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CONSPECTUS: Single-excitation methods, namely, config-
uration interaction singles and time-dependent density func-
tional theory (TDDFT), along with semiempirical versions
thereof, represent the most computationally affordable electronic
structure methods for describing electronically excited states,
scaling as N( )atoms

4 absent further approximations. This
relatively low cost, combined with a treatment of electron
correlation, has made TDDFT the most widely used excited-state
quantum chemistry method over the past 20+ years. Never-
theless, certain inherent problems (beyond just the accuracy of
this or that exchange−correlation functional) limit the utility of
traditional TDDFT. For one, it affords potential energy surfaces
whose topology is incorrect in the vicinity of any conical intersection (CI) that involves the ground state. Since CIs are the conduits for
transitions between electronic states, the TDDFT description of photochemistry (internal conversion and intersystem crossing) is
therefore suspect. Second, the N( )atoms

4 cost can become prohibitive in large systems, especially those that involve multiple
electronically coupled chromophores, for example, the antennae structures of light-harvesting complexes or the conjugated polymers
used in organic photovoltaics. In such cases, the smallest realistic mimics might already be quite large from the standpoint of ab initio
quantum chemistry. This Account describes several new computational methods that address these problems.
Topology around a CI can be rigorously corrected using a “spin-flip” version of TDDFT, which involves an α → β spin-flipping
transition in addition to occupied → virtual excitation of one electron. Within this formalism, singlet states are generated via
excitation from a high-spin triplet reference state, doublets from a quartet, etc. This provides a more balanced treatment of electron
correlation between ground and excited states. Spin contamination is problematic away from the Franck−Condon region, but we
describe a “spin-complete” version of the theory in which proper spin eigenstates are obtained by construction.
For systems of coupled chromophores, we have developed an ab initio version of the Frenkel−Davydov exciton model in which
collective excitations of the system are expanded in a basis of excited states computed for individual chromophores. The monomer
calculations are trivially parallelizable, as is computation of the coupling matrix elements needed to construct the exciton
Hamiltonian, and systems containing hundreds of chromophores can be tackled on commodity hardware. This enables
calculations on organic semiconductors, where even small model systems exhibit a semicontinuum of excited states that renders
traditional TDDFT computationally challenging. Despite including only single excitations on each monomer, the exciton model
can describe entangled spins on two or more monomers, an effect that is responsible for excitation energy transfer between
chromophores, for example, in singlet fission.
Excitonic approximations can also be applied to the TDDFT equations themselves, and a particularly promising application is to
describe the effects of environment on an excitation that is localized on a single chromophore. This “local excitation approxima-
tion” to TDDFT allows an essentially arbitrary number of solvent molecules to be included in the calculation in a highly parallelizable
way such that the time-to-solution increases only very slowly as additional solvent molecules are added. It is therefore possible to
converge the calculation with respect to describing an ever-larger portion of the environment at a quantum-mechanical level.

1. INTRODUCTION

The conceptual picture of an electronic excitation as a single-
particle transition between an occupied molecular orbital (MO)
and an unoccupied or “virtual” MO isto misquote H. L.
Mencken1neat, plausible, and not entirely wrong. The more
educated quantum mechanic realizes, of course, that an excited
state |ψ*⟩ should be expressed as a linear combination of single
excitations,

∑ ∑ψ| *⟩ = |Φ ⟩t
i a

ia
ia

occ. virt.

(1)

Here, |Φia⟩ is a Slater determinant formed from ground-state
MOs, removing an electron from occupied orbital i and placing it
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into virtual orbital a. The ansatz in eq 1 is used in the simplest
excited-state quantum chemistry model, configuration inter-
action singles (CIS), but also in the most widely-used model,
time-dependent density functional theory (TDDFT).2 The latter
is popular due to its relatively low cost and generally reasonable
accuracy, with errors ≲0.3 eV for vertical excitation energies in
many cases.3,4

On the other hand, eq 1 is fundamentally incapable of
describing states characterized by a double excitation out of the
ground state. These are important, for example, to describe the
“multi-exciton” state of relevance to singlet fission,5 in which
triplet excited states on two different molecules spin-couple to an
overall singlet. Double excitations are also crucial for obtaining
a balanced description of the conical intersections that are
responsible for photochemistry.6 Nevertheless, the aim of this
Account is to explore how far one can go with variations on the
single-excitation ansatz.
For application to photochemical reactions, the accuracy of

TDDFT is compelling, yet until recently there were fundamental
limitations in the description of TDDFT potential energy
surfaces in regions associated with breakdown of the Born−
Oppenheimer (BO) approximation. Some of these deficiencies
have been rectified recently,7,8 using the “spin-flip” approach to
TDDFT,10 providing a low-cost ab initio method for computa-
tional photochemistry.
In systems with multiple chromophores, the cost of traditional

single-excitation approaches may become prohibitive. Examples
include collective excitations in systems such as organic semi-
conductors (of interest in photovoltaics), where the excited-
state wave functions delocalize across more than one monomer.
Even in cases where the excitation is localized, it might still be
necessary to describe an extended portion of the environment
at a quantum-mechanical level in order to obtain converged
excitation energies. We will describe new models that signifi-
cantly reduce the cost of excited-state calculations in systems
such as these, by exploiting the ansatz in eq 1 but applied
separately to individual subsystems.

2. PHOTOCHEMISTRY

2.1. Conical Intersections

Theoretical photochemistry is the study of the nonadiabatic
events that govern internal conversion and intersystem crossing.
These occur when at least two potential energy surfaces become
(quasi)degenerate, leading to a breakdown of the BO approxima-
tion such that coupling between nuclear and electronic degrees of
freedom must be considered. Transitions between adiabatic BO
states |ψJ⟩ are driven by matrix elements of the nuclear position
derivatives, as codified in the first-order derivative coupling vector

ψ ψ= ⟨ ∂ ∂ ⟩d R( / )JK J K (2)

A related quantity is the nonadiabatic coupling vector

ψ ψ= ⟨ ∂ ̂ ∂ ⟩

= −

H

E E

h R

d

( / )

( )

JK J K

K J JK (3)

where Ĥ is the electronic Hamiltonian.
Consider the matrix representation of Ĥ in a basis of two

arbitrary electronic states:

=
*

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

H H

H H
H

R R

R R

( ) ( )

( ) ( )

00 01

01 11 (4)

The BO states diagonalize H, and two conditions must be
satisfied in order to obtain degeneracy in the BO representation:
H00 = H11 and H01 = 0. As such, degeneracies between two BO
states exist in subspaces of dimension Nint − 2, where Nint =
3Natoms − 6 is the number of internal (vibrational) degrees of
freedom. This (Nint − 2)-dimensional subspace is known as
the seam space.12,13 In the remaining two degrees of freedom,
known as the branching space, the degeneracy between BO states
is lifted by an infinitesimal displacement. In three dimensions,
this resembles a double cone about the point of intersection,
as shown in Figure 1a, and such points are therefore known as
conical intersections (CIs). The branching space is defined by a
pair of vectors gJK and hJK, where

12,13

=
∂
∂

−
∂
∂

E E
g

R RJK
J K

(5)

The topography of potential surfaces near a CI can signifi-
cantly affect the dynamics.13−17 The tilt of the CI cone can be
characterized based on the projection of the vector

=
∂
∂

+
∂
∂

⎛
⎝⎜

⎞
⎠⎟

E E
s

R R
1
2JK

J K

(6)

onto the branching plane. Define scaled projections

= · = ·s g s hs g s h( )/ ( )/x
JK JK

y
JK JK

2 2
(7)

where g = ∥gJK∥ and h = ∥hJK∥. The CI is “peaked” if sx and sy are
close to zero (Figure 1b); otherwise it is “sloped” (Figure 1d).14,15

It is suggested that the former case provides a better “conical
funnel”, providing more efficient nonadiabatic transitions.13−17

2.2. Time-Dependent DFT

The quantity gJK is available for any model chemistry for which
ground- and excited-state gradients are available. Analytic
gradient formalism can be used to obtain hJK as well, although
this is more complicated and thus nonadiabatic couplings are
only available for a few electronic structure models and only
in a few quantum chemistry programs. Given that TDDFT often
provides reasonable excited-state properties and can routinely
be applied to systems with 100+ atoms, it is noteworthy that only
recently have analytic derivative couplings been derived and
implemented for this method.7,8,18−20

A serious drawback for photochemical applications, however,
is that TDDFT predicts the wrong topology for any CI that
involves the reference state,6 which is usually the ground state.
Excited states in TDDFT are computed from the linear re-
sponse of the reference-state density,2 and if one imagines eq 4 as
the TDDFT response matrix, then couplingsH0n to the reference
state “0” vanish identically. As a result, there is only one
degeneracy condition (H00 = H11); hence the branching space is
one-dimensional.6 Moreover, because electron correlation is
treated in an unbalanced way for the reference state compared
with the response states, problems arise in cases of symmetry-
required degeneracy, such as Jahn−Teller distortion.7
The simplest extension of TDDFT that corrects these

problems is spin-flip (SF) TDDFT.10 In this approach, one
uses a reference state whose multiplicity is S + 1 in order to target
states withmultiplicity S. This involves generating all occupied→
virtual excitations of the high-spin S + 1 reference state, in
conjunction with an α → β spin flip (an example for S = 0 is
shown in Figure 2). For S = 0, this generates a closed-shell
determinant that resembles the singlet ground state (Figure 2b),
whose excitation energy may be negative if the ground state is a
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singlet. In any case, S0 is treated in a balanced way alongside
S1, S2, etc. We have recently derived and implemented analytic
derivative couplings (hJK vectors) for SF-TDDFT,

7,8 which enables
the use of algorithms that greatly accelerate the location and

optimization of CIs, compared with the algorithms that must
be used when only analytic gradients (gJK vectors) are available.

7

At the time of this writing, analytic derivative couplings for
SF-TDDFT are available only in the Q-CHEM code.9

A brief comment is in order regarding the choice of density
functional for use in SF-TDDFT. In early applications to vertical
excitation energies of radicals, SF-TDDFT was found to perform
best with functionals containing∼50%Hartree−Fock exchange.10
This is somewhatmore than the 20−25%Hartree−Fock exchange
used in hybrid functionals such as B3LYP and PBE0 that are
popular for ground-state calculations and traditional TDDFT, for
theoretical reasons suggested in ref 22. In most SF-TDDFT
studies of CIs,7,8,21,23−25,29 the “Becke half and-half” (BH&H)
functional has been used, which mixes 50% Hartree−Fock
exchange with 50% of Becke88 exchange. All SF-TDDFT
calculations herein use the BH&HLYP functional, which
combines BH&H with Lee−Yang−Parr correlation.
2.3. Examples

2.3.1. Topography and Topology of CIs. Since the conical
seam is a subspace of dimension Nint − 2, the photochemical
analogue of a ground-state minimum-energy pathway usually
involves a search for the minimum-energy crossing point
(MECP) along the seam, which can then be used as one end
point in a pathway search starting from the Franck−Condon

Figure 1. CIs between potential surfaces. The two-dimensional branching space defines a double cone, which is most evident in the peaked CI in panel a,
yet this is merely one point along the conical seam that is evident in panel c. Panels b and d are one-dimensional cross sections that emphasize the “peaked”
nature of the CI in panel a and the “sloped” nature of that in panel c. Reprinted with permission from ref 11. Copyright 2005 American Chemical Society.

Figure 2. (a) High-spin triplet reference state and (b) singlet configura-
tions generated by a spin-flipping excitation, the first of which resembles
the singlet ground state. Panels c−e illustrate the additional determinants
that are necessary to obtain spin eigenstates. Reprinted with permission
from ref 21. Copyright 2015 American Institute of Physics.
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geometry on the excited state. MECPs can be located muchmore
efficiently using algorithms that exploit both the gJK and hJK
vectors as opposed to gJK alone.

7

Figure 3 presents potential scans around two CIs of ethylene,
computed using SF-TDDFT. It is clear by inspection that the
twisted/pyramidalized MECP (Figure 3a) exhibits a peaked
topography whereas the ethylidene MECP (Figure 3b) is sloped.
This is confirmed by the values of sx and sy reported in Table 1.

The picture is very different when the same calculation is
carried out using traditional, spin-conserving TDDFT, as shown
in Figure 4. Here, degeneracy is lifted in one dimension only,
which is most evident for the ethylidene CI (Figure 4b).
Not surprisingly, the tilt parameters sx and sy (Table 1) are quite
different in this case and fail to provide even qualitatively correct
information about whether the CI is peaked or sloped.
2.3.2. Photoisomerization. Retinal protonated Schiff base

(RPSB), the chromophore in the rhodopsin family of proteins,
converts light into mechanical energy via excited-state cis→ trans

isomerization. RPSB has five double bonds capable of isomer-
ization; see Figure 5. In rhodopsin, isomerization occurs
exclusively at the C11C12 bond, while in bacteriorhodopsin
the C13C14 photoisomerization is the dominant reaction.26

Several photoproducts are obtained in solvated environments,
with the 11-cis isomer predominating.27

To demonstrate the applicability of SF-TDDFT to photo-
chemistry, we examine photoisomerization pathways in a
truncated model of the RPSB chromophore, for which CASSCF
calculations have been reported.16 (The entire RPSB chromo-
phore could be studied using SF-TDDFT).
We optimize S0/S1 MECPs corresponding to isomerization

at C11C12 and at C13C14; we label these MECPs as CI11−12
and CI13−14, respectively. Previous work has suggested that
SF-TDDFT provides CI structures that are in good agreement
with multireference wave function results,25 and Figure 6 shows
that the MECPs obtained here are nearly identical to CASSCF
structures. However, SF-TDDFT predicts CI13−14 to be 1 eV
higher in energy that CI11−12, whereas CASSCF predicts them to

Figure 3.MECPs between the S0 and S1 states of C2H4, computed using
SF-TDDFT at the BH&HLYP/6-31G** level. Energies are relative to
the S0 minimum.

Table 1. Tilt Parameters for Two MECPs Connecting the S0
and S1 States of C2H4, Computed Using Spin-Flipping versus
Spin-Conserving TDDFT

|sx| |sy|

MECP
spin-

flippinga
spin-

conservingb
spin-

flippinga
spin-

conservingb

twisted/pyramidalized 0.32 0.27 0.60 35.48
ethylidene 1.36 0.55 3.34 2.73
aBH&HLYP/6-31G** functional. bPBE0/6-31G** functional.

Figure 4.MECPs between the S0 and S1 states of C2H4, computed using
traditional TDDFT at the PBE0/6-31G** level.

Figure 5. Structure of (a) all-trans RPSB and (b) the truncated analogue
considered here.
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be nearly isoenergetic.16 Further work is needed to determine
whether this is a failure of DFT or rather is due to lack of
dynamical correlation in CASSCF, a known problem with the
latter method.28

Figure 7 summarizes the energy levels of the minima and
MECPs along the photoisomerization pathways of the all-trans
RPSB analogue. Following S0 → S1 excitation, the system may
become trapped in the planar local minimum (S1min−p). Both
CI11−12 and a local minimum with a twisted C13C14 bond
(S1min−13) are energetically lower than S1min−p. At CI11−12, the
system may return to S0 via nonadiabatic transition and further
relax on the S0 surface to form the 11-cis isomer. The S1min−13
minimum, on the other hand, lies below CI13−14; hence the
system may become trapped in the excited state. Furthermore,
the minimum-energy reaction pathway connecting S0min and
CI11−12 is barrierless, while the pathway connecting S0min and
CI13−14 has a barrier of 0.3 eV. Overall, our SF-TDDFT
calculations suggest that the 11-cis isomer of RPSB will be the
dominant photoproduct, despite being less stable than the 13-cis
isomer.
2.4. Spin Contamination

An unfortunate drawback of SF-TDDFT is that it is subject
to serious spin contamination, to the point that it frequently
becomes difficult to assign spin multiplicities away from the
Franck−Condon region.21,25 For optimization of singlet excited

states starting from a triplet reference, we often find that ⟨S2̂⟩≈ 1
(in atomic units), indicating a state that is an equal mixture of
singlet and triplet. An example is shown in Figure 8a, which plots
an optimization “trajectory” for a S0/S1 MECP of ethylene. Nine
times within the first 14 optimization steps, the assignment of
spin multiplicity becomes ambiguous in the sense that nominal
“triplet” states possess ⟨S2̂⟩ values similar to those for the
“singlet” states. (For the purpose of this calculation, we assume
that any state with ⟨S2̂⟩ < 1.5 is a singlet). Mixing of singlet and

Figure 6. MECP structures for the RPSB model in Figure 5b,
superimposing CASSCF results (in blue, from ref 16) with SF-TDDFT
results (BH&HLYP/6-31G*, in red) for (a) CI11−12 and (b) CI13−14.

Figure 7. Energy level diagram for isomerization about either the C11C12 or C13C14 bond for an all-trans RPSB analogue. Results were computed
using SF-TDDFT at the BH&HLYP/6-31G* level. S1min−p is a planar S1 minimum and S1min−13 is a minimum that is twisted about the C13C14 bond.

Figure 8. S0/S1MECP optimization trajectories for C2H4 starting from a
twisted geometry. (a) SF-TDDFT results, where the numbered labels
indicate steps for which the assignment of spinmultiplicity is ambiguous.
(b) SA-DF-DFT results. All calculations use the BH&HLYP/6-31G*
functional. Reprinted with permission from ref 21. Copyright 2015
American Institute of Physics.
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triplet spin components leads to an oscillatory trajectory that
takes many steps to converge. This behavior is unacceptable in
molecular dynamics applications, and in such cases one must
resort to state-tracking techniques that attempt to assign spin
multiplicity based on overlap with the wave function at the
previous step.21,29

Recently, we reported a spin-adapted (SA) version of SF-TDDFT
that we call SA-SF-DFT.21 This approach automatically
generates the minimum number of additional determinants
required to construct proper S ̂2 eigenstates, for example, the
missing configurations in Figure 2c−e. As a result, S is restored
as a good quantum number and spin multiplicity is well-defined.
Figure 8b shows the SA-SF-DFT optimization trajectory for the
same MECP of ethylene. Rapid oscillations are significantly
reduced, the optimization reaches the correct intersection seam
within six steps, and the overall number of steps to converge the
MECP is reduced significantly.

3. EXCITON MODELS
Molecular excitons, that is, collective excitations in multi-
chromophore systems, represent an important class of excited-
state problems. Examples include the light-harvesting complexes
of plants and photosynthetic bacteria, for which there is an
ongoing debate about the role of quantum coherence in the
energy-transfer dynamics,30,31 an issue that also arises in studies
of conjugated organic polymers.32 Another important example
is the singlet fission phenomenon,5 in which triplet states on
two chromophores spin-couple to a singlet but then diffuse apart,
generating two charge carriers per photon.
In these examples, even the individual chromophores are not

small by quantum chemistry standards, and ab initio calcula-
tions of energy transfer in large arrays of chromophores quickly
become intractable. Nevertheless, semiempirical studies suggest
that treatment of the extended chromophore array can have a
profound effect on the simulated energy-transfer dynamics.33

3.1. Frenkel−Davydov Exciton Model

An old idea for obtaining a qualitative understanding of the nature
of collective excitations in systems of coupled chromophores is
the Frenkel−Davydov excitonmodel, in which the wave functions
|Ψn⟩ for the collective system are expanded in a basis of monomer
excitations:34

∑ ∏ψ ψΨ ⟩ = *⟩ ⟩
≠

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟Cn

A
n
A

A
B A

B

monomers

(8)

Here, |ψB⟩ represents the ground-state wave function for
monomer B and |ψA*⟩ is an excited-state wave function for
monomer A. The Hamiltonian matrix is then constructed and
diagonalized in a basis

ψ ψ ψ ψ ψ ψ| * ⟩ | * ⟩... , ... , ...A B C A B C

whose dimension is simply the number of monomers, in order
to determine the coefficients Cn

A in eq 8. This “exciton site basis”
can be envisaged as a natural set of diabatic states in which to
represent the adiabatic states |Ψn⟩.
Construction of the Hamiltonian requires matrix elements of

Ĥ in the exciton site basis. Historically (but even in modern
implementations35,36), this has been accomplished using dipole-
coupling approximations or by evaluating the Coulomb integral
between transition densities on different sites.37−39 Both approaches
neglect exchange coupling between the monomers. In contrast,
we have recently reported an ab initio Frenkel−Davydov exciton

model (AIFDEM) that avoids these approximations,34,40 and thus
seeks a quantitative description of excitation energy transfer while
maintaining the intuitive appeal (and trivial parallelizability) of
the original model.
Our model assumes that the excited monomer wave functions

|ψX*⟩ are linear combinations of singly excited Slater determinants
|ΦX

ia⟩, as in eq 1. These can be efficiently computed for isolated
monomers in a distributed fashion, as can coupling matrix
elements such as

∑ ∑
ψ ψ ψ ψ ψ ψ= ⟨ * ̂ * ⟩

= ⟨Φ Φ Φ ̂ Φ Φ Φ ⟩
σ τ

σ τ

H H

t t H

... ...

... ...

AB A B C A B C

ia jb
ia
A

jb
B

A
ia

B C A B
jb

C
(9)

and overlap integrals

ψ ψ ψ ψ ψ ψ= ⟨ * * ⟩S ... ...AB A B C A B C (10)

that are necessary because the monomer CIS or TDDFT
calculations are carried out independently of the other
chromophores; thus the orbitals on different monomers are
not orthogonal. (The spin indices σ and τ in eq 9 are a shorthand
notation to imply that we construct proper spin eigenstates34).
Notably, Ĥ is the full electronic Hamiltonian for the aggregate;
hence no dipole-coupling, neglect-of-exchange, or nearest-
neighbor approximation has been made. The method affords a
well-defined wave function for the supersystem, so that properties
such as oscillator strengths are straightforward to compute.
Having constructed the matrix elements in eqs 9 and 10, the

AIFDEM then consists of solving the Schrödinger equation
HC = ESC, and we find that the eigenvalues E tend to lie within
∼0.2 eV of the results of a supersystem CIS calculation.34,40

This is true even for challenging test cases such as chains of He
atoms, where the excited states resemble particle-in-a-box states
that are maximally delocalized across monomers. In such cases,
it is necessary to increase the variational flexibility of the direct-
product basis by including more than one excited state per
monomer (|ψA**ψBψC...⟩, etc.), but this adds very little to the
computational cost. The basis can be further augmented with
“charge resonance” determinants, for example, |ψA

+ψB
−ψC...⟩ and

|ψA
−ψB

+ψC...⟩.
As originally formulated in eq 9, the cost to evaluate matrix

elements grows as the fourth power of supersystem size, which
is necessary to capture the nonlocal exchange interaction.
This interaction is short-ranged, however, and in fact only
those monomers nearby the excited monomers (A and B in the
matrix element shown in eq 9) need to be treated quantum-
mechanically, in order to capture the Pauli repulsion that is
responsible for “Rydbergization”41 of the monomer excited
states. The remaining monomers can be replaced with point
charges that capture the long-range Coulomb interactions.40

This affords an algorithm whose cost scales only quadratically
with the number of fragments and can outperform a traditional
calculation by as much as 200× even in modest calculations
involving <10 monomers.40

Due to the nearly perfect parallel efficiency of the AIFDEM,
however, we are able to perform calculations on much larger
aggregates that would be intractable by other means. Consider,
for example, the self-assembling naphthalene diimide (NDI)
nanotube shown in Figure 9b, for which an atomistic structural
model was recently reported.42 This material is an organic
semiconductor, and even the small (NDI)9 substructure shown
in Figure 9c exhibits a dense manifold of excited states, with the
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lowest bright state as S27 and energy gaps of ∼0.05 eV.42 It is
unclear from the TDDFT calculation in Figure 9c whether the
extent of exciton delocalization has been captured in this nine-
unit model, but already this system taxes our ability to perform
TDDFT calculations on commodity hardware. For example, we
estimate that ≳30 Gb of memory would be required to increase
the basis set from 3-21G* to 6-31+G*.40

Thememory footprint of the AIFDEM, in contrast, is no larger
than that of a CIS calculation on a pair of monomers. Moreover,
the parallel scalability allows us to treat an unprecedented
number of chromophores from first principles. Table 2 lists the

size of various (NDI)N substructures for which an AIFDEM
calculation requires less than 1 week of wall time on the indicated
number of processors. For the largest of these calculations,
the equivalent supersystem TDDFT calculation would involve

54 600 basis functions, yet the AIFDEM calculation finishes in <1
week on only 440 processors.40 It is significant that each of the
calculations in Table 2 could be performed in a matter of days on
a laboratory computer cluster, rather than a supercomputer.
The exciton Hamiltonian matrix H can be used to propagate

either the time-dependent Schrödinger equation or else some
dissipative master equation representing interactions with a
phonon bath. We choose the latter approach, applying Redfield’s
equation43 to simulate the quantum dynamics of excitation
energy transfer in two different nanotube substructures: (NDI)9
and (NDI)42. Starting from an excitation that is localized on a
single chromophore and that is therefore not an eigenstate ofH,
we plot in Figure 10 how the excitation energy is rapidly
scrambled between monomers. The overall dynamics is guided
by static disorder, and the excitation rapidly localizes on sites
that are energetically favorable. The fact that small fluctuations in
site energies may significantly impact the dynamics underscores
the importance of an atomistic, first-principles description of
the energetics, as an alternative to empirical exciton models.
Interestingly, we find that coherent oscillations persist to much
longer time scales in the larger model, as a result of a larger
number of resonant site energies, whereas in the smaller (NDI)9
model there are more significant “edge effects” that lead to rapid
dephasing.40 It is possible that a more rigorous treatment of
static disorder (i.e., including nuclear degrees of freedom in the
dynamics) might suppress these coherences in (NDI)42, but the
edge effects and concomitant differences in the distribution of
site energies are likely to remain. As such, this example serves to
illustrate that qualitatively different site energies and couplings can
be obtained if the size of the model system is pushed well beyond
what can be simulated using traditional supersystem methods.

3.2. Approximations to TDDFT

Although the AIFDEM sits outside of conventional TDDFT, it is
also possible to apply exciton-type ideas within the framework of
TDDFT, in order to reduce its cost for systems composed of weakly
interacting molecules. Our approach can be considered an excited-
state extension of the “self-consistent field for molecular
interactions” [SCF(MI)] procedure,44 which employs “absolutely
localized”MOs, such thatMOs on a particularmonomer are formed
from linear combinations of atom-centeredGaussian basis functions
on the same monomer. When the number of monomers is large,
this significantly speeds up the ground-state SCF calculation.44

Todevelop a “TDDFT(MI)”procedure,45we invoke an additional
ansatz in which the transition density δρ̂ is expressed as a linear
combination of one or more excitations localized on each monomer:
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The Xai
(F,n) are TDDFT transition amplitudes for the nth excited

state of monomer F. From eq 11 follows a set of equations for the
coefficients ΘF,n and the supersystem excitation energy, ω:45
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Figure 9. Structural model of a NDI-lysine nanotube, showing (a) the
monomers and how they are arranged into rings, (b) the full nano-
tube structural model, and (c) a methylated (NDI)9 substructure and a
TDDFT/3-21G* calculation of its lowest bright state (S27). Reprinted
with permission from ref 42. Copyright 2015 American Chemical Society.

Table 2. Resources Required to Perform an AIFDEM/6-31G*
Calculation in <1 Week on (NDI)N Nanotube Substructures

N no. basis functions no. processors

2 700 3
4 1400 10
9 3150 20
42 14 700 150
156 54 600 440

Reprinted with permission from ref 40. Copyright 2015 American
Chemical Society.
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ThematrixA(F,G) is the usual TDDFT orbital Hessian,2 consisting
in part of two-electron integrals (ia∥jb). However, Aai,bj

(F,G) consists
of only those matrix elements such that ai ∈ F and bj ∈ G. In
TDDFT(MI), there is no need to evaluate two-electron integrals
with more than two molecular centers, leading to significant
savings. The quantity Δai,bj

(F,G) = SabSij in eq 12 is an overlap that
accounts for the fact that theMOs on different monomers are not
orthogonal. Some additional localization approximations are also
employed, as described in previous work.45,46

Even for cases of a collective excitation delocalized over
multiple monomer units, such as the NDI aggregates considered
above, we find that TDDFT(MI) reproduces supersystem
TDDFT excitation energies to within ∼0.2 eV, as shown in
Table 3. As with the AIFDEM, the monomer calculations are

trivially parallelizable, and for TDDFT(MI) the dimension of
eq 12 equals the number of monomers times the number of
roots per monomer, where the latter can be increased to improve
the flexibility of the ansatz in eq 11. Timing data in Figure 11

demonstrate the dramatic reduction in cost compared with a full
(supersystem) TDDFT calculation.
A particularly efficient scenario occurs when the excitation can

be assumed to be localized on a single monomer, as in the case
of a single chromophore in the presence of a large number of
explicit solvent molecules. In this case, one may neglect all terms
in eq 12 where F ≠ G, and the TDDFT calculation need only
be performed on the chromophore.45,46 The cost of the TDDFT
calculation is therefore independent of the number of solvent
molecules, allowing environmental effects on the excitation

Figure 10. Redfield dynamics43 of (a) (NDI)9 and (b) (NDI)42 substructures extracted from the nanotube in Figure 9b. Plotted are the populations of
individual exciton-site basis states as the initially localized excitation evolves in time. The populations are color-coded to the structural models on the
right. Reprinted with permission from ref 40. Copyright 2015 American Chemical Society.

Table 3. Excitation Energiesa for Methylated (NDI)N
Substructures of the Nanotube in Figure 9b

excitation energy (eV)

N stateb TDDFT(MI) TDDFT diff

4 T1 1.796 1.778 0.018
S1 4.091 4.047 0.044
Sb 4.393 4.270 0.123

6 T1 1.796 1.755 0.041
S1 4.076 3.990 0.086
Sb 4.469 4.267 0.202

9 T1 1.785 1.737 0.048
S1 4.070 3.970 0.100
Sb 4.537 4.300 0.237

Adapted with permission from ref 45. Copyright 2015 American
Chemical Society. aLRC-ωPBE functional. bLowest triplet (T1),
lowest singlet (S1), and lowest dipole-allowed excitation (Sb).

Figure 11. Timings for (NDI)N aggregates at the CIS/6-31G level.
All calculations were multithreaded across 20 processors.

Accounts of Chemical Research Article

DOI: 10.1021/acs.accounts.6b00047
Acc. Chem. Res. 2016, 49, 931−941

938

http://dx.doi.org/10.1021/acs.accounts.6b00047


to be tractably converged by making the supersystem as large as
possible.
Whereas TDDFT calculations in explicit solvent are ordinarily

beset by a sea of spurious charge-transfer-to-solvent states,47,48

such states are absent in the TDDFT(MI) approach because
the amplitudes Xai that would support them are omitted. We
therefore anticipate that TDDFT(MI) excitation energies may
converge faster than conventional TDDFToneswith respect to the
number of solvent molecules. This is demonstrated in Figure 12 for

the S0 → S1 excitation of trans-thiophenyl-p-coumarate (pCT−),
a model of the chromophore in yellow fluorescent protein.
TDDFT(MI) excitation energies converge quickly, whereas in the
supersystem calculation the S0 → S1 excitation energy drops
precipitously as the number of solvent molecules increases, because
larger systems engender more numerous (but ultimately spurious)
charge-transfer states.

4. LOOKING TO THE FUTURE
Whereas most detailed quantum-chemical studies of the
dynamics near CIs have used expensive multireference wave
function models, the availability of analytic derivative couplings
for the relatively low-cost SF-TDDFT approach enables such
studies in much larger molecules. Importantly, the spin-flip
approach affords a more balanced description of ground and
excited states, as compared with conventional TDDFT, and
correctly describes the topology in the vicinity of a CI. We expect
to see many SF-TDDFT studies of photochemical reactions in the
near future, with the caveat that significant spin contamination
often necessitates the use of state-tracking algorithms in order to
maintain the dynamics or geometry optimization on a state with
consistent spin multiplicity.21,29 A “spin-complete” implementa-
tion that restores proper spin eigenstates has been developed by
our group but presently lacks the analytic energy gradients that are
required for routine application to geometry optimizations and
molecular dynamics.21

While SF-TDDFT is formulated in a general way for applica-
tion to arbitrary molecular systems, additional savings can
be realized for certain classes of problems, including those
containing multiple, electronically coupled chromophores. Our
ab initio exciton model offers a promising framework for systems
where the collective nature (and dense manifold) of excited

states means that realistic model systems are often too large even
for TDDFT. While the present version of the AIFDEM can
describe entangled excitations between monomers, such as the
“multi-exciton” state in singlet fission,5 in future work we hope to
report on a version of the AIFDEM that also includes electron
correlation on the monomers, in order to obtain more accurate
site energies. Moreover, formulation of analytic gradients of
the coupling matrix elements in eq 9 will facilitate studies of
how excitation energy transfer depends upon inter- and
intramolecular vibrational modes.
Excitonic approximations within TDDFT itself, in what we call

theTDDFT(MI) approach,45,46 can also describe coupled chromo-
phores at dramatically reduced cost. TDDFT(MI) is particularly
attractive for obtaining converged solvatochromatic shifts, or shifts
in excitation energies due to embedding in a protein matrix, at a
cost whose wall time grows very slowly with system size.
All of the methods described herein are available in version 4.4

of the Q-CHEM software package.9
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