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AbstractÐTheoretical details necessary to calculate arbitrary-order correction terms to vi-
brational±rotational energies and wave functions in Rayleigh±SchroÈ dinger perturbation the-
ory are presented. Since manual derivation of high-order perturbation formulae is not
feasible due to the lengthy algebra involved, the commercial computer algebra software
Mathematica1 is employed to perform the symbolic manipulations necessary to derive the
requisite correction formulae in terms of universal constants, molecular constants, and
quantum numbers. Correction terms through sixth order for 1a diatomic molecules are de-
rived and then evaluated for H2, HD, N2, CO, and HF. It is thus possible, with the aid of
computer-generated algebra, to apply arbitrarily high-order perturbation theory successfully
to the problem of intramolecular nuclear motion. # 1998 Published by Elsevier Science
Ltd. All rights reserved
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1. INTRODUCTION

Perturbation theory has traditionally been the
method of choice for describing the low-lying vi-
brational and rotational states of polyatomic mol-
ecules (Sprandel and Kern, 1972). Perturbation
procedures furnish successively higher-order correc-
tion terms to energies and wave functions; with
suitable convergence this method can, in principle,
be extended to arbitrary order until the correction
terms become negligibly small. In practice, however,
the calculation of high-order corrections to vi-
brational±rotational energies and wave functions is
limited by the accuracy of the molecular potential
energy surface and by the inherent complexity of
the perturbation formulae themselves (Dudas et al.,

1992). Fortunately, advances in high-speed comput-
ing over the past two decades have assuaged the
former problem and made feasible the calculation
of accurate ab initio potential energy surfaces for
small molecules (see, for example, Krohn et al.,
1974; Harding and Ermler, 1985; Dunning, 1990).
The second problem with high-order perturbation

theory, however, has yet to be satisfactorily
resolved: even relatively low-order perturbation cal-
culations involve prohibitively massive algebraic ex-
pressions. Because of this complexity, analytic
perturbation theory is seldom applied to the intra-
molecular nuclear motion problem beyond the sec-
ond order of approximation (Levine, 1975; Carney
et al., 1978). Instead, numerical solution of the per-
turbed SchroÈ dinger equation (Sprandel and Kern,
1972) or variation-perturbation methods (Sanders
and Scherr, 1969) are employed to calculate high-
order correction terms. However, whereas deri-
vation of an analytic formula for each perturbation
correction requires no a priori knowledge of mol-
ecular data, and therefore provides a general ex-
pression that can be applied to any system (upon
substitution of the appropriate molecular con-
stants), numerical techniques require that molecular
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parameters be inserted into equations before these
equations are solved. Thus, the entire numerical
procedure must be repeated each time the molecular
constants are changed. Furthermore, variational
techniques su�er from catastrophic scaling behavior
as a function of the number of atoms and are con-
sequently limited to small (i.e. 3±5 atom) molecules
(Carney et al., 1978; Carter and Handy, 1982;
Romanowski et al., 1985; Choi and Light, 1992).
Although manual computation of explicit alge-

braic correction formulae to arbitrary order is not
feasible, the growing availability of algebraic soft-
ware capable of large-scale symbolic manipulations
o�ers the possibility of obtaining the desired ex-
pressions via computer. To this end, high-order
quantum-mechanical perturbation theory has been
successfully applied to some simple systems using
computer algebra; these applications, however, are
limited to the electronic spectra of atoms (Vinette
and CÏ õÂ zÏ ek, 1988; Adams, 1992; McRae and Vrscay,
1992; FernaÂ ndez, 1992; Adams and Arteca, 1994).
Furthermore, these authors take advantage of the
Hellmann±Feynman and hypervirial theorems to
circumvent explicit calculation of wave functions.
A more general computer algebra-based approach

to a perturbation problem was presented in a series
of papers by Bouanich (1987a) Bouanich (1987b,c)
in which the author uses commercial algebra soft-
ware to derive symbolic algebraic formulae for vi-
brational±rotational matrix elements. Because of
the nature of the potential energy function
employed, however, Bouanich (1987c) concludes
that it is not feasible to extend these results to arbi-
trary order of correction. More recently, Dudas et
al. (1992) have developed a computer program
(suitable for implementation in the commercial alge-
braic software environment Mathematica1

(Wolfram, 1996)) that can derive certain matrix el-
ements to arbitrary order of correction.
This article presents a general perturbation-theor-

etical treatment applied to the analysis of vibrations
and rotations in diatomic molecules. Using the gen-
eral perturbation energy formula developed by
Herbert, (1997a) and incorporating the
Mathematica1 code described above (Dudas et al.,
1992), one may derive explicit algebraic formulae
for energy and wave function correction terms to
arbitrary order in the Mathematica1 environment.
These expressions incorporate universal and mol-
ecular constants strictly in symbolic form, so that
the solution is not speci®c to a particular molecule.
Thus, after initial computation of these formulae, it
is a simple matter to substitute appropriate con-
stants and thereby calculate vibrational±rotational
energies and wave functions to arbitrary order of
correction for any molecule.

2. THE HAMILTONIAN

Within the Born±Oppenheimer approximation,
the time-independent SchroÈ dinger equation for the
nuclear motion of a diatomic molecule in a body-
®xed coordinate system can be written as

�T̂ �U�R�c � Ec �1�

where E is the system's internal energy (i.e. the
total energy less translational and electronic contri-
butions) and T̂ is the nuclear kinetic energy oper-
ator in the body-®xed frame. The potential energy
U(R) is the sum of the vibrational potential Uvib

and rotational potential Urot as functions of the
intemuclear separation R. For completeness and in-
ternal consistency of notation, a few standard
results of perturbation theory as applied to molecu-
lar vibrations and rotations are presented in Section
2.1.

2.1. The Zeroth-order Approximation

To obtain the eigenfunctions and eigenvalues of
equation (1), let Uvib(R) be expanded as a Taylor
series about the equilibrium intemuclear separation
Re:

Uvib�R� � U 0
vib�Re��Rÿ Re�2

2!
�U 1

vib�Re��Rÿ Re�3
3!

�U �iv�vib �Re��Rÿ Re�4
4!

� ::: �2�

where U'(Re) = 0 because U(Re) is the minimum po-
tential energy; for convenience, U(Re) has been set
equal to zero. The radius of convergence of this
series is approximately 2Re (Dudas et al., 1992). It
can be shown (Levine, 1975) that the rotational po-
tential Urot has the form

Urot�R� � J�J � 1��h2
2mR2

, �3�

where J= 0, 1, 2,... is the rotational quantum num-
ber and m is the system's reduced mass (including
electrons). Expansion of Urot as a power series in
(RÿRe) provides

Urot�R�

� J�J � 1��h2
2Ie

1ÿ 2
�Rÿ Re�

Re
� 3
�Rÿ Re�2

R2
e

ÿ :::
� �

,

�4�
where Ie0mRe

2 is the molecule's equilibrium
moment of inertia. The equation (4) converges
whenever R< 2 Re (Ogilvie, 1981, 1982).
For small displacements from equilibrium,

R1Re, and all terms in equation (2) and
equation (4) except the ®rst are small (Levine,
1975). Neglecting these higher terms corresponds to
the harmonic oscillator/rigid-rotator model, which
provides a zeroth-order approximation to the true
internal nuclear motion of a diatomic molecule. The
zeroth-order vibrational±rotational wave functions
are (Levine, 1975)

c�0�u,J,M �
Cu�Q�
Q� Re

YM
J �y,f�, �5�

where u = 0, 1, 2,... is the vibrational quantum
number, M =ÿ J,ÿ J + 1,..., Jÿ 1, J is an angular
momentum quantum number, and Q0RÿRe is
the internuclear displacement coordinate.YJ

M(y,f) in
equation (5) is a spherical harmonic function (aris-
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ing from rigid rotation), while Cu(Q) is a harmonic
oscillator wave function.
For molecules whose ground electronic state is

1a, the vibrational±rotational eigenenergies in the
harmonic oscillator/rigid-rotator approximation are
(Townes and Schawlow, 1955)

E �0�u,J � �u� 1=2�o e � J�J � 1�Be, �6�
where oe02p�hne, ne is the classical frequency of os-
cillation and

Be � �h2

2Ie
, �7�

is the equilibrium rotational constant. Note that in
the cgs system, oe, Be, and Eu,J

(0) in equation (6)
are in units of ergs. Following the convention of
Levine (1975), wavenumber units are obtained by
using the constants ~o e and BÄe in place of oe and
Be, where

~o e � o e

hc
, ~Be � Be

hc
: �8�

2.2. Perturbation Corrections

Successively higher-order corrections for anhar-
monicity, centrifugal distortion, and vibration±rota-
tion coupling e�ects are obtained by incorporating
additional terms of the potential energy series of
equation (2) and equation (4) as perturbations to
the harmonic oscillator/rigid-rotator Hamiltonian.
It is known (Sprandel and Kern, 1972) that the
sequence of energy correction terms from pertur-
bation theory is most likely to converge when the
Hamiltonian is expanded as a power series with in®-
nitely many separate perturbations; the vibrational
and rotational potential energy equation (2) and
equation (4) are ideally suited for such an expan-
sion.
Within the radii of convergence of equation (2)

and equation (4), the exact Hamiltonian operator
for internal nuclear motion is obtained by incorpor-
ating all terms from these series plus the kinetic
energy operator from equation (1):

Ĥ � T̂ � 1

2
keQ

2

�
X1
i�1

�ÿ1�i�i � 1��J � 1�JBe

Ri
e

Qi � ki�2
�i � 2�!Q

i�2
" #

, �9�

where ke0U0(Re) is the equilibrium molecular force
constant, and the jth-order force constant kj is
de®ned as

kj � U�j ��Re� �10�
for all j>2. Some authors [e.g. Sprandel and Kern
(1972)] incorporate the factorial terms from
equation (9) into the force constants; however,
equation (10) provides a better analogy to the har-
monic oscillator potential UHO � 1

2 keQ
2. Notice

that the ®rst term in equation (4) is not incorpor-
ated into Ĥ because this term is constant and was

subsumed (Levine, 1975) into the harmonic oscil-
lator/rigid-rotator eigenenergies in equation (6).

Following the formalism of Kern and Matcha
(1968) and of Herbert (1997a), the Hamiltonian op-
erator, its eigenvalues, and its eigenfunctions are
rewritten in the form

Ĥ � Ĥ�0� �
X1
i�1

Ĥ�i �, EuJ � E �0�u,J �
X1
i�1

E �i �u,J , cu,J,M

� c�0�u,J,M �
X1
i�1

c�i �u,J,M �11�

where the unperturbed Hamiltonian operator

Ĥ�0� � T̂ � 1

2
keQ

2 �12�

corresponds to the harmonic oscillator/rigid-rotator
system. There are numerous ways of constructing
the perturbed Hamiltonian operators Ĥ�i � such that
their sum is equal to the full Hamiltonian operator
of equation (9). When perturbation theory is
applied through second order, the perturbations tra-
ditionally are written (Dennison and Hecht, 1962)
as follows:

Ĥ�1� � 1

6
k3Q

3 ÿ 2J�J � 1�Be

Re
Q,

� Ĥ�2� � 1

24
k4Q

4 ÿ 3J�J � 1�Be

R2
e

Q2, �13�

Here the ®rst-order perturbation Ĥ�1� comprises
both the ®rst-order vibrational correction (that is,
the cubic anharmonicity correction or the second
term in equation (2)) and the ®rst-order rotational
correction (the second term in equation (4)).
Likewise, the second-order perturbation Ĥ�2� incor-
porates second-order potential energy corrections
for both vibration and rotation.Extending this
rationale to arbitrary order provides a convenient
form for the perturbed Hamiltonian operators:

Ĥ�i � � ki�2
�i � 2�!Q

i�2 � �ÿ1�
i�i � 1�J�J � 1�Be

Ri
e

Qi,

�14�
or equivalently

Ĥ�i � � ki�2
�i � 2�!Q

i�2 � �ÿ1�
i�i � 1�kLk2
2Ie

�
Q

Re

�i

, �15�

since the total angular momentum L of a rotating
diatomic molecule has magnitude 6L6= �h
SQRT{J(J + 1)}. The form of the perturbations in
equation (15) parallels that used in second-
(Nielsen, 1951) and fourth-order (Goldsmith et al.,
1956; Amat et al., 1971) perturbation treatments of
polyatomic molecules, in which each perturbed
Hamiltonian is the sum of an anharmonicity correc-
tion and a rotational term containing momenta
divided by moments or products of inertia.

Symbolic Implementation of Arbitrary-order Perturbation Theory 171



2.3. Matrix Elements

To calculate energy corrections Eu,j
(i) and per-

turbed wave functions cu,j,M
(i) one must evaluate nu-

merous integrals of the form

H�z�
x1,x2
� hc�0�x1 jĤ

�z�jc�0�x2 i, �16�
where the ordered triple xi(=(ui,Ji,Mi) speci®es the
system's quantum state. Integrals such as
equation (16) can, in general, be evaluated numeri-
cally; however, for the case of internal nuclear
motion simple procedures exist whereby an analytic
solution may be obtained.
The sixth-rank tensor H(i) is known (Levine,

1975) to be diagonal in both J and M. Using this
fact in conjunction with equation (14), one can
easily show that

H�i �
u1,u2 �

ki�2
�i � 2�! hQ

i�2iu1,u2

� �ÿ1�
i�i � 1�J�J � 1�Be

Ri
e

hQiiu1,u2 , �17�

where, for brevity,

hQziu1,u2 � hc�0�u1,J,M jQzjc�0�u2,J,Mi, �18�
since the Q tensor is also diagonal in J and M.
Note that the matrix H�i �

u1,u2 element contains an im-
plicit parametric dependence upon J; thus, for each
value of J there exists a separate, two-dimensional
matrix H(i).
The matrix elements hQiu1,u2 are obtained from

the harmonic oscillator wave functions either by
using linear algebra techniques (Matsen, 1970) or
by taking advantage of the recursive nature of the
Hermite polynomials appearing in these wave func-
tions (Levine, 1975; NinÄ o and MunÄ oz-Caro, 1995).
These matrix elements are found to be

hQiu 0 ,u �
�
u
2a

�1=2
du 0,uÿ1 �

�
u� 1

2a

�1=2
du 0 ,u�1 �19�

where d is the Kronecker delta function and

a � 4p2�em
h

�20�

is a constant appearing in the harmonic oscillator
wave functions. The elements of Qz(z>1) are
obtained from equation (19) via matrix multipli-
cation; recursive algorithms for this procedure are
provided by Dudas et al. (1992) and by NinÄ o and
MunÄ oz-Caro (1995). Explicit formulae for these
matrix elements up to hQi4u 0 ,u are tabulated by
Wilson Jr. et al. (1980).
It should be noted that the matrix Qi has at most

i nonzero codiagonals on each side of the main di-
agonal, so there are but a ®nite number of nonzero
Hamiltonian matrix elements H�i �

u1,u2 . As such, per-
turbation formulae arising from the Hamiltonian
described here will not involve in®nite summations,
but instead will be expressible in closed (albeit
lengthy) forms. Thus, these formulae are exact sol-
utions to the SchroÈ dinger equation at each order.

3. RAYLEIGH±SCHROÈ DINGER EXPANSIONS

For vibrational±rotational analysis problems, it is
convenient to use the Rayleigh±SchroÈ dinger form
of perturbation theory, in which the set of unper-
turbed wave functions {cx

(0)} is assumed to form a
basis for the Hilbert space containing the true wave
functions cx. Each perturbed wave function cx

(n) is
expressed as a linear combination of these basis
functions:

c�n�x �
X
x 0

c�n�x 0 ,c
�0�
x 0 �21�

where cx
(n) is the nth-order expansion coe�cient as-

sociated with quantum state x'. In this application,
the summation in equation (21) runs over all poss-
ible values of the three quantum numbers u, J, and
M.

3.1. Preliminary Considerations

Three useful results will greatly expedite calcu-
lation of the coe�cients in equation (21). First, it is
known (Dalgarno, 1961; Levine, 1974) that the
expansion coe�cient cu,J,M

(n) does not a�ect the per-
turbation energy Eu,J

(n) so one may set cu,J,M
(n) =0 in

the Rayleigh±SchroÈ dinger expansion of cu,J
(n). The

equation (21) then simpli®es to

c�n�x �
X
x 0 6�x

c
�n�
x 0 c

�0�
x 0 �22�

Second, observe that

hc�m�x1
jĤ�i �jc�n�x2 i �

X
x 0 6�x1

�
c�m�x 0

X
x0 6�x2

c�n�
x0Ĥ�i �

x 0 ,x0

�
�23�

and, ®nally,

hc�mx1 jc
�n�
x2
i �

X
x 0 6�x1

�
c�m�x 0

X
x0 6�x2

c�n�
x0dx 0x0

�
: �24�

Equation (24) follows from the orthonormality of
the zeroth-order wave functions. If either of m or n
is zero in equation (23) or equation (24), then there
is no need to expand one or both of the wave func-
tions. Equation (23) and equation (24) are still
valid, however, provided one de®nes

c
�0��
x 0 dx,x 0 , �25�

where x is the quantum state whose wave function
is to be expanded and x' is the index variable of the
Rayleigh±SchroÈ dinger expansion of equation (22).

3.2. A General Expansion Formula

Using the results obtained above, one can derive
a general formula for the Rayleigh±SchroÈ dinger
expansion coe�cients from the so-called pertur-
bation equations, which relate the series expansions
in equation (11) of H, E, and c (Kern and
Matcha, 1968; Herbert, 1997a). Applying the
Rayleigh±SchroÈ dinger expansion of equation (22) to
the nth-order perturbation equation provides
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X
x0 6�x

c
�n�
x0
ÿ
Ĥ�0� ÿ E

�0�
u,J

�
c�0�
x0 �

Xn
i�1

ÿ
E
�i �
u,J ÿ Ĥ�i ��c�nÿi �x :

�26�
Since the coe�cients for n= 0 are known (from
equation (25)), let n be greater than zero.
Multiplication of equation (26) by the complex con-
jugate cx'

(0)* of the zeroth-order wave function for
state x' followed by integration yieldsX

x06�x
c
�n�
x0
ÿ
E
�0�
u0,J0 ÿ E

�0�
u,J

�
dx 0,x0 �

Xn
i�1

E
�i �
u,Jc

�0�
x 0 jc�nÿi �x

ÿ
Xn
i�1
hc�0�x 0 jĤ�i �jc�nÿi �x i: �27�

As x' is arbitrary, choose x' such that x'$x. Under
this condition, the wave functions cx'

(0) and, cx
(n ÿ i)

are not necessarily orthogonal (Herbert, 1997a);
however, in the case where i= n, these two func-
tions are orthogonal. Thus, using equation (23) and
equation (24), one may reduce equation (27) to a
simple recursive formula:

c�n�x 0
ÿ
E �0�u 0 ,J 0 ÿ E �0�u,J

� �Xnÿ1
i�1

c�nÿ1�x 0 E �i �u,J

ÿ
Xn
i�1

X
x06�x

c
�nÿi �
x0 H�i �

x 0,x0 �28�

for all n>0.
Equation (28) is nearly the desired general for-

mula for the expansion coe�cients; however, if x
and x' are degenerate states in the zeroth-order ap-
proximation, then the left side of equation (28) is
zero, and no information regarding the expansion
coe�cients can be obtained from this formulation.
Hence, assume for the moment that Eu',J'

(0)$Eu,J
(0).

Solving equation (28) for cx'
(n) and substituting this

expression into equation (22) a�ords the expansion

c�n�x �
X
x 0 6�x

�
1

E
�0�
u 0,J 0 ÿ E

�0�
u,J

�
�Xnÿ1

i�1
c
�nÿi �
x 0 E

�i �
u,J ÿ

Xn
i�1

X
x06�x

c
�nÿi �
x0 H�i �

x 0,x0

�
c�0�x 0

�
: �29�

Observe from equation (28) with n = 1 that each
®rst-order expansion coe�cient cx'

(1) is simply a per-
turbed Hamiltonian matrix element divided by an
energy di�erence. By induction on n, one may show
that every set of nth-order expansion coe�cients
{cx'

(n)} is a sum of such terms, some of which are
multiplied by an energy correction Eu,J

(i). Since each
perturbed Hamiltonian matrix H(i) is diagonal in J
and M, the entire right side of equation (29) must
be zero whenever J'$J0 or M'$M0, so the sum-
mations over x'$x and x0$x in equation (29)
reduce to summations over u'$u and u0$u, re-
spectively. Applying this simpli®cation and making
use of equation (25), one may recast equation (28)

in its simplest form:

c
�n�
x 0
ÿ
E
�0�
u 0,J 0 ÿ E

�0�
u,J

� � ÿH�n�
u,u 0 �

Xnÿ1
i�1

c
�nÿi �
x 0 E

�i �
u,J

ÿ
Xnÿ1
i�1

X
u06�u

c�nÿi �
x0 H�i �

u 0u0: �30�

Note that the outer summation in the ®nal
Rayleigh±SchroÈ dinger expansion of equation (29)
runs over only quantum numbers u$u', and there-
fore excludes J= J' and M$M'. Under these con-
ditions, the di�erence in zeroth-order energies
between states x and x is

E �0�u 0 ,J 0 ÿ E �0�u,J � �u 0 ÿ u�o e �J � J 0� �31�
from equation (6). Hence, Eu',J'

(0)-Eu,J
(0)$0 if u'$u.

Since equation (30) relates to the Rayleigh±
SchroÈ dinger expansion

c�n�u,J,M �
X
u 0 6�u

c�n�u 0,J,Mc�0�u 0,J,M , �32�

this condition is met, and the assumption that
Eu',J'

(0)$Eu,J
(0) is now justi®ed. Moreover the ro-

tational quantum number J appears in equation (30)
only as a multiplicative constant (recall
equation (14)) and the quantum number M does
not appear in equation (30) at all. Hence, the
Rayleigh±SchroÈ dinger expansion coe�cients in
equation (32) will hereafter be denoted by cu'

(n),
where an implicit parametric dependence on J (ana-
logous to that of Hu,u'

(i)) is assumed. The ®nal ex-
pression for the Rayleigh±SchroÈ dinger expansion
coe�cients is obtained from equation (30):

c
�n�
u 0 �

1

�uÿ u 0�hve

�
�
H�n�

u,u 0 ÿ
Xnÿ1
i�1

c
�nÿi �
u 0 E

�i �
u,J �

Xnÿ1
i�1

X
u06�u

c
�nÿ1�
u0 H�i �

u 0 ,u0

�
:

�33�
Equation (33) provides an important recursive re-

lation whereby each new set of expansion coe�-
cients

�
c�n�u 0
	

(n>1) is determined by all of the
coe�cients of order less than n, while the ®rst-order
coe�cients (n= 1) are determined directly from the
elements of H(1). Since reference to molecular vi-
brations and rotations was made only in the context
of obtaining a value for Eu',J'

(0)ÿEuJ
(0), the remain-

der of this derivation is valid for any Rayleigh±
SchroÈ dinger perturbation problem involving arbitra-
rily many separate perturbations to the
Hamiltonian.

4. IMPLEMENTATION

Equation (32) and equation (33) are necessary in
order to expand the perturbed wave function
cu,J,M

(i) in terms of the known functions in the set�
c�0�u 0 ,J,M

	
. Such perturbed wave functions appear in

the equation for the nth-order energy correction
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(Herbert, 1997a),

E �n�u,J �
Xk
j�1

Xk
i�j

��2ÿ dn,2i �hc� jÿ1�x jĤ�nÿiÿj�1�jc�i �x i
�

�
Xkÿ1
i�0
hc�i �x jĤ�nÿ2i �jc�i �x i

ÿ
Xk
j�2

Xk
i�j

��2ÿ dn,2i �E nÿiÿj�1�
u,J hc� jÿ1�x jc�i �x i

�

ÿ
Xkÿ1
i�1

E �nÿ2i �u,J hc�i �x jc�i �x i �
�hc�k�x jĤ�1�jc�k�x i

ÿE �1�u,Jhc�k�x jc�k�x i�1ÿ dn,1�
�
dn,2k�1, �34�

where the parameter k is de®ned as

k � b1
2
nc, �35�

the greatest integer less than or equal to 1
2 n. Only

the wave function terms cx
(0),cx

(1),... cx
(k)are

necessary to express the nth-order energy correction
Eu,J

(n) (Dalgarno, 1961).

4.1. Mathematica1 Programs

An existing Mathematica1 code (Dudas et al.,
1992) can evaluate the matrices Qz for any positive
integer z and return analytic functions of the vi-
brational quantum number analogous to
equation (19); thus, one may easily obtain algebraic
expressions for the perturbed Hamiltonian matrix
elements in equation (34) by using this code in con-
junction with equation (17), equation (23) and
equation (24). In fact, all of the necessary theoreti-
cal pieces are now in place to calculate explicit for-
mulae for the successive perturbation corrections to
energies and wave functions.
Equation (23), equation (24), equation (30), and

equation (34) pertain to Rayleigh±SchroÈ dinger per-
turbation theory in general, and these equations
(along with a few assorted rules for manipulating
quantum-mechanical matrix elements) were coded
together into a package of Mathematica1 functions
called RSPERTURB. Equation (17) and equation (31),
on the other hand, apply speci®cally to diatomic vi-
brational±rotational analysis problems and were
compiled into a separate Mathematica1 package
called DIATOMICVIBROT. Early versions of the
RSPERTURB and DIATOMICVIBROT programs are
published in Herbert (1997b). Together, these pro-
grams can be used to derive symbolic formulae for
diatomic vibrational±rotational energies and wave
functions in terms of universal constants, molecular
constants, and quantum numbers. Moreover, since
all application-speci®c equations are collected in a
separate program, the package RSPERTURB can be
applied to solve perturbation problems other than
the one discussed here.
In deriving energy formulae using RSPERTURB

and DIATOMICVIBROT, the quantum number u was
not incorporated symbolically, but instead a separ-

ate energy expression was derived for each value of
u. There are several reasons why this approach was
taken. First and foremost, when u is known expli-
citly, summations over quantum numbers u'$u,
etc., may be quickly evaluated, so it is enormously
simpler (and much more e�cient) to derive for-
mulae in this manner. Furthermore, perturbation
theory is most accurate when u is small (that is,
when R is near Re, so that relatively few values of u
will ever be required).
In fact, it is of interest to derive a general alge-

braic energy expression in terms of both u and J
only in order to factor such an expression into a
polynomial in J(J + 1) and (u+ 1/2) and thereby
obtain ab initio formulae for spectroscopic con-
stants. However, perturbation analyses do not, in
general, yield energies that can be factored into
powers of J(J + 1) and (u + 1/2) (Darling and
Dennison, 1939), and indeed the expansion in
(u+ 1/2)i[J(J + 1)]j is more often used simply as a
numerical ®tting equation. In light of this, the most
e�cient way to obtain theoretical values for spec-
troscopic constants is to calculate vibrational and
rotational energy levels from ®rst principles, then
numerically to ®t these values to an appropriate
power series in much the same way that ab initio
electronic energies are ®tted to an analytic potential
energy function.

4.2. Symbolic Results And Discussion

Using Mathematica1 version 2.2 (running on a
Sun SPARC 5 workstation) and the external
packages RSPERTURB and DIATOMICVIBROT,
Mathematica1 derived analytic formulae for the
energy correction terms E(1) through E(6) and for vi-
brational states u= 0 through u = 10. The odd-
order perturbation energies were found to be zero,
owing to the fact that perturbed Hamiltonian
matrix elements Hu1,u2

(i) as de®ned in equation (17)
have a de®nite parity due to the parity of hQziu,u', as
discussed by Levine (1975).
Using intrinsic Mathematica1 functions for alge-

braic simpli®cation, it is possible to separate each
correction formula into a linear combination of
small terms; the linear combination coe�cients are
integers whose values depend upon the vibrational
state. By taking advantage of linear combination
notation and intrinsic patterns in the correction for-
mulae, one can reduce these expressions from lit-
erally hundreds of pages of algebra into compact
forms. For example, energy correction formulae
through sixth order for the ®rst eleven vibrational
states can be expressed in only twelve pages of
tables; these formulae have been compiled by
Herbert (1997b). For demonstrative purposes, the
compact expressions for E(2) are reproduced here as
Appendix A.
The procedure used to derive E(2),E(4), and E(6) is

completely general and works for arbitrarily high
orders of correction; the maximum order of correc-
tion is limited only by computer constraints.
Previously, researchers using Mathematica1 to
solve problems in quantum chemistry have reported
(Jones, 1994) that this software is perhaps too slow
to be of practical use. For the perturbation calcu-
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lations presented in this report, however, such is
not the case.
Figure 1 presents the CPU time required for in-

itial derivation of successive orders of perturbation
formulae in their crudest forms, while Fig. 2 shows
the time required to simplify these crude formulae
into their most compact forms. Combining the tim-
ing data from Fig. 1 and Fig. 2, the amount of
CPU time required to derive and simplify an nth-
order correction formula is seen in all cases to be of
the order of 100.5n seconds. Furthermore, for a
given value of n, CPU time scales linearly with u.
Although Fig. 1 and Fig. 2 indicate exponential

scaling with respect to the order of perturbation
theory, three facts make this problem more tract-
able. First, algebraic simpli®cation of crude correc-
tion formulae is not strictly necessary and is useful
only if the perturbation formulae are to be else-
where transcribed. Elimination of simpli®cation
steps reduces requisite CPU time by the amounts
shown in Fig. 2.
Second, because of the u dependence of CPU

time, the correction formulae for very low-lying vi-
brational states require signi®cantly less time to de-
rive and simplify than those for higher vibrational
states (since negative values of u are not allowed,
summations over u'$u are considerably less
involved for small u). Because Rayleigh±
SchroÈ dinger perturbation theory is applicable only

to low-lying vibrational states, the formulae that
are of primary interest are also the ones that require
the least time to obtain.
Finally, it is worth noting that RSPERTURB is not

the most e�cient possible algorithm for deriving
energy correction formulae because the expansion
coe�cients cu

(i) in RSPERTURB are recalculated from
the general formula each time they are needed. It
would be enormously more e�cient to ®rst calculate
as many Rayleigh±SchroÈ dinger coe�cients as are
required, then store these expressions so that
Mathematica1 may reference them during the
course of a computation.
In the case of diatomic molecules, however, the

point is to demonstrate that arbitrary-order pertur-
bation formulae can in fact be derived using com-
puter algebra. In our future work with polyatomic
molecules (where emphasis is placed on obtaining
actual numerical values for vibrational±rotational
energies), a more e�cient algorithm will be
employed.

5. NUMERICAL RESULTS

Numerical values for perturbation energies
through sixth order for selected molecules are
quickly obtained by substituting appropriate nu-
merical parameters into the perturbation formulae
derived by the RSPERTURB and DIATOMICVIBROT

Fig. 1. CPU time required by Mathematica1 to derive symbolic energy correction formulae. All compu-
tations were performed on a Sun SPARC 5 workstation using Mathematica1 version 2.2 for Unix.

Results are shown for the ®rst eleven vibrational states, ranging from u = 0 to u= 10.
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programs. In a fully ab initio treatment, the force
constants and equilibrium internuclear separation
Re, are determined by means of electronic energy
calculations, and for 1H2 this was accomplished by
®tting existing ab initio electronic energy data
(Kolos and Wolniewicz, 1964) to an eighth-degree
Taylor polynomial. By using force constants
obtained from this potential, vibrational±rotational
energy levels for 1H2 were calculated to the sixth
order of Rayleigh±SchroÈ dinger perturbation theory
RSPT(6). However, because the Taylor polynomial
®t is good only within some ®nite radius of conver-
gence, the theoretical data obtained from this po-
tential energy expansion are not usable beyond a
certain value of u. (In this application, it was found
that beyond u = 4 the energies actually began to
decrease as u increased.) Thus, to assess the re-
liability of sixth-order perturbation calculations for
larger values of u, we chose to employ an empirical
potential energy function rather than a numerical ®t
of ab initio data.

5.1. Potential Energy Functions

Two of the most common empirical potential
energy functions for diatomic molecules are the
Morse function (Morse, 1929) and the Hulburt±
Hirschfelder function (Hulburt and Hirschfelder,
1941 Hulburt and Hirschfelder, 1961). Molecular
force constants (equation (2)) may be obtained
from either of these functions by means of analytic

di�erentiation. For the Morse potential, these force
constants may be written (Sprandel and Kern,
1972) in a convenient closed form. For the
Hulburt±Hirschfelder potential function, no such
closed-form expression exists; however,
Mathematica1 can easily perform the requisite sym-
bolic di�erentiation.
For comparative purposes, RSPT(6) vibrational±

rotational energies for 1H2 were calculated by using
®rst Morse and then Hulburt±Hirschfelder force
constants. In Fig. 3 and Fig. 4, RSPT(6) energies
for each vibrational state u= 0 through u= 10 are
plotted as functions of the rotational state J and
compared with experimental values (Stoiche�, 1957;
Herzberg and Howe, 1959; Herzberg and Mon®ls,
1960). For the lowest vibrational levels (i.e. uE4),
theoretical energies obtained from Hulburt±
Hirschfelder force constants are essentially indistin-
guishable from experimental values. As u increases,
so does the discrepancy between theory and exper-
iment; this rift also increases (to a lesser extent)
with increasing J.
Although force constants from the Morse poten-

tial appear to provide a better ®t for u = 7 through
u = 10, the decision was made to use the Hulburt±
Hirschfelder potential function for all calculations
because Rayleigh±SchroÈ dinger perturbation theory
is most applicable to the lowest vibrational levels.
This last point cannot be overemphasized and, in
performing such theoretical calculations, it is im-

Fig. 2. CPU time required by Mathematica1 to manipulate crude energy formulae into their simplest
forms. Results are shown for the ®rst eleven vibrational states.
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perative that one understand precisely how many
vibrational and rotational energy levels can accu-
rately be described by using the given theory and
all its intrinsic approximations and assumptions.

5.2. Accuracy Of Perturbation Calculations

The maximum vibrational±rotational energy that
can be calculated to a given level of accuracy
depends upon the potential energy surface, the
order of perturbation theory, and the molecule
itself. In this section a paradigmatic analysis of the
applicability of RSPT(6) calculations to 1H2 is pro-
vided, beginning with a look at the sequence of
energy corrections for this molecule.
Table 1 lists the individual correction terms for

several di�erent vibrational±rotational states of
1H2. Several important trends in the perturbation

energy corrections, which are true for nearly all dia-
tomic molecules, are exempli®ed by this data. First,
note that corrections to the zeroth-order energy are
signi®cantly smaller for u= 0 than for u= 1. This
di�erence in the relative magnitudes of correction
terms is even more pronounced at larger values of u
and illustrates a general trend: the perturbation cor-
rection at each order becomes larger (in an absolute
sense) as u increases. This is not surprising, given
that the harmonic oscillator model becomes increas-
ingly less accurate at higher and higher vibrational
energy levels; for highly excited vibrational states,
signi®cant correction to this idealized model is
required.
Table 1 also demonstrates, however, that pertur-

bation corrections at each order increase relatively
slowly with J. Although this phenomenon is illus-

Fig. 3. Energy calculations through sixth order for X 1Sg
+ 1H2, using force constants obtained from the

Morse potential. Each solid line shows the theoretical energy for a particular vibrational state as a
function of the rotational quantum number, and dashed lines represent experimental values. Morse par-
ameters were obtained from Sprandel and Kern (1972). The experimental zero-point energy was
obtained from Herzberg and Mon®ls (1960), while the remaining experimental energies were calcula-
tated using the vibrational quanta and mean rotational contants obtained experimentally by Stoiche�

(1957) and by Herzberg and Howe (1959).

Table 1. Energy correction terms for six vibrational±rotational states of X 1Sg
+ 1H2

Correction term
Vibrational±rotational energy contributions, EÄu,J(i)

(waves cm-1)*
Vibrational±rotational energy contributions EÄu,J

(i)

(cm-1)

u= 0, J= 0 u = 0, J = 1 u = 0, J= 2 u=1, J = 0 u=2, J= 0 u= 3, J= 0

E(O) 2202.42 2324.14 2567.58 6607.27 11 012.12 15 416.97
E(2) ÿ23.34 ÿ26.59 ÿ34.21 ÿ274.04 ÿ775.45 ÿ1527.56
E(4) ÿ0.52 ÿ0.49 ÿ0.42 1.99 45.91 101.48
E(6) 0.02 0.02 0.02 ÿ0.51 ÿ5.05 ÿ20.57
*The tilde is used over the energy correction in this and subsequent tables to indicate units of waves per centimeter.
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trated in Table 1 only for the ground vibrational
state, it is in fact a general trend for low-lying
vibrational and rotational states: within a given vi-

brational state, energy corrections increase slowly
with J, but within a given rotational state, the cor-
rection terms increase quite rapidly with u. This

Fig. 4. Energy calculations through sixth order for X 1Sg
+ 1H2, using force constants obtained from the

Hulburt±Hirschfelder potential. Each solid line shows the theoretical energy of a particular vibrational
state as a function of the rotational quantum number, and dashed lines represent experimental values.
Hulburt±Hirschfelder parameters were obtained from Hulburt and Hirschfelder (1941). The experimen-
tal zero-point energy was obtained from Herzberg and Mon®ls (1960), while the remaining experimental
energies were calculatated using the vibrational quanta and mean rotational contants obtained exper-

imentally by Stoiche� (1957) and by Herzberg and Howe (1959).

Table 2. RSPT(6) vibrational±rotational energies (cm-1) for the lowest vibrational±rotational states of X 1Sg
+1 H2*

J= 0 J= 1 J= 2 J= 3 J= 4 J= 5 J= 6 J= 7 J = 8 J = 9 J = 10

u = 0 2178.59 2297.08 2532.96 2884.09 3347.34 3918.67 4593.28 5365.67 6229.81 7179.21 8206.94
2179.27 2297.76 2533.66 2884.81 3348.07 3919.46 4594.24 5367.17 6232.69 7185.19 8219.31

u = 1 6334.71 6447.26 6671.22 7004.58 7444.28 7986.38 8626.23 9358.52 10 177.4 11 076.6 12 049.5
6340.41 6452.97 6677.04 7010.54 7450.30 7992.13 8630.80 9360.00 10 172.4 11 059.6 12 012.2

u = 2 10 246.7 10 353.4 10 565.6 10 881.3 11 297.6 11 810.7 12 415.9 13 108.2 13 881.8 14 730.6 15 648.2
10 266.4 10 373.2 10 585.7 10 901.9 11 318.8 11 832.2 12 436.9 13 126.9 13 894.9 14 732.7 15 631.2

u = 3 13 914.8 14 015.4 14 215.8 14 513.8 14 906.4 15 390.1 15 960.3 16 611.9 17 339.2 18 136.6 18 997.4
13 961.6 14 062.7 14 263.9 14 563.3 14 958.0 15 444.5 16 018.4 16 674.8 17 408.3 18 213.4 19 084.6

u = 4 17 335.4 17 430.0 17 618.2 17 897.9 18 266.4 18 719.8 19 253.8 19 863.2 20 542.7 21 286.4 22 087.9
17 429.7 17 525.1 17 715.0 17 997.6 18 370.0 18 828.9 19 369.8 19 988.1 20 678.5 21 435.6 22 253.9

u = 5 20 501.9 20 590.1 20 765.6 21 026.3 21 369.4 21 791.2 22 287.2 22 852.5 23 481.5 24 168.4 24 907.0
20 671.2 20 761.0 20 939.6 21 205.2 21 555.2 21 986.2 22 494.0 23 074.0 23 721.2 24 430.2 25 195.8

u = 6 23 403.8 23 485.3 23 647.4 23 888.0 24 204.3 24 592.5 25 048.2 25 566.3 26 141.4 26 767.7 27 438.7
23 684.9 23 769.0 23 936.2 24 184.7 24 512.0 24 914.7 25 388.8 25 929.6 26 532.4 27 191.8 27 902.6

u = 7 26 027.3 26 101.7 26 249.4 26 468.5 26 756.0 27 108.2 27 520.5 27 988.0 28 505.0 29 065.5 29 663.3
26 467.1 26 545.2 26 700.7 26 931.6 27 235.6 27 609.2 28 048.8 28 549.6 29 107.1 29 716.0 30 371.4

u = 8 28 355.2 28 421.9 28 554.1 28 749.9 29 006.3 29 319.5 29 684.8 30 097.2 30 551.0 31 040.0 31 557.7
29 010.3 29 082.3 29 225.5 29 438.1 29 717.6 30 060.9 30 463.9 30 922.2 31 431.2 31 985.6 32 580.5

u = 9 30 366.7 30 424.9 30 540.3 30 710.8 30 933.3 31 204.0 31 518.1 31 870.4 32 254.9 32 665.5 33 095.4
31 303.2 31 368.7 31 498.9 31 692.0 31 945.6 32 256.3 32 620.3 33 033.2 33 490.1 33 986.0 34 515.8

u = 10 32 037.5 32 086.5 32 183.5 32 326.3 32 511.8 32 735.9 32 993.8 33 280.1 33 588.7 33 913.1 34 246.3
33 329.5 33 387.9 33 504.0 33 676.0 33 901.2 34 176.5 34 497.8 34 860.5 35 259.5 35 689.2 36 144.1

*The lower entry in each cell is an experimental value. The experimental zero-point energy was obtained from Herzberg and Mon®ls,
(1960), while the remaining experimental energies were calculated using the vibrational quanta and mean rotational constants
obtained experimentally by Stoiche�, (1957) and by Herzberg and Howe, (1959). Theoretical calculations used Hulburt±Hirschfelder
force constants with parameters obtained from Hulburt and Hirschfelder, (1941).
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behavior arises because the vibrational potential
energy series of equation (2), is term-by-term much
larger than the rotational potential energy series of
equation (4) (Dennison and Hecht, 1962).
The results of RSPT(6) energy calculations for

the lowest 121 vibrational±rotational states of 1H2

are listed in Table 2, along with the corresponding
experimental energies (Stoiche�, 1957; Herzberg
and Howe, 1959; Herzberg and Mon®ls, 1960); for
convenience, the relative di�erences between theor-
etical and experimental energies are tabulated in
Table 3. The data in Table 3 indicate excellent
agreement between theory and experiment for low-
lying vibrational states (for instance, when uE4,
the di�erence between theoretical and experimental
energies is less than 1 per cent for all eleven ro-

tational levels considered); moreover, the relative
di�erences in Table 3 are not altogether large even
for higher vibrational states. However, it should be
noted that when u>4, the absolute di�erence
between theoretical and experimental energies is on
the order of hundreds of wavenumbers for all ele-
ven rotational levels in Table 2. Thus, it appears
that for u>4 one might wish to include eighth- or
higher-order perturbation corrections.
The small relative di�erences in Table 3 can be

somewhat misleading, for equation (2) and
equation (4) may not converge for all values of u
and J listed in this table. An estimate of the maxi-
mum values of u and J for which convergence is
guaranteed can be obtained by examining the radii
of convergence of these series. Figure 5 depicts a

Table 3. Relative percentage di�erences between theoretical RSPT(6) and experimental energies for the lowest vibrational±rotational
states of X 1Sg

+ 1H2

J= 0 J= 1 J= 2 J= 3 J= 4 J= 5 J= 6 J= 7 J = 8 J = 9 J = 10

u = 0 ÿ0.03 ÿ0.03 ÿ0.03 ÿ0.03 ÿ0.02 ÿ0.02 ÿ0.02 ÿ0.03 ÿ0.05 ÿ0.08 ÿ0.15
u = 1 ÿ0.09 ÿ0.09 ÿ0.09 ÿ0.09 ÿ0.08 ÿ0.07 0.05 ÿ0.02 0.05 0.15 0.31
u = 2 ÿ0.19 ÿ0.19 ÿ0.19 ÿ0.19 ÿ0.19 ÿ0.18 ÿ0.17 ÿ0.14 ÿ0.09 ÿ0.01 0.11
u = 3 ÿ0.34 ÿ0.34 ÿ0.34 ÿ0.34 ÿ0.35 ÿ0.35 ÿ0.36 ÿ0.38 ÿ0.40 ÿ0.42 ÿ0.46
u = 4 ÿ0.54 ÿ0.54 ÿ0.55 ÿ0.55 ÿ0.56 ÿ0.58 ÿ0.60 ÿ0.63 ÿ0.66 ÿ0.70 ÿ0.75
u = 5 ÿ0.82 ÿ0.82 ÿ0.83 ÿ0.84 ÿ0.86 ÿ0.89 ÿ0.92 ÿ0.96 ÿ1.01 ÿ1.07 ÿ1.15
u = 6 ÿ1.19 ÿ1.19 ÿ1.21 ÿ1.23 ÿ1.26 ÿ1.29 ÿ1.34 ÿ1.40 ÿ1.47 ÿ1.56 ÿ1.66
u = 7 ÿ1.66 ÿ1.67 ÿ1.69 ÿ1.72 ÿ1.76 ÿ1.81 ÿ1.88 ÿ1.97 ÿ2.07 ÿ2.19 ÿ2.33
u = 8 ÿ2.26 ÿ2.27 ÿ2.30 ÿ2.34 ÿ2.39 ÿ2.47 ÿ2.56 ÿ2.67 ÿ2.80 ÿ2.96 ÿ3.14
u = 9 ÿ2.99 ÿ3.01 ÿ3.04 -3.10 ÿ3.17 ÿ3.26 ÿ3.38 ÿ3.52 ÿ3.69 ÿ3.89 ÿ4.12
u = 10 ÿ3.88 ÿ3.90 ÿ3.94 ÿ4.01 ÿ4.10 ÿ4.22 ÿ4.36 ÿ4.53 ÿ4.74 ÿ4.98 ÿ5.25

Fig. 5. Hulburt±Hirschfelder potential energy curve and vibrational±rotational energy levels for the
ground rotational state (solid lines) and the J = 10 rotational state (dashed lines) of X 1Sg

+ 1H2, These
energies were obtained from RSPT(6) calculations by using Hulburt±Hirschfelder force constants, with
Hulburt±Hirschfelder parameters taken from Hulburt and Hirschfelder (1941). The dotted vertical line

is located at Q= Re.
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plot of the Hulburt±Hirschfelder potential energy
curve for 1H2; overlaid onto this plot are the
RSPT(6) vibrational energy levels for the ground
rotational state and the J= 10 rotational state. The
vertical line in Fig. 5 is located at Q= Re, which
represents the best estimate (Dudas et al., 1992) of
the radii of convergence of equation (2) and
equation (4). Although the quantum-mechanical
harmonic oscillator may tunnel out of the potential
well of Fig. 5, the wave function falls o� very
rapidly for values of Q outside this well. Hence, to
a good approximation one may restrict Q to values
within the potential energy well.
Note that for vibrational levels above u = 5 (in

the ground rotational state) and above u= 3 (in
the J= 10 rotational state), Q may drift beyond R,

yet still be within the potential well. For these
energy levels, the perturbation equation (11) cannot
be assumed to converge for all values of Q, so the
perturbation treatment presented here is not appli-
cable. Since J= 10 and J = 0 are, respectively, the
highest and lowest rotational levels examined for
1H2, Fig. 5 establishes boundary conditions for con-
vergence of the perturbation series for this mol-
ecule. For all rotational levels in the interval
0EJE10, one anticipates convergent perturbation
series up to at least the u= 3 vibrational level but
no higher than the u = 5 vibrational level.
One last comment concerning the accuracy of

molecular hydrogen calculations is in order. This
molecule (and, in particular, the diprotium isotope
examined here) represents a worst-case scenario for

Table 4. Experimental and RSPT(6) vibrational±rotational energies for X 1Sg
+ 14N2 (cm

-1)*

EÄu,J J= 0 J= 1 J= 2 J= 3 J= 4

14N2 RSPT(6) Exp. RSPT(6) Exp. RSPT(6) Exp. RSPT(6) Exp. RSPT(6) Exp.

u = 0 1176.69 1175.70 1180.69 1179.68 1188.68 1187.64 1200.68 1199.58 1216.67 1215.49
u = 1 3507.55 3505.62 3511.51 3509.56 3519.43 3517.45 3531.32 3529.28 3547.16 3545.06
u = 2 5808.20 5806.89 5812.12 5810.77 5819.97 5818.58 5831.74 5830.31 5847.43 5845.95
u = 3 8077.78 8079.39 8081.65 8083.27 8089.42 8091.02 8101.08 8102.64 8116.62 8118.14
u = 4 10 315.4 10 323.2 10 319.2 10 327.0 10 326.9 10 334.7 10 338.5 10 334.7 10 353.8 10 361.6

*Theoretical calculations used the Hulburt±Hirschfelder potential model with parameters obtained from Hulburt and Hirschfelder (1941),
while experimental energies were obtained (Huber and Herzberg, 1979) from a polynomial ®t of experimental data.

Table 5. Experimental and RSPT(6) vibrational±rotational energies for X 1S+ 12C16O (cm-1)*

EÄu,J J= 0 J= 1 J= 2 J= 3 J= 4

12C16O RSPT(6) Exp. RSPT(6) Exp. RSPT(6) Exp. RSPT(6) Exp. RSPT(6) Exp.

u = 0 1081.07 1081.59 1084.92 1085.31 1092.60 1093.12 1104.14 1104.66 1119.51 1120.03
u = 1 3223.08 3224.86 3226.89 3228.67 3234.51 3236.29 3245.94 3247.72 3261.17 3262.96
u = 2 5338.70 5341.65 5342.47 5345.42 5350.02 5352.97 5361.34 5364.30 5376.44 5379.40
u = 3 7427.71 7432.03 7431.44 7435.77 7438.92 7443.25 7450.14 7454.46 7465.09 7469.42
u = 4 9489.88 9496.06 9493.59 9499.76 9500.99 9507.17 9512.10 9518.28 9526.91 9533.10

*Theoretical calculations used the Hulburt±Hirschfelder potential model with parameters obtained from Hulburt and Hirschfelder (1941),
while experimental energies were obtained (Huber and Herzberg, 1979) from a polynomial ®t of experimental data.

Table 6. Experimental and RSPT(6) vibrational±rotational energies for X 1S+ 1H19F (cm-1)*

EÄu,J J= 0 J= 1 J= 2 J= 3 J= 4

1H19F RSPT(6) Exp. RSPT(6) Exp. RSPT(6) Exp. RSPT(6) Exp. RSPT(6) Exp.

u = 0 2054.70 2046.80 2095.73 2087.94 2177.79 2170.34 2300.75 2294.2 2464.47 2460.02
u = 1 6018.60 6008.23 6057.99 6048.05 6136.73 6129.21 6254.72 6254.73 6411.81 6429.14
u = 2 9813.65 9797.62 9851.46 9836.40 9927.04 9918.26 10 040.3 10 051.8 10 191.1 10 249.9
u = 3 13 445.2 1341.97 13 481.5 13 457.7 13 554.0 13 542.2 13 662.7 13 690.1 13 807.5 13 926.8
u = 4 16 916.0 16 878.6 16 950.8 16 916.1 17 020.3 17 005.2 17 124.6 17 173.8 17 263.4 17 464.2

*Theoretical calculations used the Hulburt±Hirschfelder potential model with parameters obtained from Hulburt and Hirschfelder (1941),
while experimental energies were obtained (Huber and Herzberg, 1979) from a polynomial ®t of experimental data.

Table 7. Experimental and RSPT(6) vibrational±rotational energies for X 1Sg
+ 1H2H (cm-1)*

EÄu,J J= 0 J= 1 J= 2 J= 3 J= 4

1H2H RSPT(6) Exp. RSPT(6) Exp. RSPT(6) Exp. RSPT(6) Exp. RSPT(6) Exp.

u = 0 1890.33 1883.75 1979.58 1972.96 2157.47 2150.74 2422.78 2415.85 2773.71 2766.42
u = 1 5519.06 5515.90 5604.42 5601.02 5774.54 5770.64 6028.23 6023.50 6363.74 6357.73
u = 2 8962.80 8971.00 9044.32 9051.95 9206.76 9213.23 9448.96 9453.58 9769.20 9771.13
u = 3 12 222.6 12 253.2 12 300.2 12 329.9 12 455.0 12 482.7 12 685.7 12 71.04 12 990.6 13 011.0
u = 4 15 297.5 15366.7 15 371.2 15 439.2 15 518.2 15 583.5 15 737.2 15 798.4 16 026.7 16 081.9

*Theoretical calculations used the Hulburt±Hirschfelder potential model with parameters obtained from Hulburt and Hirschfelder (1941),
while experimental energies were obtained (Huber and Herzberg, 1979) from a polynomial ®t of experimental data.
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vibrational±rotational energy calculations. Because
it is the lightest molecule, high-order energy correc-
tions for H2 should be the most signi®cant of any
diatomic molecule (Dunham, 1932). Furthermore,
the breakdown of the Born±Oppenheimer approxi-
mation is known (Bunker, 1972) to be more signi®-
cant for isotopomers of H2 than for other diatomic
molecules. Thus, H2 represents something of a
lower limit to the accuracy of perturbation calcu-
lations.

5.3. Additional Results

Table 4, Table 5, Table 6 and Table 7 present
experimental and RSPT(6) energies for several
other representative diatomic molecules, while
Table 8 and Table 9 list the relative di�erences
between theory and experiment for each set of cal-
culations. Notice that these di�erences are typically
much smaller for heavier molecules (14N2 and
12C16O) than for lighter ones (1H19F and 1H2H),
which a�rms Dunham's result (Dunham, 1932) for
dinuclear vibrational±rotational energies: the accu-
racy of low-order perturbation calculations
increases with the molecular reduced mass.
The RSPT(6) calculations in Tables 4±6 and

Table 7 are all based upon Hulburt±Hirschfelder
force constants, where the parameters in the
Hulburt±Hirschfelder potential function were taken
from those explicitly tabulated by Hulburt and
Hirschfelder (1941). These parameters [which are re-
lated (Hulburt and Hirschfelder, 1941, 1961) to ex-
perimentally measured spectroscopic constants]
were also calculated by using more recent exper-
imental data (Huber and Herzberg, 1979). When
force constants obtained in this manner were used
in RSPT(6) calculations, the theoretical energies
obtained for 1H19F and 1H2H fell several wavenum-
bers closer to experimental values, thus demonstrat-
ing the importance of possessing an accurate
potential energy function.
One ®nal numerical result is presented.

Theoretical values for spectroscopic constants of
1H2, were obtained by ®tting RSPT(6) energy data
for 1H2 to a polynomial in (u + 1/2) and (J + I).

Mathematica1's intrinsic function
NonlinearRegress was used to perform
the numerical ®tting procedure, and the 1H2 energy
data from Table 2 for 0EuE3 and OEJE10
were used as input [since the energy series of
equation (11) converges for each of these vi-
brational±rotational states]. The theoretical spectro-
scopic constants obtained in this manner are listed
in Table 10 alongside their experimental counter-
parts (Huber and Herzberg, 1979), which are valid
for 0Eu E3. The numerical ®t of the theoretical
data has an estimated standard deviation of 1.24
waves per centimeter.

6. CONCLUSIONS

Equation (29) provides a general expression for
the Rayleigh±SchroÈ dinger expansion of perturbed
wave functions when a molecular Hamiltonian con-
taining arbitrarily many separate perturbations is
employed. This formula is valid for any application
of Rayleigh±SchroÈ dinger perturbation theory Ð for
instance, the polyatomic vibrational±rotational
analysis problem Ð and complements the general
perturbation energy formula obtained by Herbert
(1997a). These two formulae are included in the
Mathematica1 package RSPERTURB, which contains
all of the equations necessary to implement arbi-
trary-order Rayleigh±SchroÈ dinger perturbation the-

Table 8. Relative percentage di�erences between theoretical RSPT(6) and experimental energies for the heavy molecules 14N2 and 12C16O

J= 0 J= 1 J= 2 J= 3 J= 4

N2 CO N2 CO N2 CO N2 CO N2 CO

u = 0 0.08 ÿ0.05 0.09 ÿ0.04 0.09 ÿ0.05 0.09 ÿ0.05 0.10 ÿ0.05
u = 1 0.06 ÿ0.06 0.06 ÿ0.06 0.06 ÿ0.06 0.06 ÿ0.05 0.06 ÿ0.05
u = 2 0.02 ÿ0.06 0.02 ÿ0.06 0.02 ÿ0.06 0.02 ÿ0.06 0.03 ÿ0.06
u = 3 ÿ0.02 ÿ0.06 ÿ0.02 ÿ0.06 ÿ0.02 ÿ0.061 ÿ0.02 ÿ0.06 ÿ0.02 ÿ0.06
u = 4 ÿ0.08 ÿ0.07 ÿ0.08 ÿ0.06 ÿ0.08 ÿ0.071 0.04 ÿ0.06 ÿ0.08 ÿ0.06

Table 9. Relative percentage di�erences between theoretical RSPT(6) and experimental energies for the light molecules 1H19F and 1H2H

J= 0 J= 1 J= 2 J= 3 J= 4

HF HD HF HD HF HD HF HD HF HD

u = 0 0.39 0.35 0.37 0.34 0.34 0.31 0.29 0.29 0.18 0.26
u = 1 0.17 0.06 0.16 0.06 0.12 0.07 0.00 0.08 ÿ0.27 0.09
u = 2 0.16 ÿ0.09 0.15 ÿ0.08 0.09 ÿ0.07 ÿ0.11 ÿ0.05 ÿ0.57 ÿ0.02
u = 3 0.19 ÿ0.25 0.18 ÿ0.24 0.09 ÿ0.22 ÿ0.20 ÿ0.19 ÿ0.86 ÿ0.16
u = 4 0.22 ÿ0.45 0.21 ÿ0.44 0.09 ÿ0.42 ÿ0.29 ÿ0.39 ÿ1.15 ÿ0.34

Table 10. Theoretical and experimental spectroscopic constants for
X 1Sg

+ 1H2

Spectroscopic
constant

Theoretical value
(cm-1)*

Experimental value
(cm-1)$

~oe 4400.33 4401.213
~oexe ÿ122.135 ÿ121.336
BÄe 60.616 60.8530
~ae 3.0655 ÿ3.0622
DÄe ÿ0.0399509 ÿ0.0471
YÄ 00 10.2031 8.93

*Theoretical values were obtained from a numerical ®t of RSPT(6)
vibrational±rotational energy data for 0EuE3 and 0EJE10
and were calculated by Mathematica1 to six signi®cant digits.

$Experimental constants were obtained from Huber and Herzberg
(1979) and are valid for 0EuE3.
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ory. This program can be used not only to calculate
energies but also to obtain wave functions to arbi-
trary order of correction. This is a major advantage
of Rayleigh±SchroÈ dinger perturbation theory, for
explicit knowledge of the quantum-mechanical wave
function enables one to calculate directly spectral
line intensi®es and expectation values for molecular
properties such as the molecular dipole moment
(Ermler and Hsieh, 1990; NinÄ o and MunÄ oz-Caro,
1995).
In this article, RSPERTURB was used in conjunc-

tion with another Mathematica1 package,
DIATOMICVIBROT, to apply arbitrary-order
Rayleigh±SchroÈ dinger perturbation theory to dia-
tomic vibrational±rotational analysis problems.
Symbolic perturbation energy formulae were de-
rived and then evaluated numerically for several
molecules, and a procedure was given whereby the
applicability of such theoretical calculations may be
estimated. However, the numerical results are not
the focus of what is reported here; rather, the
RSPERTURB and DIATOMICVIBROT programs are
the principal results, for they allow one to im-
plement perturbation theory to arbitrary order of
correction (RSPERTURB). In particular, the diatomic
vibrational±rotational analysis problem may now
be easily solved to arbitrary order by using
DIATOMICVIBROT.
Although derivation of symbolic high-order per-

turbation formulae requires a signi®cant amount of
computation time due to the nature of the
Mathematica1 software package, appreciable
improvements in algorithm e�ciency (as discussed
in Section 4.2) will be made when this analysis is
applied to polyatomic molecules. Even so, the
methods presented here are more e�cient than nu-
merical procedures, for the calculations performed
by Mathematica1 result in symbolic formulae that
express perturbation corrections in terms of user-
supplied universal and molecular constants.
Admittedly, perturbation theory is not the pre-

ferred method for calculating the vibrational and
rotational energies of diatomic molecules (Sprandel
and Kern, 1972); however, this work demonstrates

that perturbation corrections can be calculated
accurately, e�ciently, and systematically for any
order of correction. These results furnish important
insight into the general quantum-mechanical vi-
brational±rotational problem and provide a frame-
work for studies of the vibration and rotation of
large polyatomic molecules, where perturbation the-
ory is the most tractable and accurate method of
analysis. E�orts are under way to develop a polya-
tomic analogue of the DIATOMICVIBROT program
that will enable e�cient calculation of arbitrary-
order correction terms to polyatomic vibrational±
rotational energies, wave functions, line intensities,
and property expectation values.

6.1. Program Availability

The latest versions of RSPERTURB and
DIATOMICVIBROT, along with a text ®le describing
their use in detail, are available by anonymous FTP
at ftp://info.mcs.anl.gov/pub/perturb.
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APPENDIX A

6.1.0.1. Second-order correction formulae.
For each vibrational state, E(2) is a linear combination of

the purely vibrational terms, purely rotational terms, and
vibrational±rotational coupling terms listed below.

VIBRATIONAL TERMS: A2
(v),B2

(v)

ROTATIONAL TERMS: A2
(r), B2

(r)

COUPLING TERMS: A2
(v ÿ r), B2

(v ÿ r)

Using lower-case letters to represent the integer coe�cients
of a linear combination, the complete second-order energy
correction can be written as

E
�2�
u,J � a

�v�
2 A

�v�
2 � b

�v�
2 B

�v�
2 � a

�vÿr�
2 A

�vÿr�
2 � b

�vÿr�
2 B

�vÿr�
2

�a�r�2 A
�r�
2 � b

�r�
2 B

�r�
2 � a

�v�
2 A

�v�
2 � b

�v�
2 B

�v�
2

�a�vÿr�2 A
�vÿr�
2 � b

�vÿr�
2 B

�vÿr�
2 �rR2 �36�

where the coe�cients depend upon the vibrational state u.
The coe�cients of the two rotational terms are indepen-
dent of the vibrational state, so these terms have been
grouped together into the second-order constant of pure ro-
tation R2, whose value is

R2 � ÿ2J
2�J � 1�2B 2

e

aR2
ehve

�37�

Values of the linear combination coe�cients from
equation (36) are listed in Table 11 for the ®rst eleven vi-
brational states.

Capital letters in the energy formula equation (36) rep-
resent collections of universal and molecular constants
having the form
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J `1 �J � 1�`2B `3
e k

`4
3 k

`5
4

Oa`6R`7e �hve�`8
�38�

where O, `1, `2, ...,`8 are integers whose values are listed
in Table 12 for all vibrational and coupling terms.

The correction formulae for E(4) and E(6) can be rep-
resented in analogous fashion. The linear combination
representing E(4) consists of 20 vibrationally dependent
terms plus R4, the fourth-order constant of pure rotation,
while the linear combination representing E(6) contains 75
vibrationally dependent terms, plus R6. Finally, recall that

Darling and Dennison (1939) predicted that high-order

perturbation formulae would not be factorable into integer

powers of J(J+ 1) and (u + 1/2). In fact, R4, is found

to be

R4 � 12J 3�J � 1�3B 3
e

a2R4
e �hve�2

� 4J 3�J � 1�B 3
ek3

a3R3
e �hve�3

�3J 2 ÿ 2J � 3�,

�39�
which indeed cannot be factored exactly into powers of

J(J+ 1).
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