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CONSPECTUS: The past 15 years have witnessed an explosion of
activity in the field of fragment-based quantum chemistry, whereby ab
initio electronic structure calculations are performed on very large systems
by decomposing them into a large number of relatively small subsystem
calculations and then reassembling the subsystem data in order to
approximate supersystem properties. Most of these methods are based, at
some level, on the so-called many-body (or “n-body”) expansion, which
ultimately requires calculations on monomers, dimers, ..., n-mers of
fragments. To the extent that a low-order n-body expansion can
reproduce supersystem properties, such methods replace an intractable
supersystem calculation with a large number of easily distributable
subsystem calculations. This holds great promise for performing, for
example, “gold standard” CCSD(T) calculations on large molecules,
clusters, and condensed-phase systems.
The literature is awash in a litany of fragment-based methods, each with their own working equations and terminology, which
presents a formidable language barrier to the uninitiated reader. We have sought to unify these methods under a common
formalism, by means of a generalized many-body expansion that provides a universal energy formula encompassing not only
traditional n-body cluster expansions but also methods designed for macromolecules, in which the supersystem is decomposed
into overlapping fragments. This formalism allows various fragment-based methods to be systematically classified, primarily
according to how the fragments are constructed and how higher-order n-body interactions are approximated. This classification
furthermore suggests systematic ways to improve the accuracy.
Whereas n-body approaches have been thoroughly tested at low levels of theory in small noncovalent clusters, we have begun to
explore the efficacy of these methods for large systems, with the goal of reproducing benchmark-quality calculations, ideally
meaning complete-basis CCSD(T). For high accuracy, it is necessary to deal with basis-set superposition error, and this
necessitates the use of many-body counterpoise corrections and electrostatic embedding methods that are stable in large basis
sets. Tests on small noncovalent clusters suggest that total energies of complete-basis CCSD(T) quality can indeed be obtained,
with dramatic reductions in aggregate computing time. On the other hand, naive applications of low-order n-body expansions
may benefit from significant error cancellation, wherein basis-set superposition error partially offsets the effects of higher-order n-
body terms, affording fortuitously good results in some cases. Basis sets that afford reasonable results in small clusters behave
erratically in larger systems and when high-order n-body expansions are employed.
For large systems, and (H2O)N≳30 is large enough, the combinatorial nature of the many-body expansion presents the possibility
of serious loss-of-precision problems that are not widely appreciated. Tight thresholds are required in the subsystem calculations
in order to stave off size-dependent errors, and high-order expansions may be inherently numerically ill-posed. Moreover,
commonplace script- or driver-based implementations of the n-body expansion may be especially susceptible to loss-of-precision
problems in large systems. These results suggest that the many-body expansion is not yet ready to be treated as a “black-box”
quantum chemistry method.

1. INTRODUCTION: THE MANY-BODY EXPANSION

Fragment-based quantum chemistry methods have become a
popular way to circumvent the highly nonlinear scaling (with
respect to system size) of ab initio quantum chemistry
calculations. The common theme among these methods is
the decomposition of a large (super)system into smaller
subsystems for distributed computing, followed by some
attempt to reassemble this information to approximate some
property of the supersystem, usually its energy or an energy
derivative. Such methods appeal to what Kohn has called the
near-sighted nature of electronic matter.1 In addition to their
pragmatic appeal for reasons of computational cost, there is an

undeniable intuitive appeal insofar as chemists are accustomed
to understanding molecules in terms of their functional groups.
A survey of the literature2−4 reveals a plethora of fragment-

based methods, each with its own terminology, motivation, and
equations. Many of these methods are based at some level on
the old idea of the many-body expansion (MBE), also called the
n-body expansion, in which the supersystem energy is formally
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expressed in terms of the energies of its constituent monomers,
dimers, trimers, etc. The energy of a system of N fragments is
thus expressed, formally but exactly, as

∑ ∑ ∑= + Δ + Δ + ···
=

> > >

E E E E
I

N

I
I J

J I

N

IJ
I J K

K J I

N

IJK
1 , , ,

(1)

where EI is the energy of the Ith fragment and

Δ = − −E E E EIJ IJ I J (2)

is a correction for two-body (pairwise-additive) interactions.
Expressions for higher-order n-body corrections, ΔEIJK, etc., can
be found in ref 5.
If the n-body corrections become smaller as n increases, then

eq 1 might sensibly be truncated at some finite n, affording an
n-body approximation, E(n), to the total energy. This
approximation can be written in closed form as5
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in which EK
(k) is the energy of the Kth k-mer of fragments, where

K ranges over all (k
N) unique k-mers.

Equation 3 suggests a sequence of approximations to the
energy, becoming exact as n → N, which require only
subsystem calculations. Differentiation of eq 3 with respect to
nuclear coordinates or external fields provides a corresponding
n-body approximation to other properties such as multipole
moments, static or dynamic polarizabilities, or magnetic
resonance parameters.6 In particular, forces on the nuclei (for
use in geometry optimizations and molecular dynamics
simulations) can be expressed as linear combinations of
subsystem energy gradients.
In principle, the many-body expansion is applicable at any

level of electronic structure theory, but our recent work has
focused on obtaining benchmark-quality results for noncovalent
clusters by applying traditional ab initio protocols but using eq
3 to dramatically reduce the cost of the calculations. Thus, our
target benchmark is the complete-basis CCSD(T) energy, and
the standard protocols include complete-basis extrapolation of
counterpoise-corrected MP2/aug-cc-pVXZ energies, along with
a triples correction

δ = −E E ECCSD(T) CCSD(T) MP2 (4)

The n-body expansion reduces the computational scaling of
these calculations from N( )p to n( )p , where p = 5 for MP2
and p = 7 for CCSD(T), for example. Moreover, the subsystem
calculations required by eq 3 are “embarrassingly parallelizable”
in the sense that they are independent of one another and can
easily be distributed across processors, leading to a dramatic
reduction in both “wall time” and storage (memory and disk)
requirements.
We have set our sights on a target accuracy of ≲1 kcal/mol.

A large body of literature suggests that this level of accuracy is
achievable or nearly achievable by considering at most n = 3
(see ref 2 and references therein). As such, fragment-based
methods appear to offer a proverbial “free lunch” (or at worst, a
heavily subsidized one), because even for a supersystem as
small as F−(H2O)10 with an N( )5 method such as MP2, the
total aggregate computer time (including all subsystem
calculations) required for a three-body expansion is significantly

smaller than that required for a supersystem calculation.7,8 The
difference is even more pronounced for CCSD(T) calculations.
Despite this resume ́ of success, our recent work5 has raised

serious concerns about the generality of these high-accuracy
results, which may not be indicative of the general performance
of the n-body expansion, especially in large systems. In practice,
we sometimes find that the sequence of n-body approximations
is not convergent, owing to problems with finite precision that
proliferate as n increases and to errors that grow rapidly as a
function of system size.5

This Account is focused on (1) providing a unified formalism
for discussing fragmentation methods based on the MBE, (2)
understanding how such methods perform in large systems, and
(3) assessing whether results are systematically improvable at
all levels of electronic structure theory. Concerning the
performance in large systems, we find that great care must be
taken to address issues of finite precision, and regarding
systematic improvability, we find that performance of the n-
body expansion can be quite erratic, depending on the
subsystem level of theory.

2. UNIFIED FORMALISM: THE GENERALIZED
MANY-BODY EXPANSION

The discussion above, particularly eq 1, tacitly assumes that
fragments I and J contain no nuclei in common, as would be
appropriate (though not required) for applications involving
noncovalent clusters. For macromolecular applications, frag-
mentation must sever covalent bonds and introduce caps on the
severed valencies, similar to the link atoms or frozen orbital
caps that are ubiquitous in QM/MM calculations. These caps
represent potentially serious perturbations to the electronic
structure, so to reduce their effects some investigators have
taken to using overlapping fragments, which do contain nuclei
in common. This choice, however, precludes straightforward
use of the n-body expansion, because that would involve some
double-counting, and an alternative to eq 3 must be developed.
Work by others,9−11 in the context of overlapping-fragment
methods, provided a foundation for a generalized MBE
(GMBE), which we ultimately derived in a rigorous and
general way.4,12 The GMBE provides a context for under-
standing the connections between a wide variety of seemingly
disparate fragment-based methods.
2.1. Theory

The GMBE amounts to a sequence of n-body approximations

≈ + Δ + ··· + ΔE n(1) (2) ( ) (5)

w i t h e a c h s u b s e q u e n t c o r r e c t i o n d efin e d a s

Δ = − −n n n( ) ( ) ( 1). The quantity n( ) is an overlap-
corrected n-body energy that eliminates any double-count-
ing:4,12
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Here, EI∩J
(n) is the energy of the subsystem formed from the

intersection of the Ith and Jth n-mers of fragments, FI
(n)∩FJ(n).

Equation 6 can be understood as follows.13 The supersystem’s
Hamiltonian can be expressed exactly as a sum of the
(overlapping) fragment Hamiltonians, plus additional terms
involving all mutual intersections of these fragments, with
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alternating signs as suggested by eq 6. (Fundamentally, this
result comes from the set-theoretical inclusion/exclusion
principle.12) Finally, one appeals to localized approximations
of the form

⟨Ψ| ̂ ∩ |Ψ⟩ ≈ ⟨Ψ | ̂ ∩ |Ψ ⟩∩ ∩H F F H F F( ) ( )I
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where Ψ is the supersystem wave function and ΨI∩J
(n) is the

localized wave function for FI
(n)∩FJ(n).

One can show that E(n) = n( ) in the special case of disjoint
fragments,4 so the GMBE is indeed a generalization of the
MBE. However, eq 6 is valid for an arbitrary partition of the
supersystem and in that sense is a generalization of the n-body
expansion for arbitrary fragmentation methods. The n = 1 case
of eq 6 had been suggested prior to our work,10,11 as an energy
formula for overlapping fragments, but the full form of the
GMBE suggests a means for systematic improvement. A few
other overlapping-fragment methods can be identified as
including a proper subset of the terms in an n-body GMBE
calculation,9,14 but preliminary tests suggest the importance of
these omitted terms in some cases.12

If the GMBE is simply a more complicated form of the MBE,
in the sense that it has additional terms arising from
intersections, then what is its utility? A hypothetical example
is shown in Figure 1, where we have fragmented hexane on the

left into three disjoint fragments and on the right into five
intersecting fragments. Even though the fragment sizes are the
same in both cases, the disjoint fragmentation pattern neglects
interactions between two pairs of covalently bonded carbon
atoms, at the n = 1 level, and a two-body expansion is needed to
include these interactions. For the cost of two additional ethane
calculations and four methane calculations (the latter arising
from intersections of fragments), these interactions can be
included at the n = 1 level by using an overlapping
fragmentation scheme. Thus, relaxing the restriction that
fragments need to be disjoint allows us to incorporate more
interactions at a given n. In practice, one might want to use
fragments larger than a single carbon atom (although single-
carbon fragments have been used in some previous studies9);
nevertheless, Figure 1 can be viewed as a schematic example,
and more generally the CH2 and CH3 groups in this figure
could simply be some small pieces of a larger macromolecule,
appropriately capped.
The GMBE provides the basis for a unified view of fragment-

based methods, in that eq 6 provides a universal energy
expression, regardless of how the fragments are formed, so that

there is no need to appeal to different energy expressions for
different methods. Various fragment-based methods are
distinguished by the truncation order, n, by how the fragments
are formed, and in the case that fragmentation severs covalent
bonds by how the severed valencies are to be capped.4

2.2. Embedding

The n-body expansion is known to be slowly convergent, and a
variety of multilevel approaches have been developed in which
a two- or three-body expansion at a relatively high level of
theory is supplemented with a lower-level treatment of higher-
order terms.15−19 In molecular systems, these higher-order
terms are mostly many-body induction effects, and an
alternative way to capture these is to perform a low-level
calculation on the entire supersystem (at the Hartree−Fock
level, say), which largely captures these effects, and then
combine this with a low-order n-body treatment of the
correlation energy.20−22

An alternative way to capture many-body polarization is to
embed the low-order n-body calculations in some representa-
tion of the electrostatic potential of the rest of the system. In
the fragment molecular orbital (FMO) method,23,24 short-range
electrostatic embedding is done using the actual fragment
electron densities, then one switches to wave function-derived
charges at longer range, whereas Dahlke and Truhlar25 have
pursued an approach in which only atom-centered point
charges are used. In principle, these electrostatic embedding
(EE) charges can be iteratively updated to mutual self-
consistency alongside the fragment wave functions, although
such a procedure complicates the formulation of analytic energy
gradients,4 a point that has not always been recognized in the
literature.

2.3. Performance of the GMBE

Figure 2 compares the performance of the MBE versus the
GMBE for a set of water and fluoride−water clusters.4,13 We
adopt the notation (G)MBE(n) for an n-body expansion, and
EE-(G)MBE(n) to indicate the use of atom-centered
embedding charges. The latter are noniterative Mulliken
charges computed at the same level of theory that is used forFigure 1. An illustration of disjoint versus overlapping fragments for a

polyatomic molecule.

Figure 2. Mean accuracy of the (G)MBE for various sets of cluster
isomers, with multiple isomers in each data set (data were obtained
from ref 4). All n-body calculations were performed at the B3LYP/6-
31+G(d,2p) level of theory, and accuracy is measured relative to a
calculation of the entire cluster at the same level of theory.
Calculations based on the GMBE employ three to four monomers
per fragment, whereas MBE results use one monomer per fragment.
The EE-GMBE(2) errors are so small as to be nearly invisible on this
scale, except (barely) in the case of F−(H2O)10.
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the n-body calculations, an embedding procedure that has been
shown to work remarkably well despite its simplicity.26

An important point to note is that we define “error” relative
to a supersystem calculation performed at the same level of
theory, which for the results in Figure 2 is the modest B3LYP/
6-31+G(d,2p) level. This is a conscious choice, meant to
explore the limitations of the (G)MBE itself and made with the
recognition that eq 6 is formally exact for n = N. It is possible,
by systematically varying the subsystem level of theory and
basis set, that one might stumble upon a choice that accurately
reproduces high-level supersystem benchmarks, but it is unclear
what would be learned from such an exercise, and we are more
interested in examining the convergence (or lack thereof) of
the n-body expansion toward the supersystem result.
Results for water and fluoride−water clusters in Figure 2

show that MBE(2) is a poor approximation without electro-
static embedding, but EE-MBE(2) errors per monomer are
quite small. The GMBE results in Figure 2 are based on placing
three or four water molecules in each overlapping fragment,
based on a distance criterion,4 and a fairly large cluster (N = 57
in Figure 2) is required in order to discover that GMBE(1) is
not a high-accuracy approach, in the absence of embedding.
Notably, the GMBE(1) energy formula is the same one that has
been written down in several previous studies,9−11 based on the
inclusion/exclusion principle.
It should also be noted that the errors in Figure 2 are plotted

on a per-monomer basis, and upon multiplying the errors for
(H2O)57 by a factor of 57, one discovers that the GMBE(2) and
EE-GMBE(2) methods are the only ones that achieve an
accuracy of <1 kcal/mol in the total energy. This is a notable
victory for the intersecting-fragment approach.
Another potentially significant advantage of the GMBE,

which we have only begun to explore, is that this approach may
be less sensitive to the details of precisely how the system is
f r agmented . In t e s t s i nvo l v i ng F− (H2O)6 and
(+H3NCH2CO2

−)(H2O)10 clusters, we consistently obtain
high-accuracy results with the GMBE for a variety of
fragmentation patterns, including cases in which the fragments
were intentionally chosen in a nonintuitive way, placing
spatially distant monomers together in the same fragment.12

More effort is needed to test the generality of this conclusion,
but if it proves to be robust this could be especially important
for macromolecular applications, where the choice of fragments
is less intuitive than it is for noncovalent clusters.

3. QUEST FOR HIGH ACCURACY

Too often, the reliability of EE-MBE and FMO methods has
been judged based on comparison to supersystem calculations
performed at modest levels of electronic structure theory (often
Hartree−Fock or DFT, or occasionally MP2) in small basis
sets. In this section, we consider high-accuracy calculations for
noncovalent clusters, where the goal is to use n-body methods
to reproduce the results of highly correlated approaches in large
basis sets.

3.1. Counterpoise Corrections

For high-accuracy applications, one must confront the issue of
basis-set superposition error (BSSE) or, in other words, the
borrowing of a neighbor’s basis functions that often leads to
severe overestimation of interaction energies and disappears
exceedingly slowly as the basis set approaches completeness.
While the BSSE problem is well-known, as is its widely
accepted solution via counterpoise (CP) correction,27 it is

useful to calibrate the reader as to the magnitude of this effect.
For that purpose, Figure 3 illustrates the convergence of MP2/

aug-cc-pVXZ calculations (X = D, T, Q) for an isomer of
(H2O)6 whose MP2/CBS limit has been carefully established.
Notice that a quadruple-ζ basis set is required to get within ±1
kcal/mol of this limit and that in the absence of CP corrections,
even the CBS extrapolation misses the mark.
Insofar as the n-body expansion is designed to reproduce the

results of a supersystem calculation performed at the same level
of theory, one can expect slow basis-set convergence for EE-
MBE(n) calculations as well, as shown in Figure 3 at the n = 3
level. What is needed is a CP correction that is valid order-by-
order in the MBE. Once such correction had been introduced
by Kamiya et al.,28 but it requires an impractically large number
of subsystem calculations. For N = 20 fragments, for example,
7340 distinct calculations are required at the n = 3 level (each
in a trimer basis set), and at the n = 4 level, an additional 67 830
distinct calculations are required, each in a tetramer basis set.
These calculations involve one to four actual monomers, with
ghost atoms filling out the rest of the trimer or tetramer basis.
As an alternative, we have introduced a many-body CP

correction that starts from the standard Boys−Bernardi
correction and then applies a consistent n-body expansion to
all terms. For an N-body cluster, the Boys−Bernardi CP
correction is

∑δ = −
=
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I
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where superscripts indicate which monomers contribute basis
functions and subscripts indicate which monomers contribute
electrons and nuclei (the rest are ghost atoms). Application of
an n-body approximation to δECP affords a correction that we
have called MBCP(n), which is given by
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Figure 3. Convergence to the MP2/CBS limit for the “bag” isomer of
(H2O)6. The gray region denotes ±1 kcal/mol from the benchmark
MP2/CBS value. Reprinted from ref 7. Copyright 2013 American
Chemical Society.
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for n = 3. It is then logically consistent to combine the
MBCP(n) correction with an n-body approximation to the
supersystem energy (eq 3). Figure 3 shows that the EE-
MBCP(3) approach accurately reproduces the CP-corrected
MP2 energy for (H2O)6 across the whole sequence of aug-cc-
pVXZ basis sets and can be extrapolated to an accurate MP2/
CBS binding energy.
For N = 20 fragments, the MBCP(3) correction requires

3800 calculations in a trimer basis, half as many as the CP
correction of Kamiya et al.,28 and the reduction is even greater
at n = 4. While this still seems like (and is!) a substantial
amount of computation, for a system with only N = 11
fragments, the cost of an MBCP(3) calculation at the RIMP2/
aug-cc-pVQZ level is less than 30% (in aggregate computer
time, considering all parallel processors) of what is required for
a traditional, CP-corrected RIMP2 calculation in the same basis
set.7,8 For the MBCP(2) approach, the computer time is
reduced by 98% and the accuracy is ∼1 kcal/mol,7 which may
be sufficient for rapid, rough screening of potential energy
surfaces.
In the absence of CP corrections, one should be skeptical of

ostensibly high-accuracy results obtained with n-body ex-
pansions, because BSSE (which overstabilizes the cluster) can
partially compensate for neglect of higher-order n-body
interactions in potentially unpredictable ways.8 Examples are
shown in Figure 4, which plots the convergence toward the
MP2/CBS limit of MP2/aug-cc-pVXZ energies that are not CP-
corrected. (The MP2/CBS limit is established using CP-
corrected results.) In finite basis sets and in the absence of CP
corrections, EE-MBE(2) and EE-MBE(3) approximations to
the MP2 energy are actually more accurate (with respect to the
MP2/CBS benchmark) than is MP2 itself! This is simply error
cancellation, but there is no clear pattern to this cancellation,
even in the relatively high-quality and systematic aug-cc-pVXZ
sequence of basis sets. Results in less systematically defined
basis sets are liable to behave even more erratically.

3.2. CCSD(T) Corrections

For best accuracy, “gold standard” CCSD(T) CBS results are
desirable. With the MP2/CBS limit in hand, these are obtained
by adding a correction, δECCSD(T), as defined in eq 4, evaluated
in a triple-ζ basis set.29 In the spirit of this work, we apply an n-
body approximation to both the MP2 and CCSD(T) energies
in this equation, to obtain a (relatively!) low-cost CCSD(T)
correction.
Figure 5 shows the errors engendered by two- and three-

body approximations to δECCSD(T), which are vanishingly small
at the three-body level and <0.2 kcal/mol at the two-body level.
In conjunction with MP2/CBS results from Figure 3, this
suggests that total energies within ∼0.2 kcal/mol of CCSD(T)/
CBS benchmarks can be obtained for (H2O)6, with a
computational strategy whose bottleneck steps are MP2/aug-
cc-pVQZ calculations on trimers and CCSD(T)/heavy-aug-cc-
pVTZ calculations on dimers.
Both aspects of this strategy need to be investigated in larger

clusters, however. In the more strongly interacting F−(H2O)10

cluster, for example, the two-body triples correction is ∼2.4
kcal/mol (averaged over several isomers), whereas the three-
body approximation to δECCSD(T) is ∼1.8 kcal/mol.30 One
might therefore guess that the four-body approximation would
differ by an even smaller amount (<0.6 kcal/mol) from the
three-body approximation, insofar as the n-body expansion
converges monotonically, but this may not be the case and
warrants further exploration.
3.3. Embedding Methods

Although a few results in the literature suggest that EE-MBE(n)
results are fairly insensitive to the nature of the point charges
used in the embedding,26 differences are more pronounced in
our hands and become even more so in large clusters.5

Preliminary results at a modest level of theory (Figure 6)
suggest that varying the nature of the electrostatic embedding

Figure 4. Mean errors in (RI)MP2/aug-cc-pVXZ energies for (a)
(H2O)6 and (b) F

−(H2O)10, computed with respect to (RI)MP2/CBS
benchmarks and averaged over a set of isomers. The (RI)MP2 errors
remain nonzero upon extrapolation in this figure because the
benchmark extrapolation uses counterpoise-corrected (RI)MP2
results. Reprinted from ref 8. Copyright 2013 American Institute of
Physics.

Figure 5. Absolute errors in two- and three-body approximations to
δECCSD(T), relative to full-cluster CCSD(T) benchmarks. Data are
taken from ref 7.
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may be a route to higher accuracy. In the figure, we compare
EE-MBE(3) results using two different point-charge embed-
dings: gas-phase Mulliken charges and iteratively updated
“ChElPG” charges. The latter are fit in order to reproduce the
electrostatic potential outside of the atomic van der Waals radii
and thus represent the best electrostatic embedding charges, in
a well-defined sense. For the sequence of water clusters in
Figure 6, these charges do indeed outperform Mulliken
embedding for EE-MBE(3) calculations, and Mulliken
embedding in turn outperforms the nonembedded MBE(3)
approximation.
One might anticipate even better results if the actual

monomer electron densities are used to compute the
intermolecular Coulomb interactions, which is the approach
taken (at least for nearby monomers) in the FMO method.23,24

FMO(3) results are also shown in Figure 6, but in fact these
errors are significantly larger than those obtained from MBE(3)
calculations with no embedding at all! FMO calculations are
sometimes prone to large errors for large basis sets, especially
where diffuse functions are involved, and point-charge
embedding often performs better in such cases.32 However,
the calculations in Figure 6 use only the cc-pVDZ basis set, yet
errors remain large. The reasons for this are unclear.

4. SYSTEMATIC TESTS FOR LARGER SYSTEMS
Although numerous studies have documented the performance
of the MBE in small noncovalent clusters, relatively little
attention has been paid to how these methods perform as a
function of increasing system size. We have recently begun to
explore the performance of n-body expansions in larger
clusters,5 with some provocative results that are summarized
in this section.
Given a function f that depends on a set of independent

variables {xi}, propagation-of-errors (PoE) analysis suggests
that the uncertainty in the value of f is
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where δxi is the uncertainty in xi. In the present case, f = E(n) is
the approximate energy obtained from an n-body expansion,
and the xi are the independent subsystem energies. For a self-
consistent field (SCF) convergence threshold of 10−α hartree,

we assume that the (α + 1)st decimal digit of the energy is a
random number and take 10−(α+1) hartree as the uncertainty in
the subsystem energies. A PoE analysis of eq 3 is then used to
estimate how these uncertainties manifest in E(n).5

The combinatorial nature of the MBE causes the uncertainty
in E(n) to grow highly nonlinearly as a function of system size,
N.5 Error estimates obtained from PoE analysis are plotted as a
function of N in Figure 7, and for MBE(3), the uncertainty

crosses the 1 kcal/mol mark around N ≈ 30. The situation is
markedly worse when embedding charges are added, and for
EE-MBE(3) calculations, the PoE uncertainty crosses the 1
kcal/mol threshold for N ≈ 20. (The latter analysis assumes an
uncertainty of 10−6 au in the embedding charges, consistent
with the six decimal digits to which these charges are often
output by electronic structure programs.) Although the data in
Figure 7 are generic estimates, in actual practice we have noted
that for n ≥ 3 and for systems of size (H2O)N≳30, discrepancies
on the order of several kilocalories per mole can appear
between implementations of EE-MBE(n) that use a script or a
driver program (which simply reads the text output from an
electronic structure program), compared with an implementa-
tion that reads binary scratch files in full double precision.5

These results underscore the need for high precision in the
subsystem energy calculations. The use of embedding charges
exacerbates this need but seems preferable to including higher-
order n-body terms whose number proliferates rapidly. We have
systematically studied the precision of EE-MBE(n) as a
function of the SCF convergence threshold (τSCF) and the
integral screening threshold (τints),

5 and some sample results
are shown in Table 1 for “loose” versus “tight” thresholds.
Through at least N = 40 water molecules, results with the two
sets of thresholds are unchanged for an EE-MBE(2) calculation
but differ by ≈1.5 kcal/mol for EE-MBE(3) calculations on
(H2O)40 and by even more for EE-MBE(4) calculations. The
dramatic variation in accuracy as a function of τints (which is
primarily associated with shell-pair screening5) is disheartening,
because the “tight” value τints =10

−14 au that is used in Table 1

Figure 6. Absolute error per monomer in the binding energies of
(H2O)N clusters (representing putative global minimum structures
from ref 31) for various three-body expansions. Errors are measured
relative to supersystem calculations at the same level of theory
(B3LYP/cc-pVDZ).

Figure 7. Total uncertainty (as estimated by PoE analysis) in an n-
body expansion (a) without embedding, assuming an uncertainty of
10−6 hartree in each subsystem calculation, and (b) with embedding,
assuming an additional uncertainty of 10−6 au in the embedding
charges.
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will be extremely costly for correlated wave function
calculations.
The threshold-dependent data in Table 1 bear out the PoE

prediction that precision problems will grow worse as a
function of n for a given system size. Together, these results call
into question the assumption that the n-body expansion
represents a systematically improvable method, as a function
of n. In support of this assertion, we plot size-dependent errors
in EE-MBE(n) results in Figure 8. There are several take-home

points from this plot. First, notice the rapid divergence (with
respect to system size) of the EE-MBE(5) results, even when
the error is measured on a per-monomer basis. Although the
individual five-body energy corrections may be small, they
proliferate rapidly in number as system size increases. Second,
no attempt has been made to correct these results for BSSE,
and therefore the accuracy of the supersystem benchmarks is
questionable, but in any case the extent to which uncorrected n-
body results can approximate the uncorrected supersystem
energy is interesting. The data in Figure 8 suggest that n = 4 is
required to achieve accuracy better than ∼0.5 kcal/(mol·
monomer) for large systems.

5. FUTURE OUTLOOK

Our generalized many-body expansion demonstrates how a
variety of fragment-based quantum chemistry methods,
including those based on overlapping fragments, can be unified
under a common theoretical framework. At the moment,
however, our numerical results regarding the properties of this
expansion are somewhat conflicting. We have demonstrated
very high accuracy with an overlapping two-body expansion,
where “accuracy” is defined with respect to a supersystem
calculation computed at the same level of theory that is used in
the subsystem calculations. Low-level DFT benchmarks can be
reproduced with extraordinarily high accuracy in systems as
large as (H2O)57, and high-accuracy CCSD(T)/CBS bench-
marks for systems such as F−(H2O)10 are reproduced for the
“right reasons”, via three-body expansions of MP2/aug-cc-
pVXZ energies combined with three-body counterpoise
corrections and extrapolated to the MP2/CBS limit, followed
by a two-body CCSD(T) correction.
Results based on the traditional (nonoverlapping) n-body

expansion, however, are less promising when extended to large
systems. The combinatorial growth in the number of subsystem
calculations (with respect to both system size, N, and
truncation order, n) leads to precision problems that amplify
uncertainties in the subsystem energies, necessitating the use of
tighter-than-normal numerical thresholds and suggesting that,
as a practical matter, only three- or possibly four-body
expansions are numerically feasible. As such, the n-body
expansion does not, in practice, afford a systematically
improvable sequence of approximations and cannot naively
be assumed to converge to the correct result as n increases.
An alternative to high-order expansions is to sum the high-

order terms in closed-form by means of a supersystem
calculation performed at a low level of theory,20−22 which can
be done in an affordable way even for large systems if the
supersystem calculation uses a classical force field.16 Even with
tight numerical thresholds, however, we find that total error
grows rapidly as a function of N even at the two-body level,
although the error per fragment may still be acceptable at the
three-body level. As such, it is imperative to test the accuracy of
even low-order expansions in a systematic way for large
systems.
Despite results in small clusters suggesting that the details of

electrostatic embedding matter little,26 results presented here
for both point-charge and density embeddings suggest that
these details matter quite significantly. We also find that the
accuracy varies in unpredictable ways as the basis set is
changed,5,8 at least some of which is a result of BSSE that has
often gone uncorrected in n-body methods, which can partially
offset the neglect of higher-order terms in the expansion.8

Given all of these caveats, at present we must conclude that it
remains to be seen whether the n-body expansion, or a

Table 1. Total Errors (in kcal/mol) in EE-MBE(n) Calculationsa of (H2O)N Clusters Using Two Sets of Thresholds

EE-MBE(2) EE-MBE(3) EE-MBE(4) EE-MBE(5)

N looseb tightc looseb tightc looseb tightc looseb tightc

10 −8.1 −8.1 2.4 2.4 −0.3 −0.3 −0.0 −0.0
20 −24.2 −24.3 5.6 6.0 0.1 −0.6 −2.8 −0.2
30 −55.2 −55.2 15.1 16.0 1.3 −1.1 −16.2 −2.6
40 −74.6 −74.6 16.8 18.4 4.6 −0.5 −54.1 −8.1

aSubsystem calculations performed at the B3LYP/cc-pVDZ level with TIP3P embedding charges and compared with a supersystem B3LYP/cc-
pVDZ calculation. bτSCF = 10−5 au and τints = 10−9 au. cτSCF = 10−6 au and τints = 10−14 au.

Figure 8. Errors per monomer, with respect to a supersystem
calculation at the same level of theory (B3LYP/cc-pVDZ), in EE-
MBE(n) results using (a) Mulliken and (b) TIP3P embedding charges.
Thresholds were set at τSCF = 10−5 au and τints =10

−9 au.
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generalized n-body expansion,4 can be turned into a “black box”
quantum chemistry method where one can reliably anticipate
the error as a function of both n and N.
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