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S1 Additional Electronic Structure Calculations

Geometries of the parallel and perpendicular (C6H6)2 isomers were optimized at the TPSS-D3/

def2-TZVP level. The equilibrium geometry of the tilted structure was obtained from Ref. 1. The

calculations discussed in the main text were all performed at the XSAPT+MBD level,2 which is

described in Section S1.1. To reinforce these conclusions, additional calculations were performed

at the more traditional SAPT0 level (Section S1.2),3 and also using ALMO-EDA (Section S1.3).4;5

S1.1 XSAPT+MBD Calculations

Interaction energy calculations reported in the main text were performed using the XSAPT+MBD

method.2 XSAPT is an “extended” version6–8 of symmetry-adapted perturbation theory (SAPT),9–11

which includes a self-consistent, variational, many-body charge polarization scheme.6;12 The many-

body dispersion (MBD) scheme developed by Tkatchenko and co-workers13–15 has been modified

for use with SAPT;2 unlike many empirical dispersion corrections, it represents a valid dispersion

interaction at all length scales.

The usual second-order SAPT energy decomposition is

Eint = E
(1)
elst + E

(1)
exch + E

(2)
ind + E

(2)
exch-ind + E

(2)
disp + E

(2)
exch-disp . (S1)

In XSAPT+MBD, the MBD model replaces the SAPT dispersion energy,

Edisp = E
(2)
disp + E

(2)
exch-disp . (S2)

However the remaining other energy components in Eq. (S1), namely, electrostatics, exchange, and

induction, are computed within a SAPT(KS) approach,16 i.e., using Kohn-Sham (KS) molecular

orbitals within the second-order SAPT formalism. The KS wave functions for the monomers were

computed at the LRC-ωPBE/def2-TZVPPD level of theory. Range-separation parameters ω were

set using the “global density-dependent” (GDD) tuning procedure,8;17 which affords values ωGDD =

0.340 bohr−1 for C6H6 and ωGDD = 0.365 bohr−1 for C6F6.

On top of the self-consistent polarization that is included with XSAPT (which is included in

E
(2)
ind + E

(2)
exch-ind), a “δEHF” correction is included here. Operationally, δEHF requires a Hartree-

Fock calculation for the dimer and is used to estimate induction effects beyond second order in

perturbation theory.10 The XSAPT+MBD induction energy is therefore defined as

Eind = E
(2)
ind + E

(2)
exch-ind + δEHF . (S3)

However, our conclusions regarding the driving forces for π-stacking are independent of whether

δEHF is included in Eq. (S3) or not. Higher-order induction effects serve to flatten out the multipolar

potential energy surface (see, e.g., Fig. S4). In effect, higher-order induction cancels the (small)

electrostatic stabilization of the sandwich geometry and affords a multipolar energy landscape that

is essentially flat along the coordinate that takes the system from the sandwich to the slip-stacked

geometry. This flatter multipolar potential surface is consistent with the variational electrostatics

obtained in ALMO-EDA calculations when employing classical reference densities, as described in

Section S1.3.
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(a) (b)

Figure S1: Electrostatic interaction energies along the parallel-displacement coordinate of either the cofacial
(parallel orientation) or T-shaped (perpendicular orientation) of (C6H6)2. (a) Prediction from the Hunter-

Sanders model, i.e., a classical quadrupole–quadrupole interaction. (b) Electrostatic interaction energy E
(1)
elst

obtained from XSAPT+MBD calculations.

Figure S2: XSAPT+MBD exchange interaction energies (E
(1)
exch) for parallel and perpendicular arrangements

(C6H6)2 along the parallel-displacement coordinate.

Figure S1 compares XSAPT+MBD electrostatics, defined by the E
(1)
elst term in Eq. (S1), to

the classical quadrupole–quadrupole interaction that is included in the Hunter-Sanders model,18

for both parallel and perpendicular arrangements of (C6H6)2. These results demonstrate that the

classical model is simply wrong, qualitatively as well as quantitatively, at least when the center-

to-center monomer separation is characteristic of the π-stacked sandwich isomer. In fact it is the

exchange term (E
(1)
exch, which is plotted in Fig. S2) that exhibits a local maximum at the sandwich

geometry, whereas the electrostatic term exhibits a local minimum (Fig. S1b). If the center-to-

center separation is increased by 1.1 Å then a classical quadrupolar electrostatic picture does emerge

from the SAPT calculations, as shown in Fig. S3. At this separation the monomer densities do not

overlap and E
(1)
elst is indeed repulsive in the the cofacial arrangement.

S3



Figure S3: XSAPT+MBD electrostatic interaction energy (E
(1)
elst) along the parallel-displacement coordinate

of cofacial (C6H6)2. The center-to-center monomer separation set at R0 + 1.1 Å, where R0 denotes the
equilibrium separation. At this separation, the monomer densities do not interpenetrate and electrostatic
interactions are well represented by classical quadrupole moments; the classical quadrupole–quadrupole
interaction is repulsive in the cofacial arrangement.

S1.2 SAPT0 Calculations

In order to verify that these results are not artifacts of either SAPT(KS) or the MBD treatment of

dispersion, we have performed additional calculations at the SAPT0 level,3;10 meaning second-order

intermolecular perturbation theory applied to Hartree-Fock wave functions for the monomers. Best

results with SAPT0 are obtained using the jun-cc-pVDZ basis set,3 which is used here. SAPT0 en-

ergy decompositions for (C6H6)2 are plotted in Fig. S4, along the parallel-displacement coordinate

of both parallel and perpendicular orientations. The qualitative picture that emerges from these cal-

culations (with or without the δEHF correction) is identical to the one inferred from XSAPT+MBD

calculations.

As suggested in the main text, we define the van der Waals (vdW) interaction energy as the

sum of Pauli repulsion and London dispersion:

EvdW = E
(1)
exch + E

(2)
disp + E

(2)
exch-disp . (S4)

SAPT0 results for EvdW are plotted in Fig. S4b, and it can be seen that this partition of the energy

successfully captures the topography of the full interaction potential (Eint, Fig. S4a), whereas the

multipolar potential does not. The latter is defined as

Empole = E
(1)
elst + E

(2)
ind + E

(2)
exch-ind . (S5)

This quantity is plotted in Fig. S4d without the δEHF correction, and in Fig. S4c with the δEHF

correction included in the induction energy.

S1.3 ALMO-EDA Calculations

The ALMO-EDA method developed by Head-Gordon and co-workers4;5 is used as a final check

on the veracity of the results. These calculations were performed at the ωB97M-V/def2-TZVPPD

level of theory and various energy components are plotted in Fig. S5.
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(a) (b)

(c) (d)

Figure S4: Potential energy surfaces along the parallel-displacement coordinate of (C6H6)2, computed at
the SAPT0/jun-cc-pVDZ level of theory: (a) total interaction energy, Eint in Eq. (S1); (b) van der Waals
interaction energy, EvdW in Eq. (S4); (c) multipolar interaction potential, Empole in Eq. (S5), without the
δEHF correction; (d) Empole including the δEHF correction.
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(a) (b) (c)

(d) (e)

Figure S5: Potential energy surfaces for the sliding coordinate of either cofacial or T-shaped benzene
dimer computed using second-generation5 ALMO-EDA at the ωB97M-V/def2-TZVPPD level of theory,
including counterpoise corrections: (a) total interaction energies; (b) vdW interaction energy (EPauli +
Edisp), using an antisymmetrized reference state; (c) vdW interaction energy using a “SAPT-like” (non-
antisymmetric) reference state; (d) sum of electrostatics and induction using an antisymmetrized reference
state, where induction is taken to be the sum of the ALMO-EDA polarization and charge-transfer energies;
(e) electrostatics plus induction (with the latter defined as the sum of polarization and charge-transfer
energies), using a SAPT-like reference state that has not been antisymmetrized.
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The definition of electrostatics in ALMO-EDA is different from that used in SAPT and warrants

some discussion. Within ALMO-EDA, the classical electrostatic energy is defined as4

Ecls
elst =

∫ ∫
dr1dr2

ρA(r1) ρB(r2)

‖r1 − r2‖
, (S6)

where ρA(r1) and ρB(r2) represent the densities of monomers A and B computed in isolation. This

means that the monomer densities are not antisymmetric with respect to exchange of electrons

between monomers. Equation (S6) is identical to the definition of electrostatics (E
(1)
elst term) used

in SAPT. Alternatively, one may define a reference state based on antisymmetrized monomer

densities ρ̃A(r) and ρ̃B(r). The integral that defines the electrostatic interaction is the same one

as in Eq. (S6),

Easym
elst =

∫ ∫
dr1dr2

ρ̃A(r1) ρ̃B(r2)

‖r1 − r2‖
, (S7)

but the interaction energy defined by Eq. (S7) can be very different from the one in Eq. (S6) because

the charge distribution in each monomer has been rearranged to reflect fermion statistics.

ALMO-EDA uses the antisymmetrized definition of electrostatics in Eq. (S7), and the effect of

the reference density can be observed by comparing this definition, plotted for (C6H6)2 in Fig. S5d,

to the classical definition in Eq. (S6) that is plotted in Fig. S5e. In the latter case, the results are in

quantitative agreement with both XSAPT+MBD and SAPT0 calculations, since both of the SAPT-

based methods use the classical definition at first order. Applying the antisymmetric definition

instead, the electrostatic energy becomes much more attractive in the sandwich geometry due to

the rearrangement of electron density that is required to maintain antisymmetry. As compared to

SAPT-EDA, the ALMO-EDA scheme deviates even further from the Hunter-Sanders model, which

predicts electrostatic repulsion in the cofacial geometry. Regardless of which reference density

is chosen for the analysis, the Hunter-Sanders model does not capture the true nature of the

electrostatics in (C6H6)2.

S2 Empirical van der Waals (vdW) Potential

S2.1 Development of the Model

In the main text we demonstrate the utility of a simple model potential for predicting the geometries

of conjugated ring systems. This vdW potential

EvdW = EPauli + Edisp , (S8)

consists of a Pauli or steric repulsion term and a dispersion term. We take the latter to be the

third-generation ab initio dispersion potential (aiD3) developed previously.7 It consists of a pairwise

sum

Edisp = −
∑
i∈A

∑
j∈B

(B 6=A)

[
Cij,6
R6
ij

f6(Rij) +
Cij,8
R8
ij

f8(Rij)

]
(S9)
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over atoms i and j in molecules A and B, respectively. The function

fn(Rij) = 1− exp(−βijRij)
n∑

m=0

Rmij
m!

(S10)

is the Tang-Toennies damping function.19

Details on the parameterization of aiD3 can be found in Ref. 7. Briefly, this potential was fit

to dispersion energies computed at the SAPT2+ or SAPT2+(3) level,3;10 for a test set of small

dimers at various intermolecular separations. The aiD3 potential therefore represents genuine

dispersion at all length scales, unlike many empirical “+D” corrections used in dispersion-corrected

DFT.20 (Among other issues, the latter methods have a double-counting problem for middle-range

dispersion,21 whereas all energy components in SAPT are well-defined and separable, and there is

no double-counting.)

To construct EPauli, we first note that Pauli repulsion can be approximated using the overlap

of molecular densities.22;23 In the interest of having a simple model potential we do not compute

the overlap of genuine electron densities but instead model it as the overlap between atom-centered

spherical Gaussian functions that stand in for the spatial extent of the atomic densities. The

widths σi of these Gaussian functions are set equal to scaled atomic radii ηRvdW,i, where η is the

scaling factor and RvdW,i is taken from Bondi’s set of vdW radii.24 Setting the size of atom i is

accomplished by calculating the variance of a normalized Gaussian,

〈
σ2i
〉

=

√
2αi
π

∞∫
−∞

x2e−2αix
2

dx =
1

4αi
. (S11)

Setting 〈σ2i 〉1/2 = ηRvdW,i and solving for the Gaussian exponent affords

αi =
1

4(ηRvdW,i)2
. (S12)

The parameter η scales RvdW,i to account for atomic size variations induced by the molecular envi-

ronment. As we are interested only in qualitative results, we use a uniform-scaling approximation

and set η = 0.36. (This leads to atomic radii that are smaller than Bondi’s vdW radii, largely

because the interaction is undamped in this simple model. We note that the MBD model uses

atomic radii smaller than Bondi’s, despite the use of a damping function.13–15) We use an empiri-

cal description of the Pauli repulsion that is consistent with the semiclassical nuclear de-screening

expression used elsewhere,25

EPauli =
∑
i∈A

∑
j∈B

(B 6=A)

S2
ij

Rij
ZiZj (S13)

where Zn are the atomic numbers. This expression can be understood as the classical electrostatic

repulsion of the nuclei modulated by the overlap of the electron clouds. The overlap of vdW spheres

follows from the spherical Gaussian overlap formula

Sij = e−αβ‖A−B‖
2/(α+β) , (S14)
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Figure S6: Results from the Hunter-Sanders model for parallel displacement of C6H6 · · ·C6F6, with x = 0
corresponding to the sandwich geometry: (a) quadrupolar electrostatic interaction (Eelst) only, and (b) full
Hunter-Sanders potential, Eelst +Edisp. The point charges δ± used to compute Eelst were taken to be equal
and opposite those used by Hunter and Sanders for (C6H6)2.18

with α and β being the Gaussian exponents for atoms centered at A and B, respectively. Clearly,

Eq. (S13) breaks down in the limit of large overlap due to the R−1ij dependence. In order to

avoid divergence of Eq. (S13) without resorting to a damping function, we apply a “weak overlap

approximation” and consider only inter-planar distances > 3.4 Å in accordance with the original

Hunter-Sanders model.18 If an inter-planar distance is naturally less than 3.4 Å, we shift the inter-

planar distance to be equal to 3.5 Å. For example, C6H6 · · ·C6F6 has an equilibrium inter-planar

separation of just 3.2 Å, so we simply increase the inter-planar distance to match that of benzene

dimer (3.5 Å) for the application of this model potential. Perpendicular geometries are left at

inter-ring distance found in T-shaped benzene dimer.

S2.2 Comparison to Hunter-Sanders Model

A Hunter-Sanders-type model for C6H6 · · ·C6F6 was obtained by reversing the signs of the point

charges δ± relative to those suggested for (C6H6)2 in the original work of Hunter and Sanders.18

As shown in Fig. S6, both the quadrupolar electrostatic component of this model (Eelst) as well as

the dispersion component (Edisp) drive the system towards a cofacial sandwich geometry, whereas

the true minimum-energy geometry obtained from ab initio calculations is offset-stacked.26;27 This

behavior apparently cannot be captured without the explicit introduction of a short-range repulsive

term, which is present in our vdW model but not in the Hunter-Sanders model.

Figure 7 compares results of the Hunter-Sanders model and the vdW model for parallel and

perpendicular orientations of anthracene dimer. In agreement with ab initio calculations (TPSS-

D3/def2-TZVPP), the vdW model predicts that the minimum-energy geometry in the cofacial

arrangement involves displacement along the direction of the long axis of the anthracene molecule.

No such displacement is predicted by the Hunter-Sanders model.
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