
Chemical Physics Letters 382 (2003) 142–149

www.elsevier.com/locate/cplett
Self-interaction in natural orbital functional theory

John M. Herbert a,*, John E. Harriman b

a Department of Chemistry, The Ohio State University, Columbus, OH 43210, USA
b Theoretical Chemistry Institute and Department of Chemistry, University of Wisconsin, Madison, WI 53706, USA

Received 15 August 2003; in final form 14 October 2003

Published online: 6 November 2003
Abstract

Spurious self-interaction is shown to be responsible for essentially exact H2 potential energy curves calculated using

simple one-electron density matrix functionals. For molecules with more than two electrons, bond-stretching potentials

are unrealistically shallow due to overcorrelation that is most severe in the separated-atom limit. In addition, too much

population is shifted into orbitals beyond the formal valence shell. Both problems are remedied by a facile self-inter-

action correction. At large internuclear distance, the corrected potentials are superior to those obtained from Hartree–

Fock and density functional theories.

� 2003 Elsevier B.V. All rights reserved.
1. Introduction

Despite its rather successful description of dy-
namical correlation, density functional theory

(DFT) offers at best an erratic description of

non-dynamical correlation arising from configu-

rational degeneracy. Such degeneracy is unavoid-

able in bond breaking and in this regard

contemporary DFT is unsatisfactory. Much of

what passes for non-dynamical correlation in

DFT is an artifact of spurious self-interaction
error [1–3], while at large internuclear separation
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even this artifactual correlation is insufficient to

overcome the inadequacies of the single-determi-

nant Kohn–Sham (KS) formalism. Standard
density functionals fail to provide qualitatively

accurate global potential curves for even the

simplest molecules and reactions, including Hþ
2

[4], H2 [5], and H+H2 [6]. Within wavefunction

quantum mechanics these are trivial problems, but

accurate global description of the H2 potential

energy curve is a challenge for any method whose

underlying one-electron density matrix (1-matrix)
is idempotent.

Thus far, it has been an unanswered challenge,

and consequently the quest for globally applica-

ble one-electron descriptions of molecular elec-

tronic structure has broadened to include

methods that employ non-idempotent 1-matrices.

This is the essence of natural orbital functional
ed.
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Table 1

Specification of 2-matrix reconstruction functionals

Functional Refs. f ðni; njÞ
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theory (NOFT),1 in which the electronic energy is

expressed as a functional E½ĉc� of the 1-matrix.

Equivalently, E is expressed in terms of the

physical (as opposed to reference-state) natural

orbitals and their (generally fractional) occupan-

cies. A first generation of non-idempotent 1-ma-
trix functionals [9–14] is currently being tested

[14–24]. Early results are promising, especially

given the simplicity of these functionals, which

amount to slight modifications of the Hartree–

Fock (HF) model and are based on just a few

mathematical properties of the 1- and 2-matrices.

An important recent development is the merger

of one such functional with KS-DFT itself [5]
via the optimized effective potential formalism

[25–28], a variational procedure that determines

the best multiplicative potential to approximate

any orbital-dependent energy functional in a

standard KS calculation. Provided that the local

approximation is not too severe, this may be an

efficient way to accelerate the orbital-optimization

bottleneck [23] in NOFT. Using an assumed form
for the distribution of orbital occupancies, the first

qualitatively correct (in fact, essentially exact) H2

potential from KS theory was obtained via this

KS-NOFT approach [5].

In this Letter, we first demonstrate that the

quality of the aforementioned result is unique to

H2. In larger systems, spurious self-interactions

lead to substantial overcorrelation that is most se-
vere in the separated-atom limit, leading to

anomalously shallow potential curves. Moreover,

optimization of the orbital occupation numbers

overpopulates orbitals above the Fermi level. Our

second goal is to demonstrate that both problems

are remedied by application of a simple self-

interaction correction. We report calculations us-

ing a fully optimized, nonlocal version of NOFT,
but this correction can also be applied easily within

KS-NOFT. Corrected bond-stretching potentials

are not as spectacular as the uncorrected H2 result,
1 The term density matrix functional theory has also been

suggested but is sometimes used to mean linear-scaling KS-

DFT via direct optimization of an idempotent 1-matrix [7,8].

Since the natural orbitals play a key role in the present theory,

the term NOFT is more descriptive.
but do offer some improvement over HF and DFT

potential energy curves at large bond lengths.
2. Natural orbital functionals

A spin-restricted formalism is adopted here,

wherein the natural spin-orbitals juii � jai and

juii � jbi have identical spatial parts juii and

equal occupation numbers ni ¼ nai ¼ nbi , with

06 ni 6 1. Taking a cue from DFT, which models

the 2-matrix along the adiabatic connection [29],

an energy functional E½ĉc� ¼ E½fnig; fjuiig� is

induced by a model 2-matrix D̂D ¼ D̂D½ĉc�. For the
opposite-spin component of D̂D, we use a Hartree-

product:

Dab
ij;kl ¼

1

2
ninjdikdjl: ð1Þ

For the parallel-spin component of D̂D, the

functionals of interest have the form [23]

Daa
ij;kl ¼

1

2
ninjdikdjl
�

� f ðni; njÞdildjk
�

ð2Þ

for functions f defined in Table 1.

Together, Eqs. (1) and (2) define a reconstruc-

tion functional D̂D½ĉc� for the 2-matrix. Since

E ¼ trðĥhĉcÞ þ trðr�1
12 D̂DÞ ð3Þ

this reconstruction induces an energy functional

[23]

E½fnkg; fjukig� ¼ 2
X
i

nihii þ
X
ij

2ninjhijjiji
�

� f ðni; njÞhijjjii
�
; ð4Þ
HF ninj
CH(f) [11,13,30] ðninjÞf=2
SIC-CH(f) [9,10,15] ðninjÞf=2 þ ðn2i � nfi Þdij
CHF(f) [11,22] ninj þ f

ffiffiffiffiffiffiffiffiffiffi
DiDj

p
SIC-CHF(f) ninj þ f

ffiffiffiffiffiffiffiffiffiffi
DiDj

p
� dijfDi

MCHF(f) [12] ðninj þ f
ffiffiffiffiffiffiffiffiffiffi
KiKj

p
Þ=2

SIC-MCHF(f) ½ninj þ f
ffiffiffiffiffiffiffiffiffiffi
KiKj

p
þdijðn2i � fKiÞ�=2
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with one- and two-electron integrals expressed in

the juki basis. NOFT computations consist of

minimizing this functional with respect to varia-

tions of the nk and the juki, subject to N -repre-

sentability constraints on the 1-matrix [22,23].
Listed in Table 1 are the functions f that define

the corrected Hartree (CH) [30,31,11,13], corrected

Hartree–Fock (CHF) [11,12], and modified CHF

(MCHF) [12] functionals. The quantities

Di ¼ nið1� niÞ; Ki ¼ nið2� niÞ ð5Þ
are introduced for succinctness. The CH func-
tional adds an exchange correction to the Hartree

2-matrix ðĉc� ĉcÞ=2, although this correction does

not fully annihilate self-interaction in the Hartree

potential. The CHF functional corrects the HF

2-matrix ĉc ^ ĉc. The functionals designated SIC-X
result from application of a partial self-interaction

correction (SIC), as detailed below. To connect

with parametrizations considered previously [31,
15,16,22–24], each functional defined in Table 1

contains an adjustable parameter f; we restrict our
attention to f ¼ 1.

These functionals have appeared in a variety of

equivalent forms; we feel that the �reconstructive�
point of view clearly elucidates the underlying

physical model, its attendant approximations, and

their deficiencies, so our analysis has focused on
N -representability of the reconstructed 2-matrix.

(Consult Cioslowski and Pernal [15–18] for anal-

ysis of the energy functional itself.) Eqs. (1) and (2)

define a model 2-matrix with a simple block

structure, in which each natural spin geminal is a

2� 2 determinant of natural spin orbitals, and the

spectral expansion of D̂Daa is

D̂Daa ¼
X
i

dijuiuiihuiuij

þ
X
i<j

X
þ;�

d�
ij juiujihuiujj
�

� juiujihujuij
�
:

ð6Þ

Here juiuji ¼ juii � juji is a simple direct product

of natural orbitals and the eigenvalues di ¼ diðniÞ
and d�

ij ¼ d�
ij ðni; njÞ are functions of the natural

orbital occupation numbers. Antisymmetry of the

2-matrix requires that di ¼ 0, while positivity de-

mands that d�
ij P 0. In contrast, for each of the
functionals in Table 1 – and for all values of f that
have been suggested to date – it follows [23] that

di 6 0, dþ
ij 6 0, and d�

ij P 0. (The inequalities are

strict for fractional occupancies.) Each di repre-

sents an orbital self-interaction [9], and the SIC
applied here amounts to setting each di ¼ 0,

without altering the second term in Eq. (6).

The functionals CH(1), CHF(1), and MCHF(1)

each satisfy the partial trace constraint

X
k

Daa
ik;jk

�
þ Dab

ik;jk

�
¼ 1

2
niðN � 1Þdij; ð7Þ

with N ¼ 2
P

i ni. Removal of the di causes the SIC
functionals to violate this constraint, so that

tr D̂D ¼ 1

2
NðN � 1Þ �H

X
i

Di; ð8Þ

where H ¼ 4 for SIC-MCHF(1) and H ¼ 2 for

both SIC-CH(1) and SIC-CHF(1). The SIC

2-matrices contain fewer than NðN � 1Þ=2 electron
pairs, although the deviations Di will be small

provided that the ni are nearly integers, as expected
for closed-shell molecules. This is indeed the case

for the SIC functionals but not their uncorrected

counterparts (see Section 3). It is also significant

that in Eq. (3) we have expressed the energy in

terms of both ĉc and D̂D rather than D̂D alone, as these

two conventions afford different energy functionals
when the partial trace constraint is not satisfied. In

the present formulation [Eq. (4)], any error in the

partial trace of D̂D is isolated within the electron

repulsion energy.

With the exception of SIC-MCHF(f), each of

the functionals in Table 1 has been tested for di-

atomic molecules [20–23], with varying success.

These studies have been somewhat haphazard,
however, employing either functional X or func-

tional SIC-X , but not both. A more systematic

study [14] reveals that SIC is the single most im-

portant factor that determines whether qualita-

tively reasonable potential curves are obtained.
3. Numerical results

In this section, we compare NOFT calculations

for two molecules, H2 and hydrogen fluoride (FH).



Table 2

Elements of the reconstructed, energy-optimized 2-matrix for H2

Element CH(1) SIC-CH(1) MCHF(1) SIC-MCHF(1)

Re 5Re Re 5Re Re 5Re Re 5Re

Daa
1;1;1;1 �1:79ð�2Þ �1:25ð�1Þ 0.00(+0) 0.00(+0) �1:28ð�2Þ �1:25ð�1Þ 0.00(+0) 0.00(+0)

Daa
2;2;2;2 �9:13ð�3Þ �3:51ð�3Þ 0.00(+0) 0.00(+0) �6:89ð�3Þ �1:24ð�1Þ 0.00(+0) 0.00(+0)

Daa
3;3;3;3 �2:22ð�3Þ �1:89ð�3Þ 0.00(+0) 0.00(+0) �1:97ð�3Þ �3:11ð�3Þ 0.00(+0) 0.00(+0)

Daa
1;2;1;2 8:96ð�2Þ 1:16ð�1Þ 2:10ð�3Þ 1:25ð�1Þ 6:80ð�3Þ 1:17ð�1Þ 1:23ð�3Þ 5:29ð�2Þ

Daa
1;2;2;1 �6:69ð�1Þ �2:41ð�1Þ �3:24ð�2Þ �2:50ð�1Þ �4:50ð�2Þ �2:42ð�1Þ �1:82ð�2Þ �1:45ð�1Þ

Daa
1;3;1;3 2:15ð�3Þ 9:65ð�4Þ 9:22ð�4Þ 6:26ð�5Þ 1:93ð�3Þ 1:57ð�3Þ 3:68ð�4Þ 6:50ð�4Þ

Daa
1;3;3;1 �3:28ð�2Þ �2:20ð�2Þ �2:15ð�2Þ �5:60ð�3Þ �2:32ð�2Þ �2:50ð�2Þ �9:80ð�3Þ �1:39ð�2Þ

Daa
2;3;2;3 4:15ð�5Þ 8:68ð�4Þ 3:94ð�6Þ 6:26ð�5Þ 2:76ð�5Þ 1:46ð�3Þ 9:12ð�7Þ 9:18ð�5Þ

Daa
2;3;3;2 �4:56ð�3Þ �2:08ð�2Þ �1:40ð�3Þ �5:59ð�3Þ �3:71ð�3Þ �2:43ð�2Þ �6:75ð�4Þ �6:61ð�3Þ

Numbers in parentheses denote powers of 10.
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Notably, H2 is the only molecule considered
by Gr€uuning et al. [5] as a test of their combined

KS-NOFT method. For reasons revealed below,

very different results are obtained for H2 than for

molecules with more than two electrons, exempli-

fied here by FH. Our H2 calculations employ the

6-311++G(d,3p) basis, which contains three sets of

p-type polarization functions and one set of diffuse

sp functions on each H atom. For FH the basis is
6-31+G**. Our procedure for minimizing the

functional E½ĉc�, subject to N -representability con-

straints on ĉc, has been described previously [23].

Even without any calculations it is clear that H2

is atypical, since D̂Daa ought to vanish for this sys-

tem, which is impossible within the ansatz of

Eq. (2). In Table 2, we list a few of the largest

matrix elements of D̂Daa for H2. Although the vast
majority of the matrix elements are minuscule, the

ones shown in Table 2 are not. (Consider that

06Daa
ij;ij 6 1=2 for the model 2-matrices considered

here.) Although SIC removes only the Daa
ii;ii terms,

the remaining matrix elements tend to be smaller

than those of the uncorrected 2-matrices.

NOFT potential energy curves for H2 are de-

picted in Fig. 1. Reasonable potentials are ob-
tained from all three uncorrected functionals,

including CH(1), the functional employed by

Gr€uuning et al. [5] in their KS-NOFT calculation.

Those authors fit the distribution of ni in order to

replicate the full CI potential, whereas in this work

both the juii and the ni are optimized to minimize

E. Interpreting this as evidence that some other

(non-energy-optimized) distribution of ni would
make the CH(1) potential in Fig. 1 essentially co-
incident with the full CI potential, it appears that

optimization of the ni lowers the large-R part of

the potential more than it lowers the region

around Re. In other words, CH(1) exhibits a

greater degree of overcorrelation in the separated-

atom limit, a conclusion that is bolstered by the

dramatic effect of SIC on the large-R part of all the

H2 potential curves in Fig. 1. Although uncor-
rected functionals work well for H2, this success is

an artifact of the self-interactions di.
In contrast to their behavior for H2, uncor-

rected natural orbital functionals yield unrealisti-

cally shallow potential curves for other diatomic

molecules [20–23,14], as illustrated for FH in

Fig. 2. Comparison to the SIC results reveals the

reason: spurious di terms lower the energy of the
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separated atoms to a greater extent than that of

the molecule near its equilibrium geometry.

SIC potentials for FH are more reasonable,

although they rise too steeply as R ! 1. To put
0
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6-31+G** basis is used for each method except full CI, which

uses 6-31G** [32].
this in perspective, in Fig. 3 we compare FH

potential curves from NOFT to those obtained

from standard spin-restricted density functional

and ab initio methods. (To facilitate comparison,

the same vertical scale is used in both Fig. 2 and

Fig. 3a.) Of the natural orbital functionals, SIC-
CH(1) appears to provide the most accurate ac-

counting of dynamical correlation, as evidenced

by the fact the absolute energy near Re is quite

close to that obtained from correlated wave-

functions such as CCSD and CCSD(T) (Fig. 3a).

Although the SIC potentials are too high in the

limit R ! 1, the asymptotic behavior of SIC-

CH(1) and SIC-MCHF(1) is superior to that of
the popular density functionals B3LYP and

BPW91, which are still increasing at R ¼ 5Re.

This modest improvement is something of a

Pyrrhic victory, however, given the much higher

computational cost of full, nonlocal NOFT rela-

tive to DFT.

The distribution of optimized occupation

numbers provides additional insight into the fail-
ure of uncorrected natural orbital functionals. The

largest of the ni are listed in Table 3 for both H2

and FH; natural orbital occupation numbers from

CI wavefunctions are also tabulated. Close agree-

ment between the CI and NOFT occupation

numbers is not anticipated, but the former provide

order-of-magnitude benchmarks as to what con-

stitutes a reasonable ni distribution. Except
for SIC-MCHF(1) at large R, all of the NOFT

occupancy distributions for H2 are qualitatively

reasonable.

For FH (and other diatomic molecules [14]), the

same is largely true near Re, with the exception that

nLUMO (occupancy of the first orbital beyond the

formal valence shell) is anomalously large in

CH(1) and MCHF(1). At larger values of R, each
uncorrected functional shifts too much occupancy

into virtual orbitals. This includes CHF(1), which

converges to an idempotent 1-matrix when R � Re.

With SIC, qualitatively reasonable occupancy

distributions (including nLUMO) are obtained at all

values of R, hence the occupancy anomaly is at-

tributable to the di. In the case of SIC-CHF(1),

SIC overcorrects the accretion of occupancy into
virtual orbitals, leading to an idempotent solution

(equal to the HF solution) even at large R, whereas



Table 3

Largest a-spin occupation numbers for H2 and FH

Method H2 FH

Standard SIC Standard SIC

Re 5Re Re 5Re Re 5Re Re 5Re

CH(1) 0.9628 0.5082 0.9900 0.4997 1.0000 1.0000 1.0000 1.0000

0.0186 0.4572 0.0042 0.4993 1.0000 0.8131 1.0000 1.0000

0.0058 0.0071 0.0019 0.0002 0.9200 0.8124 1.0000 1.0000

0.0045 0.0048 0.0013 0.0002 0.9133 0.8100 0.9515 0.6334

0.0045 0.0038 0.0013 0.0001 0.0806 0.4815 0.0160 0.3183

0.0005 0.0035 0.0002 0.0000 0.0177 0.0178 0.0064 0.0081

CHF(1) 1.0000 0.5005 1.0000 0.5578 1.0000 0.9870 1.0000 1.0000

0.0000 0.4755 0.0000 0.4275 1.0000 0.8403 1.0000 1.0000

0.0000 0.0051 0.0000 0.0035 1.0000 0.8401 1.0000 1.0000

0.0000 0.0034 0.0000 0.0025 1.0000 0.8395 1.0000 1.0000

0.0000 0.0026 0.0000 0.0015 0.0000 0.4799 0.0000 0.0000

MCHF(1) 0.9737 0.5037 0.9943 0.8656 1.0000 1.0000 1.0000 1.0000

0.0140 0.4662 0.0025 0.1223 1.0000 0.8169 1.0000 1.0000

0.0040 0.0063 0.0011 0.0033 0.9262 0.8151 1.0000 1.0000

0.0030 0.0043 0.0007 0.0015 0.9245 0.8145 0.9706 0.5078

0.0030 0.0033 0.0007 0.0013 0.0850 0.4933 0.0104 0.4606

0.0006 0.0031 0.0001 0.0011 0.0143 0.0137 0.0039 0.0058

CIa 0.9822 0.5289 0.9950 0.9959

0.0100 0.4730 0.9891 0.9943

0.0030 0.0000 0.9891 0.9943

0.0022 0.0000 0.9855 0.6667

0.0022 0.0000 0.0115 0.3326

0.0001 0.0000 0.0074 0.0037

For FH, a unit-occupied fluorine 1s orbital is omitted.
a Full CI for H2 and CISD for FH.

Table 4

HOMO and LUMO occupation numbers for some four-elec-

tron atoms (6-31G* basis)

Method Be N3þ Ne6þ

CH(1) 0.7039 0.7883 0.8199

0.0882 0.0687 0.0599

CHF(1) 0.6305 0.7685 0.8352

0.1173 0.0760 0.0541

MCHF(1) 0.6692 0.7717 0.8110

0.1014 0.0745 0.0628

SIC-CH(1) 0.9609 0.9712 0.9750

0.0101 0.0090 0.0082

SIC-CHF(1) 1.0000 1.0000 1.0000

0.0000 0.0000 0.0000

SIC-MCHF(1) 0.9754 0.9818 0.9844

0.0064 0.0057 0.0052

Full CI 0.9031 0.9293 0.9370

0.0319 0.0234 0.0210
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CHF(1) is non-idempotent at large R. To a lesser

extent, the other SIC functionals overcorrect in the

same manner, as evidenced by HOMO and

LUMO occupancies for some atoms (Table 4).

Analytic formulas [23] for the eigenvalues of D̂Daa

help to explain the observed overcorrelation in the

separated-atom limit. For the spectral expansion

of D̂Daa in Eq. (6), we have shown [23] that the

spurious negative eigenvalues di and dþ
ij are each

associated with a natural geminal pair energy that

is positive. For any fixed set of orbitals, the energy

is therefore lowered by making these eigenvalues

more negative, so it is instructive to determine the
most negative values possible for the functions

diðniÞ and dþ
ij ðni; njÞ.

The results of this exercise (Table 5) demon-

strate that the most negative 2-matrix eigenvalues

are obtained at half-integer occupancies, for each



Table 5

Theoretical lower bounds on the reconstructed eigenvalues of D̂Daa

Functional Minimum di Minimum dþ
ij

Value Location Value Location

CH(1) �0:125 ni ¼ 1=2 �0:125 ni ¼ 1=4nj
CH(4/3) �0:074 ni ¼ 0:54 �0:074 ni ¼ 8=27nj
CHF(1) �0:125 ni ¼ 1=2 �0:125 ni ¼ nj ¼ 1=2

CHF(1.12) �0:140 ni ¼ 0:50 �0:140 ni ¼ nj ¼ 1=2

MCHF(1) �0:125 ni ¼ 1=2 �0:125 ni ¼ nj ¼ 1=2

The expressions for functional X and functional SIC-X are identical, except that di � 0 for the latter. CH(4/3) and CHF(1.12) have

been suggested [22,24,23] as re-parametrizations of CH(1) and CHF(1).

Fig. 4. For the FH molecule, (a) the most negative eigenvalue

of D̂Daa, and (b) the absolute ratio of negative to positive-

eigenvalue contributions to Eaa
2 .
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functional examined here. (For f 6¼ 1 (cf. Table 1),

the lower bounds on di and dþ
ij change markedly,

but these functions still attain their minima near

ni ¼ nj ¼ 1=2.) This provides a clue as to why

these functionals are more overcorrelated for at-
oms. In any realistic spin-restricted model, certain

of the natural occupation numbers must deviate

substantially from integer values as R ! 1,

which is consistent with maximum overcorrelation

from di and dþ
ij . In contrast, for closed-shell

molecules near their equilibrium geometries, the

realistic physical picture (near-integer occupan-

cies) competes with overcorrelation, rather than
cooperating with it, since di ¼ 0 ¼ dþ

ij when ni and
nj are integers.

The results of this competition are observed by

tracking the most negative eigenvalue of D̂Daa as a

function of R. For FH, the most negative eigen-

value decreases nearly monotonically as a func-

tion of R (Fig. 4a), asymptotically approaching

the limiting value of )0.125. (Compared to energy
calculations, tighter convergence criteria are re-

quired in order to converge the eigenvalues of D̂Daa.

Evidently the energy surface is fairly flat in the

reconstructed 2-matrix.) Fig. 4b depicts jRj as a

function of R, where R denotes the ratio of

negative to positive-eigenvalue contributions to

Eaa
2 ¼ trðr�1

12 D̂DaaÞ. In other words, jRj is the frac-

tion of parallel-spin electron repulsion energy that
is artificially annihilated by negative eigenvalues

of D̂Daa. (For an absolute quantification of this

cancellation, see [23].) This fraction is seen to

increase as a function of R, approaching a con-

stant as R ! 1. This is unambiguous evidence

that anomalous features of the present functionals
manifest most severely in the separated-atom
limit.
4. Summary and conclusions

Our main conclusion is a disappointing one:

bond-stretching potentials obtained from simple
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functionals of the 1-matrix are not as accurate as

previous results for H2 might insinuate. Correct

asymptotic behavior for H2 is an artifact of spu-

rious self-interaction, the adverse effects of which

are avoided only for a two-electron singlet. In this

case, D̂Daa (and the spurious self-interaction therein)
is small, though it should vanish entirely. For

molecules with more than two electrons, the of-

fending self-interactions lead to substantial over-

correlation in the separated-atom limit. A simple

self-interaction correction – which, in contrast to

self-interaction correction for DFT [33], does not

fundamentally alter the manner in which the cal-

culations are performed – repairs both the poten-
tial energy curve and the distribution of natural

orbital occupation numbers. Notably, this correc-

tion is readily implemented within the optimized

effective potential method of Gr€uuning et al. [5],

whereby the machinery of KS-DFT is put to use in

NOFT.

Corrected potential curves for diatomic mole-

cules are too steep as R ! 1, although they are
somewhat superior to spin-restricted density

functionals in this respect. Given their remarkable

simplicity, it is amazing that these natural orbital

functionals perform as well as they do, and we

regard this first generation of natural orbital

functionals as �proof of concept�. Relative to the

tremendous intellectual capital that has driven

functional development in DFT, very little effort
(and no experimental data or fitting) has gone into

these functionals. Insofar as decent results are

obtained nonetheless, we surmise that the future of

NOFT appears promising. Future development

should pay mind to the role of anomalous self-

interaction, recognizing furthermore that H2 is not

a sufficient test system.
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