3 X, X5) + A (X, Xg3 X, X5) (1.17)

A, is precisely the 2-RDMC, and from Eq. (1.15) we note that expectation values
for the composite\ + B system can be computed using eithgralone, orD; = A,
together withA,. From the standpoint afxactquantum mechanics, either method
yields exactly the same expectation value and, in particular, both methods respect the
extensivity of the electronic energy. I9, is calculated by means @fpproximate
guantum mechanics, however, one cannot generally expect that extensivity will be
preserved, since exchange terms mingle the coordinates on different subsystems, and
exact cancellation cannot be anticipated unless built in from the start. Methods that
respect this separability by construction are said to be size-consiStéht.

In careful usage, extensivity is actually a more general concept than size con-
sistency*? The former term implies a complete absence of unconnected terms in
one’s working equations, while size-consistency merely indicates that the energy
is additively separable for non-interacting subsystems, a necessary consequence of
extensivity. Methods that violate extensivity will yield per-particle correlation en-
ergies that tend to zero in the limit of an infinite systéfrdence the conventional
wisdom is that use of manifestly extensive methods (coupled-cluster theory being
the canonical example) is crucial for “large” systems containing sub-units so distant
as to be essentially non-interacting. It is not entirely clear how large one can go
before this becomes a problem, though the effective range of the spin-traced 1-RDM
may provide an indication. Computational studies suggest that for linear alkanes
(i.e, one-dimensional insulators) the effective rafige r’| over whichD, (r;r’) is
non-negligible is about 15-20 carbon atofisjepending on drop tolerances, and
we may judge that for larger systems extensivity violations may have important
consequences. Lack of size-consistency is also a concern when breaking bonds, dis-
sociating clusters, or comparing correlation energies between systems with different
numbers of electrons.
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In the present context, the way to insure extensivity is to reformulate the CSE so
that the RDMCs and not the RDMs are the basic variables. One can always recover
the RDMs from the cumulants, but only the cumulants satisfy connected equations
that do not admit the possibility of mixing non-interacting subsystems. Connected
equations are derived in Section 1.5. Before introducing that material, we first provide
a general formulation of the-RDMC for arbitraryp.

1.3.2 Cumulant formalism

Following Ziesche®>®% in order to develop the theory of cumulants for noncom-
muting creation and annihilation operators (as opposed to classical variables), we
introduce field operatorg(x) and £ (x) satisfying the anticommutation relations for

a Grassmann field,

[F00, FO)], =0 (1.18a)
[F00, F1X)], =0. (1.18b)
These field operators are sometimes terprethe variabledecause they function as

dummy placeholders in the formal differentiations that follow but do not appear in
the final expressions for the cumulants, which are obtained formally in the limit that
1, fT — 0.

First, we define a functional[f, 1] whose derivatives generate the RDMs. In
terms of the usual field operatargx) andqt (x'),

Dx) =Y (%) ay (1.19)
k
the RDM generating functional 38

617111 = (¥ | oo ([ ax (100100 + 160900 ) w) . (120

This is an analogue of the classical moments-generating functional discussed by
Kubo.3? Upon expanding the exponential as a power series, the opevasmts to

place each term in so-called normal order, in which all creation operafoase to

the left of all annihilation operators. By virtue of this ordering (andnly by virtue

of this ordering),

Glf, 11 = <exp ( / dx f(X)W(X)) exp ( / dx’ f*<X’W<X’>>> (1.21)
=1+7Ff, 17,
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where(---) = (¥|---|¥) and

oo

FIf 1= Z < /dxl---dxpdx'l X, FO) BT 0) - F(%,) 9T0%,)

X FHX) () -+ fT(x4) (X1)>-
(1.22)

The expectation value in Eqg. (1.21) eliminates terms that do not conserve particle
number, hence the two exponentials in Eq. (1.21) yield only a single summation in
Eq. (1.22). The factor of /p!? insures that tD, = (7).

Formally, the logarithnin G provides a generating functional for the cumulants.
That is, a formal expression for theRDMC is

A 1 6%
Loplynp’) = — im .
pllbill) = 0 (ﬁf*—»o 3OS ) 05w df )

(The normalization of the cumulants is more complicated that that of the RDMs, but
some specific examples are given in Section 1.3.3.) Although ostensibly tedious,
the above definition ofA, is operationally easy to use. In a formal expansion of
Ing = In(1 + F), the functional derivatives in Eg. (1.23) serve to select all terms
consisting of exactly creation operatorst and exactlyp annihilation operators,
while at the same time eliminating the integrals and replacing the dummy integration
variables with particle coordinates, . . ., x, andxj, . .., x,.
Asintroduced above, the functiorialG[f, /] generates the cumulants as position-
space kernels. As an alternative, MazziBt& has introduced a generating functional
for the expansion coefficien’s, .. . of A inabasis{¢,} of orthonormal
spin orbitals. Mazziotti's formallsm can be obtalned from the expressions above by
expanding the Grassmann fieldsind £ in this basis,

In g> . (1.23)

X) = Jk ¢ (X) . (1.24)
k

The.J,, are the probe variables in this formulation (which Mazzterms “Schwinger
probes”). We mention also Kutzelnigg and Mukherjee’s treatment of RDRACs,
Which utilizes an antisymmetrized logarithm function, along with some special cre-

Using either Eq. (1.23) or MaZZ|ott|s adaptation of it, one may derive exact
expression for the RDMs in terms of their cumulants. The first few such expressions
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are
D, =A,, (1.25a)
Dy =A% 4 A, , (1.25b)
Dy =AM +3A,ANA + Ay, (1.25¢)
Dy=AM+6A, ANANP+3A07+4ANA + A, (1.25d)
Dy =AM +10A, NAPE +10Ag AAM + 54, N A, (1.25e)

+15A; AAY2 +10A, A A, .

Here “A” denotes an antisymmetrized produ@réssmann produét->9

(Ap/\ Aq) (1,...,p—‘,—q;l/,“w(P"FQ)/)

1 ~ ~
W Pp+q P;-H] Ap(l,...,p;ll ..... p/)

where ?’;H and I5p+q indicate sums over signed permutations of the primed and
unprimed coordinates, respectivetf.[Eq. (1.12)]. “Wedge” exponents appearing
in Egs. (1.25) are defined according to

AN Z A NA N ANA (1.27)

p

n factors

and should not be confused with matrix products sucAsthe matrix product of
n copies ofA;.

The decomposition ab,, in Eq. (1.25b) is sometimes called the Levy-Lieb parti-
tion of the 2-RDM>"%8 Formulas essentially equivalent to Egs. (1.25) were known
long ago, in the context of time-dependent Green’s functi$r&,but this formalism
was rediscovered in the present context by MazziStti.

Implicit in Egs. (1.25) are definitions of the cumulants in terms of the RDMs, for
example,

Ay, =Dy—D;AND;, (1.28a)
Ay = Ds —2D)® —3D, A D, , (1.28b)
A, =D, + 13D, A Dy +6D{* AN Dy — 4Dy A Dy . (1.28¢c)

These equationdefinethe RDMCs in terms of the RDMs, and do not depend upon
the validity of perturbative expansions of the RDMs, although insofar as perturbation
theory is applicable]\,, is precisely the sum of connected diagrams in the expansion
of D,,.

The cumulant formulas in Eqgs. (1.28) can be generated easily using a convenient
mnemonic introduced by Harrf&. To obtain the cumulant decomposition bf, 4
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from that of D, one sums—for each term in tii¢,—all possible ways in which the
particle number can be increased by one. Particle number can be increased either by
replacingA , with A, , |, or by incorporating an additional Grassmann product with

A;. As an example, consider generatihg [Eq. (1.25¢)] fromD, [Eq. (1.25b)].

Given the first term in Eqg. (1.25bY\; A A;, one can increase particle number in
three ways, and from these one obtalisA A + A; AA, + A AA; AA,. The

second term in Eq. (1.25b)),, affordsA; + A, A A; upon increase in particle
number. Together, these terms afford Eq. (1.25c).

This mnemonic emphasizes the combinatorial nature of the cumulants. For exam-
ple, the termBD, A D, in D4 carries a coefficient that reflects the fact that there are
three ways to obtain a three-particle distribution from one- and two-particle distribu-
tions, namelyD; A D; A Dy, D; A Dy, andD, A D;. In contrast, the tern{3 in
D5 has a coefficient of unity because there is only one way to combine one-particle
distributions.

The combinatorial point of view is reminiscent of the classical cumulant formalism
developed by Kubé? and indeed the structure of Egs. (1.25) and (1.28) is essentially
the same as the equations that define the classical cumulants, up to the use of an
antisymmetrized product in the present context. In further analogy to the classical
cumulants, the»-RDMC is identically zero if simultaneous-electron correlations
are negligible. In that case, theRDM is precisely an antisymmetrized product of
lower-order RDMs.

1.3.3 Extensivity

For a multiplicatively-separable wave function like the one in Eq. (1.12), the matrix
elements ofA,, vanish unless all indices correspond to the same subsy&t&m.
Using the notation introduced previously, this means mq}“_”jp;k“_”’kp =0
unlessg,, € B, for each indexm or else¢,, € By for eachm. This is the
essential difference that allows for an extensive formulation of quantum mechanics
in terms of the RDMCs but not in terms of the RDMs. From the standpoint of
extensivity, the basic problem with the RDMs is the manner in which the exchange
terms in their unconnected parts mix the coordinates corresponding to non-interacting
subsystems. Such exchange terms are identified by the presence of a Grassmann
product. Examining the cumulant decompositions of the RDMs in Egs. (1.25),
it is evident that any term containing a Grassmann product scales asymptotically
(N — o0) like N, for somen > 1. For example, the Grassmann product

[Ay AAY (25172 = %[Al(m’) Aq2:2) — Ay(1;2) A1(2;1')} (1.29)
appearing as part dp, has a trace given by
tr (A AA)) =N? —tr (A?). (1.30)

As N — oo, tr (A; AA;) ~ N2. One says that; A A, scales likeN?2.
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One convenient consequence of binomial normalization for the RDMs [Eqg. (1.6)]
is that when this convention is followed, extensive quantities such dsave traces
proportional to/NV, while non-extensive quantities possess traces that scale as some
higher power ofV (tr D, ~ N?, for example). Let us define a set of quantities

o tr(AF)
= 1.31
Tk N (1.31)
that satisfy the property
l=7>27>173>---2>0, (1.32)

which follows from the fact that all eigenvalues &, lie in the interval[0, 1].
Equation (1.32) is valid even for extended systems, whére: co. In fact, without

loss of generality one may assume that> 0 for eachk, since theV-electron wave
function can always be expanded in terms of natural spin orbitals having strictly
positive occupation numberé. The limiting case in whichr, = 1 for all & is
obtained if and only if the two-electron interactign= 0. In this case, the wave
function is a single determindy, is idempotent, ant?

D, = D{? (single determinant) (1.33)

This form of D,, implies thatA,, = 0 for eachp > 1, a reflection of the fact that
an independent-electron wave function consists of one-electron subsystems coupled
only by exchange.

Traces of the RDMCs can be expressed conveniently in terms of, the~or
example,
trAy =1N(r, — 1) (1.34)

and
trAg = 3N (1 — 37, +273) . (1.35)

Given the inequalities in Eq. (1.32), these trace expressions make it clearhattr

N and trA; ~ N, even asN — oo, and furthermore they demonstrate that the
normalization of the»-RDMC depends upon the system in question. (In particular,
the traces depend upon how fBy, deviates from idempotency.) A few absolute
bounds can be derived, such as

—IN<trA, <0. (1.36)

These inequalities do not exclude the possibility thahas both positive and negative
eigenvalues, which is generally the case. Trace&pandA, have been examined
for some model problems by Kutzelnigg and Mukherjée.



REDUCED DENSITY MATRIX CUMULANTS 13

Partial traces of cumulants are also extensive, unlike those of the RDMs them-
selves. Starting from Eg. (1.25c), for example, one may show that

try Ay = —2A, + 1 {ﬁg(AlAQ) +P, (AzAI)} , (1.37)
where the matrix products are defined, for example, as

(AlAz)il,iz;jhjz = Z Ail;kAig,k;jl,jQ : (1.38)
k

One may verify directly that ttA; A,) = N(r; — 7,)/2 and therefore tfA; A,) ~
N.

Aword about notation is in order, regarding Eq. (1.37). PreviowdhyHg. (1.26)],
P’/ andP, were defined to act upon primed and unprimed coordinateseéctron
kernels. Where tensors are involved, such as in Eq. (1133';77)epresents signed
permutations over the row indicés., the first set of indices) arﬂ denotes signed
permutations over column indices. Thus, for example, wRgrcts onA, A,
in Eq. (1.37), this operation antisymmetrizes the indi¢egnd iy appearing in
Eq. (1.38). The column indiceg;(andj,) of this product are already antisymmetric,
having inherited this property from,.

As noted above, tA,, ~ N when binomial normalization is used for the RDMSs,
while non-extensive terms have traces that scale as higher powe¥s oThis
is certainly a convenient means to recognize terms that are not extensive, but in
some sense this trick overlooks the physical picture behind extensivity, which does
not depend upon any particular normalization convention. Similarly, insofar as
perturbation theory is applicable, the fact that the RDMCs scale@an be viewed as
aconsequence of the linked-cluster theof@rff,but the deeper concept of extensivity
does not depend upon the validity of perturbation theory. Mathematically, extensivity
is a statement about connectivity in the sense of matrix products, as in Eq. (1.38).
In Section 1.5, we introduce a nonperturbative diagram notation that emphasizes
connectivity and extensivity, and demonstrates fhat(as opposed td\,,) contains
unconnected products, up to and including the produetiofconnected one-electron
diagrams.

Thus far we have discussed connectivity and extensivity in terms of the RDMs and
RDMCs, but our ultimate goal is to apply these concepts to CSE(2). Replacing the
RDMs in €2, with their cumulant decompositions elucidates the unconnected terms
in CSE(2). Consider, as an example, the following terrfjn,2;17,2):

fz(1)D2(1,2;1’,2')
= ha) [A2(1,2;1’,2’) + 1A 1) Ay 22) — 1A (112 A1(2;1’)] . (1.39)

[This is the first term on the right side of Eq. (1.10), for the case 2.] The first
term on the right in Eq. (1.39) is obviously connected, and we may deduce that the
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second term is unconnected because its trace efjidls) /2. The third term, which
constitutes #ransvectior”52of A, with itself, is actually connected, but differs from

the second term by a coordinate permutation. If the second term is removed from
CSE(2) then the third term ought to be removed as well, for otherwise we destroy
the antisymmetry of2,. This example illustrates the complexity of formulating an
extensive version of CSE(2). It is not enough to eliminate unconnected terms; on
must eliminate their exchange counterparts as well.

1.3.4 Independence of the cumulants

Before deriving equations that determine the RDMCs, we ought to clarify precisely
which are the RDMCs of interest. It is clear, from Egs. (1.25a) and (1.25b)Athat
and A, contain the same information &3, and can therefore be used to calculate
expectation vaIue$W>, whereW is any symmetric two-electron operator of the
form givenin Eq. (1.1). Whereas the 2-RDM contains all of the information available
from the 1-RDM, and affords the value ¢f) with no additional information, the
2-RDMC in general does not determine the 1-RB##°so bothA, andA, must be
determined independently in order to calculdté). More generallyA,, ..., A, are

all independent quantities, whereas the RDNIs . . ., D,, are related by the partial
trace operation. The-RDM determines all of the lower-order RDMs and lower-
order RDMCs, but\,, alone is insufficient to specifgny of the other cumulants, or
any RDMs at all (save for the trivial = 1 case).

A simple proofthat\; andA, are independent proceeds as follows. First, observe
that

from which it follows thatA, and t, A, share a common set of eigenvectors, namely,
the natural spin orbitals. Lgtr, } be the natural occupation numbers (eigenvalues
of A,), and for eachn,, lete, be the eigenvalue of4A, associated with the same
eigenvector. These two eigenvalues are related according to

n,(n, — 1), (1.41)

N[

€L =

or in other words
n,=13(1+£1+8¢,) . (1.42)

Thusn,, is a double-valued function ef,, as depicted in Fig. 1.1. Strictly speaking,
then, the eigenvalues of,tA, do not determine those &, and consequentls,
cannot be determined fror, alone.

That being said, in reality each eigenvalueof will likely be near either 0 or
1, except in certain open-shell systems with significant multideterminant character.
Excluding such cases, it may be possible that, gisgn(and thus the:, ), one can
choose, for eack, one of the two solutions,, in Eq. (1.42), based upon whether
the kth natural spin orbital is expected to be strongly or weakly occupied. (This
could be determined by its expansion in Hartree-Fock orbitals.) Suppose that either
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Fig. 1.1 An eigenvaluen, of A, as a (double-valued) function of the corresponding eigen-
valuee,, of try A,.

n, = € 0orn, = 1 —¢, wheree is small. Upon calculating,, corresponding to
each, and substituting this back into Eq. (1.42), one obtains in either case a choice
between solutions,, = 1 — e+ O(¢?) andn,, = ¢ + O(¢?). Solong as? < ¢, and
assuming that one can ascertain which natural spin orbitals are strongly occupied,
A, effectively does determind ;. In such casegJ¥’) can be determined from,,

alone.

1.4 DIAGRAMMATIC REPRESENTATIONS

As outlined above, our task is to eliminate from CSE(2) both the unconnected terms
and their exchange counterparts. These are readily identified using diagrammatic
representations &2, and(2, that we introduce in this section. The diagrams are not
strictly necessary, but are quite convenient and (in the authors’ opinion) easier to check
for mistakes than lengthy algebraic formulas. In addition, certain reconstruction
functionals for the 3- and 4-RDMs have been derived using diagrammatic many-
body perturbation theor{®''and a diagrammatic representation for CSE(2) clarifies
the role of this equation in improving approximate reconstruction functionals (see
Section 1.5.3). Our diagram conventions are conceived with this purpose in mind,
and are unrelated to the CSE diagrams introduced by Mukherjee and Kutz&sigg.
The basic diagram elements representing= A, h g andA, (for p > 2)
are illustrated in Fig. 1.2. Recall that C$f(s given by the equatiof, = 0,
where thef2,, is thep-electron kernel defined in Eq. (1.10). The terms in this kernel

consist ofh, and g acting on RDMs, followed in some cases by a trace over one or
two coordinate indices. Upon replacing the RDMs with their cumulant expansions
[Egs. (1.28)], we construct a diagrammatic representation of each term by connecting
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(a) (b) (©) (d)

Fig. 1.2 Basic diagram elements used in this work: £&)(1;1"); (b) §(1,2); (c) ﬁ(1); and (d)
Ap(l,...,p;I' ,,,,, p), forp > 2.

operator diagrams to cumulant diagrams, at the coordinates on which the operators
act. For instance,

2
1 3

% = §(2,3) A1 (1:2") Dy(2,3:1',3) (1.43)

2 3
1

is obtained by attachinggdiagram at the lower endpoints ofg, (2,3;1/,3") diagram,
since according to Fig. 1.2(d) these endpoints represent coordinateslx;. A
factor of A, (1;2') is present, as indicated, but becaggses) operates on neitheq;

nor x5, this part of the diagram is not connected to the rest. Inspection of either the
diagram of the algebra in Eq. (1.43) reveals that this term is unconnected.

A trace over coordinate, is indicated by connecting the line labeledo the line
labeledn’. The labels: andn’ are then deleted, since these coordinates become a
single dummy integration variable. Diagrammatically, this creates a loop in the case
that bothx,, andx/, are arguments of the same cumulant. As an example, we apply
try to Eq. (1.43) to obtain

2 g

% = A (1;2))trg {9(2,3) A2(2,3;1/,3’)} . (1.44)

2

1

If, on the other handx,, andx/, are arguments of different cumulants, then a trace
overx,, serves to connect two cumulant diagrams:

2" 1

% = A2 trg 4 {9(3,4) A1(2;3’)A2(3,4;1’,4’)} . (1.45)

12

Note carefully the subtle difference between this diagram and the previous one, at
the position labeled “2". These two examples illustrate thigrnal operator vertices
(those not appearing at the endpoint of a cumulant line) are each associated with a
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coordinate integration, whereas a vertex that appears at the endpoint of a cumulant
line does notimply an integration. Thus, in Eq. (1.45), both ends gf thagram are
internal vertices, reflecting the fact that both argumengsark integration variables.

In EqQ. (1.44), only one argument gfs an integration variable and thus thdiagram

has one internal and one external vertex, the latter associatedywith

In close analogy to diagrammatic perturbation theory (although our diagrams are
not perturbative), we have transformed the problem of generating tefjsiirto a
problem of generating topologically distinct diagrams, which makes it relatively easy
to incorporate symmetries such@s.x) = §(k,;) that reduce the number of terms in
2, The nontrivial terms if2, and(2, that involve only the one-electron cumulant
are

12 172

SB[ bwp . (149)

12 12

6tr3 {iL(B) A{\g(l,2,3;1/72”3')} — |52’ O ®

6tr, {[§(1,3) + §(2,3)] A1A3(1,2,3;1/72/73,)}

P ey - (1.47)
ea{[[ - L-H)
12 1 2
1 1 1
61ry 5 {§(273>Af3<17273;1',2/73’)}=2 M —M + (0~0—@) |, (1.48)
1 1 1
and
241ry 4 {g(3,4> A1A4(172,374;1’,2’,3’,4’)}
(1.49)

12 12 12 12’

=P, 2M+(M—@)‘ + 2P ‘M—Hwo .
12 12 1 2 12

These expressions are highly compact compared to brute-force expansions of the

Grassmann products;3 andA74. For exampleA,* ostensibly containg!? = 576

terms, as compared to the 14 terms that appear in Eq. (1.49) if one writes out all
permutations.

Certain diagrams in the expressions above have no coordinate dependence, and
are related to the eigenvaluein Eq. (1.2). Let us decompose = w; + w, into a
one-electron contribution

w, = N(h) (1.50)

and a two-electron contribution

wy = (JD (9) - (1.51)
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with (k) = tr (b D,) and(3) = tr (§ D,). These equations are expressed diagram-
matically as

wy =1tr {B(1)A1(1;1’)} = O~® (1.52)

and
wy = 1tr {9(1,2) D2(1,2;1’,2’)} = % OO — % @—F%. (1.53)

Whenw is the electronic energy, the first two terms on the right side of Eq. (1.53) are
the Coulomb and exchange energies, respectively, while the third term defines what
we term thecumulant correlation energyThe cumulant decomposition @, thus
provides universal, extensive definitions for the exchange and correlation energies,
and these definitions do not depend upon any independent-electron (Hartree-Fock
or Kohn-Sham) reference state. According to this definition, the (exact) Coulomb
and exchange energies are available from the (exact) 1-RDM, while the cumulant
correlation energy requires the 2-RDM.

For expressions involving higher-order cumulants, one can utilize the antisymme-
try of A, to reduce the number of terms. For example, the identity

. v
@ = {§ (1.54)
2 12
is obtained by exchanging the lines entering the tophgf which corresponds to a

permutation of the primed coordinatesAn,. After gaining some facility with the
diagrams, one can write down the remaining termQ.jn

9trg {ix(3) (Al A AQ)(1,2,3;1’,2’,3/)}

17 2" v 5 2' 1 1’ 2’
%MS—}—OW@ %— P %M@— P, S@ . (1.55)
! 2 2 1 1 2

12

/
272

9tr, {g(1,3) (Al A AQ)(1,2,3;1/,2’,3’)}

2 D oo
2! v 1 o o
D/
:P2W+%_<§ +®%_% _ﬁ’
2 h 12 ! 2
2 1 2 2

(1.56)
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16trz , {§(3,4) (Ap A A3)(1,2,3,4;1’,2’,3’,4’)}

12 o oy
L) vl L) (1.57)

17 2 17 2
+2 Z )’”“C -2 Zg ,
1 2 1 2

72tr34{g(34) (A2 AAY) (123450723 4)

%+2%_2

(1.58)
+2P, P W %}
1 2
and
18try 4 {g(3,4) A§2(1,2,3,4;1’,2/,3’,4’)}
1 2’
1 2' 1 2' %
1 2 1 2
L (1.59)

1’ 2! 1 2!
1 2
ﬂg% +% 0
1 2
1 2 1 2
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1.5 THE CONNECTED EQUATIONS

Recall that the equation CSE(is written astd, (1,...p51,...p") = 0, Wherer is the
pth-order energy density matrix. Yasudehas introduced a generating functional

for the energy density matrices and used this functional to demonstrat@ that

Qg + QIL,’ can be decomposed into a connected ﬁérand an unconnected paﬂﬁ.

The diagrammatic technique introduced in the previous section brings this to the
forefront, and in this section we use diagrammatic representatiofls ahd(2, to
formulate connected versions of CSE(1) and CSE(2). Whereas CSE(1) is necessarily
satisfied if CSE(2) is satisfied (since the former is merely a partial trace of théatter

the connected versions of CSE(1) and CSE(2) are independent conditions on the 1-
and 2-RDMCs, which must be satisfied simultaneously.

1.5.1 Cancellation of unconnected terms

Clearly ©2,, as defined in Eqg. (1.10), contains unconnected terms, including for
example
"

, (1.60)

wD(1;1) = (QW®+ +%OWC—%@)

1

but these terms cancel exactly @l = 0. Since an approximate solution of CSE(1)
may not lead to exact cancellation of the unconnected terms, instead of solving the
equatiorn); = 0, one ought to solve the manifestly extensive equation

Q5 =0. (1.61)

The connected part 6, is found to be
1" 1 1 1" 1 I
Qf(l;l’)—L®+LQ—b—}M@—}M©+M
1 1 1 1 1
1 1 1"
HEED) N E B e

1

1

0 - B8 -

1

Since the unconnected terms cancel exactly, Eq. (1.61) is equivalent, in a necessary
and sufficient sense, to CSE(1). Following Kutzelnigg and Mukhétjéewe refer

to EqQ. (1.61) as the first-ordereduciblecontracted Sclidinger equation, ICSE(1).

To obtain an equation that is equivalent, within a finite basis set, to our {Sk{(e
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must solve the Kutzelnigg-Mukherjee versiSrof ICSE(p) simultaneously with its
adjoint equation, whereas our version of ICBHEE equal to its own adjoint, thus
insuring that its solutiom\,, is self-adjoint.

Neither CSE(1) nor ICSE(1) is equivalent to the original Hilbert-space eigenvalue
equation; for that we need CSE(2). The unconnected padt, a**

QY =D, AQ, =D, AQS. (1.63)
This relationship can be verified directly using the expressions in the previous section.
Thus, if D, satisfies CSE(1)—a necessary conditioRifis to satisfy CSE(2)—then
QY = 0 and we obtain the extensive equation

Qs=o0, (1.64)

which we call ICSE(2). Carrying out the cancellation is relatively easy using dia-
grams, and one obtains

95(1,2;1/,2’) =
o o : H R " 2 ; 2
H+ B %%% e + b
R, ® |
+3%% +3%)‘® %—3% + oz
Y 1 2% ;% %ﬁ %—v@

%{S%MZDM

(1.65)

+
o

:
+ -
@
‘:’%
s
L

Including permutations, this expression fof contains 68 terms, a significant re-
duction as compared to the unsimplified Grassmann products.
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Equations (1.62) and (1.65), expressed in diagrammatic notation, are the only
forms of ICSE(1) and ICSE(2) that appear in our original publication of the connected
equations? although a short time later a connected, algebraic version of CSE(2) was
published by Nooijen and co-workeféHere, we translate our diagrammatic versions
equations into algebraic ones, using the diagram rules introduced in Section 1.4.
For pedagogical purposes, and owing to the complexity of the result, we break up
Egs. (1.62) and (1.65) line-by-line, and present each line as a separate algebraic
expression. In addition, certain obvious factorizations are bypassed in the algebraic
formulation that follows, in order that diagrams on the left side of the equality match
up with algebraic expressions on the right side term-by-term and in the same order.
This facilitates comparison between the diagrammatic and the algebraic equations.

The algebraic form of2§ is contained in the equations

v v v " . N
L®+LQ_@_M_M+M (1.66a)
i i i i i
= ha) A1) +try {g(l,z) [Al(m/) Aq(2:2) — A (1;2) A1(2;1’)]}
—try [E(Q) A (1;2) A1(2;1')}
—trys {9(2,3) [Ag(1:2) Ag2i1) Ay 3:3) — Aq(1:2) Ay (2:3) A1(3;1’)]} )
. v .
3 @ . %mm %@
| I

1

(1.66b)
= 31try 5 [g(z,g) A3(1,2,3;1/,2’,3’)} + 21ry |:/A1(2) A2(1,2;1’,2/)]

+ 215 {9(2,3) A2(172;1',2’)A1(3;3’)} ,

and

Iy v Iy I
2 —% +%—% —% (1.66¢)
1 ! 1 1
= —21ry 5 [g(z,g) A2(1,2;1’,3/)A1(3;2’)} + 21r, [g(l,Q) A2(1,2;1’,2’)}

—21ry 5 [9(2,3) A2(2,3;1’,2’)A1(1;2/)} —21ry 5 {g(m) A2(1,3;2',3/)A1(2;1’)} .
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The kernelQ$1;1) is equal to the sum of the terms given in Egs. (1.66a)—(1.66c).
The various terms in ICSE(2) are

B H e ) e

= [3(1) + fL(Q) + g(1,2)] Ag(1,2;17,2) +-1rg 4 [g(3,4> Ag(1,2;3'.4") A2(3,4;1',2’)]

+3 ISQ{tr3 [9(2.3) Ag(1,2:3:1',2',3)] + 115 4 [9(3.4) A3(173,4;1’72’,4/)A1(2;3’)]} ,

3%’%2%}+3ZZZ}@+3ZZZ)@—3ZZZ®-+62z%§)
=3 Iszltrg)4 [g(3,4) Ag(1,2,3;,1',4',3") A1(4;2/)} + 3trg [ﬁ(:;) A3(1,273;1',2/,3/)}
+3try 4 [§(3,4) Ag(1,2,3;1",2',3") A1(4;4’)}
— 3tr3,4 [§(3,4) Ag(1,2,3;1",2' ,4") A1(4;3’)} (1.67b)
+ 6tr3,4 [§(3,4) A3(1,2,3,4;1’,2’,3’,4’)} ,

I 2 v

o,/ 11 o ! - 1.67
2 V2 3 + (1.67c)

+ %tr374 {g(3,4) Ay (1,2;3",4") A (3;1) A1(4;2’)}

+1r3, [g<3,4) A2(1,2;1’,3’)(A1(3;4') A 4:2) — A (3;2) A1(4;4')>}} ,
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i Bl - o - B+ B -]
2 12 1 21
A~ ] A
=P, Pz{tra {é(m) A2(273;2',3’>A1(1;2’)} —1ry [ﬁ(l,s) A2<1,2;322’)A1<3;1'>}
—1trs 4 {g(3,4) Ag(1,3;17,3") Aq (2;47) A1(4;2’)]

+1ry 4 [g(3,4) Ay (1,3:17,4") Aq(2:3) A1(4;2’)} (1.67d)

— %'[r3 [Al(m’) AL (2:3) A1(3;2’)} } ,

" 5%+%_%¥§4%®+%‘%
» (1.67¢)
= PQ{; tr3,4 [g(3’4) A2(1a2§3/74’) A1(3;1,) A1(4;2/):|
+ tr3’4 [g(3’4) A2(17331/72l) <A1(4§3/) A1(274/) - A1(2;3/) A1(4;4/))i|
— g [il(s) Ay(1,3;17,2) Al(z;g')} —try VL(;;) A2(1,2;1’,3')A1(3;2')]
—1r3 [Q(?,B) Ay(1,3;1,2") A1(2;3/)} } ,
and

2
"2

P, % 3 *2%@2%2@@
= IS2{'“’3 [{}(1,3) A2(1,3;1’,2')A1(2;3’)]
+ %tr3,4 _§(3,4) A (1:3) Ap24) A (31 A1(4;2')} (1.67f)

+2 trs 4 G(3,4) Ay (1,3;1",3") Ay (4,2;4',2")

)
—21ry , {§(3,4) Ay (1,3;1",2") A2(2,4;3/,4’)}
—21r5 4 |9(3.4) Ag(1,3517,4) A2(4,2;3’,2’)} } .

The kernel$(1,2;17,2) is equal to the sum of the terms given in Egs. (1.67a)—(1.67f).
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1.5.2 Discussion of the connected equations

Perhaps the most striking feature of ICSE(1) and ICSE(2) is the absence of the eigen-
valuew in these equations. In hindsight its disappearance should not be surprising,
sincew appears i, as the productD,,. The observable scales asV, as does

the connected part ab,,, hence no part ofvD,, exhibits correct scaling, and this
entire term must cancel with some other part of G3E(This is analogous to the

fact that the coupled-cluster amplitude equations, which are extensive, contain the
cluster amplitudes but not the electronic energy.) Certainlig specifiedmplicitly

in ICSE(1) and ICSE(2), insofar as the cumulaitsand A, together determiné.,

and thus also determine = tr (W, D,). The absence af in ICSE(p) has important
consequences, to which we shall return later in this section.

In deriving ICSE(1) and ICSE(2) from the corresponding CSEs, we have merely
identified and removed terms that cancel exactly; as such, these two connected
equations, when solved simultaneously, are entirely equivalent to CSE(2) and thus
equivalent to the original Hilbert-space eigenvalue equation {fsithger equation),
provided that appropriat®'-representability constraints are enforced. Since neces-
sary and sufficiend -representability constraints are not known, one must in practice
contend with an infinite number of spurious solutions to these equations. Recent
calculationg:?3486in which CSE(2) is solved starting from avi-representable (ac-
tually, Hartree-Fock) 2-RDM indicate that, for ground states, the solution usually
converges to a 2-RDM that is nearly consistent with the necesBary)-, and
G-conditiong*%67for N-representability. (These conditions demand that the two-
particle density matrix, the two-hole density matrix, and the particle-hole density
matrix, respectively, be positive semi-definite, and by “nearly consistent” we mean
that any negative eigenvalues are small in magnitude.)

Even given a hypothetical set of necessary and suffidienépresentability con-
straints, however, the solution of CSE(2) is only unique provided that the eigenvalue
w is specified and fixed. Becausedoes not appear in the ICSESs, a unique solution
of ICSE(1) and ICSE(2) is obtained only by simultaneous solution of these equations
subject not only taV-representability constraints but also subject to the constraint
thatw = tr (W, D,) remains fixed. For auxiliary constraint equations, such as the
reduced eigenvalue equation for the operatrone would know the target expec-
tation value(S5?) in advance, and could therefore constré#it) = tr ($2 D,). In
the basic equations of our theory, howeviétjs an electronic Hamiltonian and such
a constraint would require us to know the electronic energy in advance. Foregoing
the energy constraint, ICSE(1) and ICSE(2) pos$ésepresentable solutions cor-
responding to the ground state, the excited states, and also all superposition states
that can be formed from degenerate eigenfunctiond’of This is again analogous
to coupled-cluster theory, whose connected working equations do not contain the
electronic energy explicitly, and have solutions corresponding to both ground and ex-
cited electronic state® the ground-state solution is selected by means of the initial
guess. Compared to CSE(2), the absence of the electronic energy in the ICSEs is
not a serious disadvantage, since in the former case the energy is not &moien
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and thereforev appearing in CSE(2) must be iteratively updated during the course
of achieving a self-consistent solution.

Before discussing further how ICSE(1) and ICSE(2) can be solved, let us first
discuss the solution of CSE(2). Far# 0, CSE(2) may be written

Dy =w ™ Fy[Dy, D3, D], (1.68)

where the functionak,, = 2, + wD, [cf. Eqg. (1.10)]. Assuming that one posesses
approximate reconstruction functiondds [ D,] andD, [D,], Eq. (1.68) can be solved

for D, by one of two means. The first option is to substitute the reconstruction
functionals directly intaF,, effectively makingF,, a functional ofD, only. Upon
expanding Eq. (1.68) in a finite basis set, this leads to a closed set of nonlinear
equations for the tensor elements 0§, and these equations can be solved, for
example, by a Newton-Raphson proced(fé! Alternatively, Eq. (1.68) can be
solved by self-consistent iteration, employing the reconstruction functionals at each
iteration to generate updated 3- and 4-RDMs from the current 2-RDM, and using
the current 2-RDM to estimate. Several algorithms for carrying out this iteration
scheme have been describeté14

It does not appear that the ICSEs can be solved by self-consistent iteration, how-
ever. InEq. (1.68), CSE(2) is expressed in a form that affords the 2-RDMeagphait
functional of the 2-, 3-, and 4-RDMs, but no analogous formulation of ICSE(1) or
ICSE(2) is possible, since the 1- and 2-RDMCs appearing in these equations are
always acted upon bfyorg [cf. Egs. (1.66) and (1.67)]. Thus, the ICSEsianplicit
equations for the cumulants.

Using cumulant reconstruction functionalg[A,, A,] andA4[A,, A,], one can
certainly derive closed, nonlinear equations for the elements,odnd A,, which
could be solved using an iterative procedure that does not exploit the reconstruction
functionals at each iteration. Of the RDM reconstruction functionals derived to date,
several®11utilize the cumulant decompositions in Egs. (1.25c) and (1.25d) to obtain
the unconnected portions &f, and D, exactly (in terms of the lower-order RDMs),
then use many-body perturbation theory to estimate the connectedypatslA , in
terms ofA; andA,, the latter essentially serving as a renormalized pair interaction.
Reconstruction functionals of this type are equally useful in solving ICSE(1) and
ICSE(2), but the reconstruction functionals introduced by Valdemoro and cowork-
erg>26 cannot be used to solve the ICSEs because they contain no connected terms
in D5 or D, (and thus no contributions t; or A,).

1.5.3 Reconstruction and solution of the reduced equations

Next we present some observations concerning the connection between the recon-
struction process and the iterative solution of either G$B( ICSE(). The per-
turbative reconstruction functionals mentioned above each constitutes a finite-order
ladder-type approximation to the 3- and 4-RDM&$°examples of the lowest-order
corrections of this type are shown in Fig. 1.3. The hatched squares in these diagrams
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Fig. 1.3 Lowest order connected corrections to {8} and (b)A,, within a renormalized
ladder-type approximation.

@ (b) © )

Fig. 1.4 Diagrams illustrating the connection between reconstruction and solution of the
CSEs or ICSEs. See the text for an explanation.

can be thought of as arising from the 2-RDM, which serves as an effective pair
interaction in for a form of many-body perturbation theory. Ordinarily, ladder-type
perturbation expansions neglect three-electron (and higher) correlations, even when
extended to infinite order in the effective pair interactf§i4? but iterative solution of
the CSEs (or ICSES) helps to build these correlations back into the cumulants. This
becomes clear upon examination of the diagrammatic representations of these equa-
tions, together with diagrammatic representations of the reconstruction functionals.
In Fig. 1.4(a) we show a typical diagram in the expansiod\gfthat cannot be
incorporated into any ladder-type diagram because it involves simultaneous correla-
tion between three particlé8.As it appears in CSE(2) and ICSE(2), howevr,
is always traced over coordinatg, and in Fig. 1.4(b) we show the effect of ton
the diagram in 1.4(a). Diagram 1.4(s)included in the partial trace ofthird-order
ladder-type diagram, namely the one shown in Fig. 1.4(c). Thus the presence of
try in the two-particle equations allows one to incorporate three- and higher-body
effects that would not otherwise be present in a ladder approximation for the three-
and four-electron cumulants.

Actually three-patrticle correlations such as that in Fig. 1.4(a) are introduced by the
CSEs and ICSEs, even within a second-order ladder approximation. To understand
why, consider the diagram in Fig. 1.4(d), which represents one of the terfii$.in
Within a second-order ladder approximatiorntg, diagram 1.4(b) is included within
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1.4(d). Thus three- and higher-body effects are incorporated into the cumiNants
andA, by the CSEs or ICSEs, even when these effects are absent from approximate
reconstruction functionals. In effect, solution of these equations corresponds to a
partial summation of the perturbation series £y, in the case of CSE(2), dk, and

A,, in the case that ICSE(1) and ICSE(2) are solved simultaneously. The connection
between reconstruction and solution of coupled Green'’s function equations of motion,
which are time-dependent hierarchies analogous to the} 8ie¢archy, has received
some attentiod®7*though a more thorough exploration of this connection would be
welcome.
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