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1 One-Electron Pseudopotential Simulations
This section describes the simulations that were used to produce Figs. 1 and 2, as well as
the averages in Table 1. Additional trajectories were run to test convergence of the sampling
procedure, and these tests are described in Section 1.3.

1.1 Pseudopotentials
The simulations of an excess electron in bulk liquid water and at the liquid water/vapor in-
terface employed two different one-electron pseudopotential models. One of these, which we
call the “mean-field polarization model”, was developed by Turi and BorgisS1 and is based
upon the non-polarizable SPC water model,S2 but includes a mean-field polarization poten-
tial ∝ r−4, where r is the electron–water distance. The other model, developed by Jacobson
and Herbert,S3 is built upon the polarizable AMOEBA water modelS4 and includes electron–
water polarization explicitly and self-consistently. (Polarization is handled in AMOEBA by
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means of atom-centered inducible dipoles, and the induced dipoles in turn interact with the
wave function. Schrödinger’s equation for the wave function is iterated to self-consistency
alongside the equations for the induced dipoles.S3,S5) These models have been used in myr-
iad previous hydrated electron simulations.S1,S3,S6–S19 Both afford accurate optical spectra
for e−(aq) in bulk water,S1,S3 and in addition the explicit polarization model performs well in
reproducing MP2/6-31(1+,3+)G* benchmarks for (H2O)−N clusters (N = 2–33),S3 including
both relative isomer energies and vertical electron binding energies (VEBEs). In the latter
case, the mean deviation between the VEBE predicted by the one-electron model and the
MP2 benchmark is 0.041 eV for 95 unique cluster structures.S3 With this level of accuracy,
the explicit polarization model successfully accounts for trends observed in the gas-phase
photoelectron spectra of (H2O)−N clusters.S16

1.2 Simulation Details
Initial structures were extracted from equilibrated neat liquid water simulations utilizing
either the SPC or the AMOEBA water model, as appropriate. These simulations were
performed with N = 200 water molecules in a periodic unit cell at T = 300 K, where the
unit cell size was set such that the density is ρ = 0.997 g cm−3. For a cubic cell, this
would correspond to 18.1617 Å on a side, but to simulate the water/vacuum interface we
set Lx = Ly = 18.1617 Å in the x and y directions, but Lz = 5Lx in the z direction, thus
creating a periodic “slab” of water that is ≈ 18 Å thick in the z direction and surrounded by
vacuum out to Lz = 90.8085 Å. Standard three-dimensional Ewald summation is employed
to sum the electrostatic interactions, so that the slab is actually periodically replicated in
the z direction. If the slab of water has a non-zero dipole moment (which, in general, one
should expect) then the potential energy must be corrected for the spurious electric fields
that are produced from the dipolar interactions between periodically-replicated slabs. The
appropriate correction is derived in Ref. S20 for the case of an infinitely thin slab, and it is
noted in Ref. S21 that higher-order terms are required for a slab having finite thickness, unless
the spacing between periodic images is three to five times larger than the slab thickness. For
this reason we set Lx = 5Lz and incorporate only the first-order dipolar correction to the
Ewald sum.

The neat liquid water simulations described above were equilibrated for 100 ps, and
starting structures for the e−(aq) simulations were randomly chosen from the final 10 ps
of the equilibration run. At t = 0, an electron is introduced into the system by turning
on electron–water interactions using the appropriate pseudopotential. The electronic wave
function is represented on a rectangular grid that spans the unit cell in the x and y directions
and extends into vacuum in the z direction to a distance equal to the thickness of the slab
(i.e., the total span of the grid in the z direction equals twice the thickness of the slab). The
grid spacing is ∆x = ∆y = ∆z = 0.95 Å in all directions, as in previous work.S3

For consistency, both the bulk and the interfacial hydrated electron simulations use slab
boundary conditions. We do this for two reasons: first, we wish to allow the possibility
that an electron in bulk water might spontaneously migrate to the interface; and second,
so that even for e−(aq) in bulk water we can measure the distance d between the centroid
of the electron’s wave function and the Gibbs dividing surface (GDS), defined as the locus
of points in the z direction where the solvent density has fallen to half its value in bulk
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solution. This surface is computed on-the-fly at each point (x, y) and at each time step,
and is used to demarcate the liquid/vacuum interface for the purpose of computing d. Our
coordinate system sets z = 0 at the GDS; this is the coordinate labeled d in the text, so
for a slab whose thickness is ≈ 18 Å, the center of the slab corresponds to d ≈ −9 Å. This
explains the locus of points near d = −9 Å in Fig. 3(b). Whereas trajectories for e−(aq)
at the water/vacuum interface are initialized from equilibrated neutral water, for which the
electron naturally attaches at the interface, all of these trajectories eventually internalize
and these equilibrated, internalized trajectories are then used as initial conditions for e−(aq)
in bulk water.

For each one-electron model, twenty independent trajectories for the interfacial species
e−(aq) were propagated at T = 300 K using a home-built simulation code, Furry, that
is described in detail in Ref. S5, and has been used extensively for this purpose in other
work.S3,S5,S13,S14,S16 Ewald summation is used for the e−(aq) simulations in the same way
that is described above for neutral liquid water, and a Nosé-Hoover thermostat is used to
provide temperature control. The interfacial e−(aq) simulations were propagated for 80 ps
for the mean-field polarization model and for 40 ps in the case of the explicit polarization
model in order to obtain statistics. The electron was determined to be internalized when
the centroid of its wave function stabilizes around the center of the water slab (d ≈ −9 Å),
which occurs on a time scale no longer than 25–35 ps. Snapshots from one such trajectory are
shown in Fig. 1. Following internalization, each trajectory was propagated for an additional
50 ps to examine whether the electron might return to the surface, but in no case was this
observed and the internalized electron fluctuates no farther than 1.0–1.5 Å from the center
of the water slab. Following this additional 50 ps of equilibration time, these trajectories
were taken to be the initial (t = 0) conditions for the simulation of e−(aq) in bulk water.

1.3 Convergence Tests
Additional testing was performed to examine the dependence of our results on the number of
water molecules, choice of simulation grid and periodic unit cell, and initial conditions. To
this end we performed twenty simulations each withN = 300 andN = 600 water molecules in
the unit cell, using the mean-field Turi-Borgis polarization model at T = 300 K. The density
was kept the same as the smaller simulations discussed above (ρ = 0.997 g cm−3), which in
the present cases means Lx = Ly = 20.7961 Å for N = 300 and Lx = Ly = 26.2105 Å for
N = 600, with Lz = 5Lx in all cases. The simulation grid representing the electronic wave
function was chosen in the same manner as above, with ∆x = ∆y = ∆z = 0.95 Å. To make
the calculations tractable (because the dimension of the Hamiltonian is equal to the total
number of grid points in three dimensions), we used the same simulation grid for N = 600
that we did for N = 300, so in the former case the grid does not extend quite to the edges
of the simulation cell. (Since the electron localizes rapidly in each trajectory, this is not a
serious limitation.)

As with the N = 200 simulations described above, initial structures were extracted from
an equilibrated simulation of neat liquid water (SPC water model) with either N = 300 or
600 molecules in the unit cell. Trajectories were propagated for 80 ps, and as in the smaller
unit cells the electron internalizes into the bulk in every single trajectory. Simulations were
propagated for an additional 50 ps to equilibrate the internalized e−(aq) for use in bulk
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t = 0.00 ps
VEBE = 0.42 eV

t = 0.10 ps
VEBE = 1.68 eV

t = 0.50 ps
VEBE = 2.38 eV

T = 8.50 ps
VEBE = 3.67 eV

T = 12.50 ps
VEBE = 3.49 eV

T = 40.00 ps
VEBE = 3.78 eV

(b) (c)

(d) (e) (f)

Figure S1: Snapshots from a simulation of an electron initialized delocalized in liquid water using the Turi-
Borgis pseudopotential model. In each panel, the opaque blue isocontour of the wave function encapsulates
50% of the one-electron probability distribution |ψ(r)|2, while the lighter translucent isosurface encloses 95%.
At t = 0, the electron is initialized as a completely delocalized particle in liquid water, with rg ≈ 6.78 Å.
After 100 fs the wave function has contracted to rg ≈ 3.93 Å, as seen in (b), while the VEBE has increased
by 1.46 eV. By 500 fs, the wave function further contracts to rg ≈ 3.12 Å and resides ≈ 1.1 Å above the
GDS. By t = 8.50 ps, the size of the wave function is comparable to the bulk species with rg = 2.45 Å, and
its centroid has moved to 1.50 Å below the GDS where water molecules surround the electron, such that the
VEBE in (d) is 1.29 eV larger than that in (c), and is similar to the bulk value. Panel (e) shows a snapshot
shortly before the electron internalizes, with its centroid situated 7.75 Å below the GDS and with a VEBE
that is similar to the bulk value and essentially unchanged relative to that in (d). By t = 40 ps in (f), the
electron centroid has been fluctuating around d = −13.00 Å for 28 ps with a VEBE that has fluctuated
around the bulk value since t ≈ 8.50 ps. An animation of this trajectory is available as a web enhanced
object.

simulations, as discussed above, and the initial structures were randomly selected from the
last 10 ps of these equilibration trajectories. The bulk simulations were also propagated for
80 ps.

It should be noted that the initialization procedure used in these simulations does not
represent a simulation of electron injection into water, except possibly that of an electron
with zero kinetic energy. Rather, we simulate adiabatic dynamics on the ground-state Born-
Oppenheimer potential energy surface generated by the one-electron model Hamiltonian. At
t = 0, the electron is found wherever the potential energy is low, and that is consistently
found to be a surface trap state formed by dangling O–H moieties at the water/vacuum
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Figure S2: Time evolution of (a) the VEBE, (b) the radius of gyration (rg), and (c) the distance (d)
between the centroid of the e−(aq) charge distribution and the Gibbs dividing surface from MD simulations
employing a mean-field polarization potential model at ambient temperatures. (The time axis is linear for
the first 0.5 ps then switches to a logarithmic scale.) For comparison to the simulations utilizing N = 300
and N = 600 water molecules, the data from representative N = 200 trajectories are reproduced from Fig. 2.

interface, as shown for example in Fig. 1(a). We have verified that different initial guesses for
the wave function at t = 0 lead to the same solution, demonstrating that our eigensolver (the
details of which are described in Ref. S3) is robust. For example, Fig. S1 is analogous to Fig. 1
but for a unit cell containing 600 water molecules, and with an initial guess wave function
that is completely delocalized. Very similar localization and internalization dynamics can
be seen in this trajectory as compared to that in Fig. 1.

Figure S2 shows representative trajectories for all three unit cell sizes, with the N = 200
trajectories being the same ones that are plotted in Fig. 2. Despite being initialized as a
delocalized particle below the GDS, the interfacial e−(aq) immediately appears as a diffuse
charge cloud [rg ≈ 5–6 Å, see Fig. S2(b)] located at d ≈ 3–6 Å above the liquid surface as
illustrated in Fig. S1(a). This behavior is easily understood. Unlike in previous simulations
of e−(aq) in bulk water that used an isotropic unit cell (i.e., no water/vacuum interface),
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Table S1: Average values for selected observables from mean-field polarization model simulations with
varying numbers of water molecules, N .

N System 〈VEBE〉 〈rg〉 〈d〉
(eV) (Å) (Å)

200 interfacea 3.13 2.55 −1.76
200 bulk 3.39 2.43 −8.46
300 interfacea 3.34 2.49 −1.97
300 bulk 3.57 2.40 −8.78
600 interfacea 3.67 2.44 −1.66
600 bulk 3.84 2.39 −13.01
aAverages exclude data points after the electron
internalizes.

and for which the electron takes ∼1 ps to carve out and localize in an excluded volume,S3
in the present simulations there exist, already at t = 0, shallow potential energy “traps”
around dangling O–H moieties at the interface. The ground-state wave function at t = 0
occupies in these traps, one of which is apparently deep enough relative to the others such
that the electron localizes in it, as shown in Fig. S1(a).

Essentially instantaneous electron localization is observed in every trajectory at every
box size, as is the rapid increase in VEBE during the first 0.5 ps, as exemplified by panels
(b) and (c) of Figs. 1 and S1. The internalization process is spontaneous on a timescale
of 20–25 ps regardless of the size of the simulation cell or the initial conditions used to
introduce the electron at t = 0, and upon internalization the electron fluctuates around
d ≈ 9–10 Å for N = 200 and N = 300 simulations and d ≈ 13 Å for N = 600, which reflects
half the thickness of the simulated water slab. (The N = 200 and N = 300 simulation
cells are sufficiently similar in size, at Lx = 18.1617 and 20.7961 Å, respectively, that the
1.0–1.5 Å fluctuations about the midpoint blur the distinction and the electron fluctuates
around similar values of d in both cases.) The good agreement that we see amongst all three
simulation cell sizes is consistent with the fact that the potential of mean force for pulling
an electron through the interface, which was computed in Refs. S18 and S19 using the same
Turis-Borgis pseudopotential that is used here, flattens out at d ≈ 9.5 Å, just slightly more
than half the width of the slab in our smallest simulation cell.

Table S1 reports averages for the quantities rg, VEBE, and d, comparing different sim-
ulation cell sizes from all twenty simulations. For each given box size, values of the VEBE
and radius of gyration are rather similar, regardless of whether the electron was initialized in
the bulk or at the interface, although the average VEBE for the interfacial species is about
0.2 eV smaller than that of the bulk species. As a test of convergence, we can throw out half
of the trajectories and recompute the averages, and we find that they change hardly at all.
Average VEBEs change by only about 0.05 eV and 〈rg〉 by about 0.05 Å, for both the bulk
and interfacial species. The average distance 〈d〉 to the GDS is essentially unchanged for the
bulk species and changes by < 0.1 Å for the interfacial species. Full probability distributions
for the bulk and interfacial VEBE are depicted in Fig. S3 and are fit quite well to Gaussian
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Figure S3: Probability distributions for the bulk and interfacial VEBE using (a) the mean-
field polarization model, in an N = 600 water box; and (b) the explicit polarization model,
in an N = 200 water box, with histogram bin widths of 0.05 eV in each case. Panels (c) and
(d) show Gaussian fits to the data in (a) and (b), respectively. (Fitting parameters are listed
in Table S2.) The interfacial distributions are also shown following a shift in energy equal
to the difference in the mean VEBEs of the bulk and interfacial distributions, as reported
in Tables 1 and S1. Differences in the center points of the distributions in (a) versus (b) are
partly the result of the effects of finite box size.
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probability distributions,

g(E) = exp
(
−(E − 〈E〉)2

2σ2

)
, (S1)

with fitting parameters given in Table S2. Although the distributions of interfacial VEBEs
are 0.1–0.2 eV wider than those obtained in bulk water, we find that even in terms of the
raw data both distributions look quite similar if the interfacial distribution is simply shifted
0.2 eV higher in energy, which is the difference in the mean VEBE at the interface relative
to that in bulk water.

Table S2: Parameters for the Gaussian fits [Eq. (S1)] of the VEBE data in Fig. S3.

Polarization System Parameter (eV)
Method 〈E〉 σ FWHMb

explicit interface 3.1060 0.3392 0.7987
explicit bulka 3.2856 0.2596 0.6113
mean-field interface 3.6489 0.3583 0.8437
mean-field bulka 3.9115 0.3175 0.7476
aAverages exclude data points after the electron internalizes.
bFull width at half maximum of the Gaussian distribution.

Very recently, Casey et al.,S19 also reported distributions of bulk and interfacial VEBEs
based on simulations employing the mean-field Turi-Borgis pseudopotential, but based on an
alternative definition of the instantaneous liquid interface.S40 (In our simulations, the Gibbs
dividing surface is also updated at each time step.) The simulations and sampling protocol
reported in Ref. S19 afford a shift approaching 0.5 eV between the interfacial and bulk VEBE
distributions, as opposed to the 0.2 eV shift reported here. The reasons for this discrepancy
are unclear, although there is certainly a tail in our interfacial VEBE distributions that is
shifted much more than 0.5 eV from the mean value in bulk water, so it could simply be
that the definition of the liquid surface that is used in Ref. S19 excludes more of the water
molecules than does the Gibbs dividing surface, giving it a preference for identifying as
“interfacial” simulation snapshots where the electron is more weakly solvated, as compared
to those snapshots that the Gibbs surface identifies as interfacial. Tthe 0.2 eV shift that we
obtain using both pseudopotential models agrees quantitatively with the shift obtained from
DFT and MP2 calculations based on QM/MM trajectories; see Table 2.

The averages in Table S1 do show that the VEBE increases with box size, due to the
importance of long-range Coulomb interactions in the ionization process, as we have re-
ported previously.S3 As in previous work,S3 we can correct for this by extrapolating 〈VEBE〉
as a function of the inverse unit cell length, L−1

x , and such an extrapolation is shown in
Fig. S4. Remarkably, both the interfacial and bulk VEBE extrapolate essentially to the
same value in the infinite-dilution limit: 4.87 eV for the interfacial species versus 4.85 eV for
the bulk species. The extrapolated bulk value is also consistent with a previous extrapola-
tion of 4.79 eV for the bulk species, using the same Turis-Borgis pseudopotential.S3 When
the VEBEs for large (H2O)−N clusters are extrapolated to N → ∞ using the Turis-Borgis
pseudopotential, a value of 4.4 eV is obtained for the interior (cavity) states, versus 3.9 eV
for surface-bound electrons.S41

S8



3.0

3.5

4.0

4.5

5.0

0.0 1.0 2.0 3.0 4.0 5.0
inverse box length / 10–2 Å

VE
BE

 / 
eV bulk e–(aq)

interfacial e–(aq)

Figure S4: Extrapolation of the average VEBE computed using the mean-field polarization potential, as a
function of the inverse unit cell length, L−1

x . Error bars reflect a 95% confidence interval in 〈VEBE〉, which
is averaged over trajectories and over time.

Each of these extrapolated values for the bulk VEBE is significantly larger than the
accepted range of experimental values, 3.3–3.7 eV.S42–S46 In Ref. S3, the infinite-dilution ex-
trapolation was performed using the explicit polarization model (in addition to the mean-field
Turi-Borgis model), and it was found that the electronic reorganization energy associated
with relaxing the inducible dipole moments on the water molecules is significant, and reduces
the VEBE by 1.37 eV in the limit L→∞. A very similar correction to the non-polarizable
Turi-Borgis VEBE, 1.3 eV, was obtained using a continuum model,S3 which inspires some
confidence that this is indeed the electronic (clampled-nuclei) reorganization energy associ-
ated with vertical ionization of e−(aq). A correction of 1.3 eV applied to the extrapolated
Turis-Borgis VEBE from Fig. S4 affords a corrected VEBE of 3.6 eV, within the experimental
range.

2 DFT and MP2 Calculations

2.1 Density Functionals
DFT calculations reported in this work use a long-range-corrected (LRC) version of the
“BOP” density functional. The BOP functional is comprised of Becke’s generalized-gradient
exchange functional (B88),S22 along with the “one-parameter progressive” (OP) correlation
functional,S23 which is similar to the more familiar Lee-Yang-Parr (LYP) correlation func-
tional.S24 The resulting exchange-correlation functional is

ELRC-µBOP
xc = EOP

c + EµB88,SR
x + EHF,LR

x , (S2)

where “SR” and “LR” express that only the short-range or long-range parts of the Coulomb
operator are employed when evaluating these components of the energy. The functional
in Eq. (S2) has been implementedS25,S26 in the Q-Chem electronic structure program,S27
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where it is called LRC-µBOP.S28 This functional has been shown to afford accurate VEBEs
for (H2O)−N clusters as compared to correlated wave function benchmarks.S5,S29

The range-separation parameter, µ, dictates the partition between what is considered
short-range versus long-range in the Coulomb operator. (Roughly speaking, this partition
occurs on a length scale ∼ µ−1.) Baer and co-workersS30 suggest a non-empirical “tuning”
procedure to determine µ, according to the criterion

IE∆SCF(µ) = −εSOMO(µ) . (S3)

Here, εSOMO represents the self-consistent field (SCF) orbital energy for the singly-occupied
molecular orbital (SOMO) and IE∆SCF is the ionization energy determined from a “∆SCF”
approach, i.e.,

IE∆SCF(µ) = Eneutral(µ)− Eanion(µ) . (S4)

(The neutral and anion energies are computed at the geometry of the anion.) The condition
in Eq. (S3) is a rigorous one for the exact Kohn-Sham functional, and because the ionization
energy (IE) controls the long-range decay of the SCF wave function, this tuning procedure
ensures an exchange-correlation potential with proper long-range behavior.S31

Unfortunately, the optimally-tuned value of µ is known to exhibit a strong dependence on
system size,S28,S32–S34 even for chemically homologous systems. In previous QM/MM calcu-
lations of the bulk and interfacial hydrated electron, we have shown that µ should be tuned
separately for each distinct size of the QM region.S33 This leads to an electronic absorp-
tion spectrum for e−(aq) in bulk water that is in excellent agreement with the experimental
spectrum, whereas values of µ that are tuned for small clusters afford a significantly shifted
spectrum, as do global hybrid functionals such as B3LYP.S17,S33

We use QM regions that range in size from a radius of 5.5–8.0 Å around the centroid of
the spin density, and we tune µ separately for each different size. Figure S5 demonstrates the
tuning procedure for three snapshots containing 47–50 QM water molecules, corresponding
to a QM radius of 7.5 Å, extracted from an ab initio simulation of interfacial e−(aq).S36 Each
of the three snapshots is separated in time by 4 ps. As µ increases (and thus Hartree-Fock
exchange is introduced on increasingly short length scales), the SOMO is increasingly desta-
bilized. This is the result of eliminating self-interaction error associated with the unpaired
electron, which is primarily a long-range phenomena for this particular system since the un-
paired electron exists largely outside of the valence-electron regions of the water molecules.
The IE, in contrast, is less sensitive to changes in µ. In order to satisfy the criterion of
Eq. (S3) in an average way across all three snapshots in Fig. S5, we set µ = 0.18 a−1

0 . The
value of µ used for each QM size for both the bulk and interfacial species was determined
independently using this procedure. These “tuned” values of µ are listed in Table S3.

In a recent study of the optical spectrum of e−(aq) using time-dependent DFT (TD-
DFT),S33 we showed that this spectrum is sensitive to the value of µ, and that the spectrum
is significantly blue-shifted (as compared to experiment) for µ & 0.3 a−1

0 . This is despite
the fact that values of µ > 0.3 a−1

0 afford accurate VEBEs for small, gas-phase (H2O)−N
clusters.S5,S29 These discrepancies in the optical spectrum (with respect to experiment) are
not reconciled by increasing the size of the QM region.S33 In Ref. S33, a range-separation
parameter µ = 0.165 a−1

0 was ultimately chosen based on the tuning procedure described
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Figure S5: Illustration of the tuning procedure for LRC-µBOP/6-31++G*, demonstrated for three different
(H2O)−

N geometries (with N = 47–50) that are shown in red, blue, and green and were extracted from an
ab initio interfacial e−(aq) simulation.S36 The solid curves represent IE∆SCF(µ) and the dashed curves are
−εSOMO(µ). Where the dashed and solid curves of a particular color intersect is the “optimally tuned” value
of µ for that particular snapshot, and in this case we choose µ = 0.18 a−1

0 as the best compromise value
for these three snapshots. This value is indicated by a vertical line, and the other vertical lines indicate
other values of µ that have been employed in previous hydrated-electron studies using this functional. These
include µ = 0.165 a−1

0 (Ref. S33), µ = 0.33 a−1
0 (Ref. S29), and µ = 0.37 a−1

0 (Refs. S13 and S16).

above (see Table S3). We emphasize that this tuning procedure needs to be performed
separately at each unique QM system size, and we have done so here. Evident from Table S3
is a small but clear anti-correlation between the number of QM water molecules and the
optimally-tuned value of µ.

In addition to listing the optimally-tuned values of µ, Table S3 provides the average
VEBE computed for the gas-phase QM region, i.e., a negatively-charged water cluster with
vacuum boundary conditions. As in Table 2, these calculations are performed at both the
LRC-µBOP/6-31++G* level of theory and the resolution-of-identity (RI)-MP2/6-31++G*
level. For each snapshot (extracted from the QM/MM simulations reported in Refs. S35 and
S36), the Turi-Borgis pseudopotential modelS1 was employed to estimate the centroid of the
spin density, and then all water molecules contained within a sphere centered at this point
were included in the QM region for the DFT or MP2 calculations. We vary the radius of
this sphere to watch the convergence of the VEBE with respect to the size of the QM region.
The average number of H2O molecules contained in this sphere is shown as 〈N〉 in Table S3.

Note that the only difference between the calculations reported in Table S3 and those
in Table 2 is that in the latter case, continuum boundary conditions are applied in order
to obtain quantitative agreement with experiment, whereas in Table S3 the QM region is
treated as a gas-phase (H2O)−N cluster. Comparison of the two data sets allows us to assess
the quantitative importance of the boundary conditions. We find that the non-equilibrium
solvation model increases the VEBE by ≈ 0.7–1.1 eV for the interfacial species and by ≈ 0.7–
1.4 eV for e−(aq) in bulk water. Notably, the VEBE converges more rapidly, as a function of
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Table S4: Average VEBEs computed using two different basis sets, for the interfacial hydrated electron
(computed using the DFT/Poisson method) and the bulk hydrated electron (computed using the DFT/PCM
method).

System QM radius/ VEBE / eV
Å 6-31++G* 6-31(1+,3+)G*

interface 5.5 3.15 ± 0.41 3.18 ± 0.43
interface 7.5 3.14 ± 0.41 3.16 ± 0.44
bulk 5.5 3.52 ± 0.31 3.55 ± 0.33
bulk 7.5 3.59 ± 0.35 3.62 ± 0.30

the size of the QM region, for calculations that use continuum boundary conditions (Table 2)
than it does for calculations with vacuum boundary conditions (Table S3), suggesting that
the dielectric continuum is providing the desired long-range electrostatic effect of the bulk
solvent.

2.2 Basis Sets
We used the 6-31++G* basis set to compute VEBEs in Tables 2 and S3, as in previous
simulations of the optical spectrum of e−(aq).S13,S17,S33 The choice of basis set has been
carefully examined in previous workS17,S31,S33,S37–S39 (see Ref. S17 in particular), with the
conclusion that in a condensed-phase aqueous environment, convergence of the VEBE is
rapid and requires only a single set of diffuse basis functions, despite the fact that the
electron occupies an excluded volume in the structure of liquid water. Additional diffuse
shells have a very limited effect.S17

Nevertheless, to test basis-set effects in the present context we computed VEBEs using
the 6-31(1+,3+)G* basis set,S38 which includes two additional diffuse shells as compared to
6-31++G*, with exponents of ζ1 = 0.2700058 a−2

0 and ζ2 = 0.0845 a−2
0 that are reduced by

successive factors of 3.2 relative to the most diffuse exponent in the 6-31++G* basis set.
Results are listed in Table S4. Only minor deviations of ≈ 0.03 eV are observed between the
two basis sets, and we thus regard the 6-31++G* basis set as being sufficiently diffuse.

3 Non-Equilibrium Continuum Solvation Models
The DFT and MP2 calculations described above were performed on snapshots extracted
from the QM/MM simulations reported in Refs. S35 and S36. Although we use large QM
regions in these single-point calculations—up to a radius of 8.0 Å, which encompasses ≈ 90
QM water molecules—longer-range polarization effects must still be incorporated in order to
obtain a VEBE that is in quantitative agreement with the consensus value for e−(aq) in bulk
water. This is evident in the fact that the VEBE changes by ∼1 eV between the N = 600
simulation cell and the infinite-dilution limit; see Fig. S4. (The difference is smaller, but still
not negligible, when a polarizable pseudopotential model is employed.S3) This speaks to the
importance of very long-range Coulomb effects on the VEBE.
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The dielectric continuum models described below are a less-expensive substitute for this
type of extrapolation, designed for use with an all-electron QM treatment of some number
of explicit water molecules. Two such models are described here: the “polarizable contin-
uum model” (PCM)S47,S48 that is familiar in quantum chemistry calculations and which is
designed to approximate isotropic (bulk) solvation effects, and also direct numerical solution
of Poisson’s equation.S49 The latter method can be used in non-homogeneous dielectric en-
vironments such as the water/vacuum interface. In each case, we use a “non-equilibrium”
version of the continuum solvation model,S50,S51 as appropriate for description of a vertical
(rather than an adiabatic) ionization process.

3.1 PCM for Isotropic Solvation
The specific version of PCM employed here for the bulk species e−(aq) is the “integral equa-
tion formalism”, IEF-PCM.S48,S52–S54 The equilibrium version of IEF-PCM affords aqueous
solvation free energies within a few kcal/mol of experimental values for small to medium-
size molecules and ions, if non-electrostatic corrections are applied,S55–S57 but accurate sol-
vatochromatic shifts can be obtained without such corrections, using the non-equilibrium
version of the model.S50 The non-equilibrium model is designed to describe electronic po-
larization of the solvent upon vertical excitation or ionization of the solute.S58–S61 In other
words, while the ionization process may be vertical (in the sense that the vibrational and
orientational degrees of freedom of the solvent molecules are not allowed to relax or respond
in any way), electronic polarization of the solvent should take place on the same time scale
as excitation or ionization and ought to be considered, even in a continuum treatment. This
effect is represented by re-polarizing the continuum solvent in the excited state of the solute
using the solvent’s optical (rather than static) dielectric constant, ε∞ = n2, where n is the
solvent’s index of refraction. The total polarization response of the solvent is partitioned
into a “fast” component (due to the electrons and described using ε∞ = 1.8 for water) and
a “slow” component (due to nuclear reorganization and described using εstatic = 78.39 for
water). Details of the non-equilibrium PCM and its implementation in Q-ChemS27 can be
found in Refs. S50 and S51.

The predictions of PCM-type methods are sensitive to the details of how the “solute
cavity” (i.e., the boundary between the atomistic QM region and the continuum solvent)
is constructed. Most often this cavity is taken to be a union of atom-centered spheres,
whose radii may be considered to be parameters of the model. The calculations presented
here, however, include a large number of explicit water molecules, obviating the need for
such crude boundary conditions. These are suspect anyway for a species like e−(aq) where
one electron is clearly outside of the van der Waals radii of the atoms and would therefore
directly inhabit in continuum region. Moreover, in the presence of explicit solvent molecules,
the aforementioned “van der Waals” cavity construction places dielectric medium between
the explicit solvent molecules, which should not be there since Coulomb interactions are
treated explicitly in the QM region.

As an alternative, we use a QM/continuum interface consisting of single sphere whose
radius is selected to be 2.75 Å larger than the radius of the QM region. (The QM radii are
reported in Table 2.) This cavity is discretized using a Lebedev integration grid with 5,294
points. The 2.75 Å buffer reflects the estimated diameter of a water molecule, according
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to effective ionic radii for the isoelectronic ions O2−, OH−, and H3O+.S62 In addition, our
selection criterion for placing H2O molecules in the QM region is to do so if any one of the
three atoms lies within the specified QM radius, and as such there are cases where a hydrogen
nucleus ends up as much as 2.75 Å farther away from the origin than the proscribed radius of
the QM region. In any case, the predicted VEBEs are relatively insensitive to small changes
in the size of the spherical cavity provided that it encompasses the entire QM region. (When
QM nuclei extend beyond the cavity, non-sensical results are obtained or in some cases the
SCF + PCM procedure fails to converge at all.)

3.2 Poisson’s Equation for Anisotropic Solvation
PCMs are appropriate for describing e−(aq) in isotropic bulk solution, but not at the
anisotropic water/vacuum interface. At the interface, we resort to solving Poisson’s equation,

∇̂ ·
[
ε(r)∇̂ϕ(r)

]
= −4πρ(r) , (S5)

for the electrostatic potential ϕ(r). The quantity ρ(r) in this equation is the QM charge den-
sity, including both nuclei and electrons. This density is embedded in a dielectric medium
described by a spatially-inhomogeneous dielectric function, ε(r). Given a spatially homoge-
neous dielectric function, solution of Eq. (S5) should afford a solvation energy

G = 1
2

∫
dr ϕ(r) ρ(r) (S6)

that is equivalent to the PCM solvation energy, up to discretization errors that can be made
quite small,S48,S54 and neglecting “volume polarization” arising from the tails of the QM
wave function that penetrate beyond the solute cavity.S48,S63,S64 Volume polarization effects
can be significant for anions but are mitigated here by the use of a large number of QM
water molecules, such that the diffuse e−(aq) wave function has likely decayed to zero well
before reaching the QM/continuum interface. This expectation is confirmed by the rapid
convergence of the VEBE with respect to the size of the QM region that is reported in
Table 2.

For this work, we have developed a QM/Poisson approach to non-equilibrium solvation,
based on the non-equilibrium polarization formalism described in Refs. S50 and S51. The
difference in the present work is that whereas Refs. S50 and S51 (along with other works
on non-equilibrium solvationS58–S61) are couched in terms of a so-called apparent surface
charge PCM,S47,S48 in which only the two-dimensional solute/continuum interface (solute
cavity surface) must be discretized, here we describe the polarization response to vertical
detachment of the electron in terms of three-dimensional charge densities. This modification
is necessary in order to describe the anisotropic case. The resulting QM/Poisson approach
has been implemented in a locally-modified version of the Q-Chem electronic structure
program,S27 following the algorithm in Ref. S49, and is described in more detail below.
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3.2.1 Discretization of the Density

To solve Eq. (S5), we discretize the QM electron density ρelec(r) on a 25 Å × 25 Å × 25 Å
Cartesian grid with a grid spacing of ∆x = 0.22 Å in each direction, which closely follows
the details of both the classical electrostatics calculations reported in Ref. S65 (although
the grid used here is slightly more conservative, reflecting the somewhat more complicated
topology of the electrostatic potential generated by a QM charge distributionS66) as well as
those of the quantum electrostatics calculations reported in Refs. S49 and S67. The Turi-
Borgis pseudopotential modelS1 is used to estimate the location of the centroid of the spin
density, for reasons of computational expediency, and this point is selected as the origin for
the grid.

Following Ref. S49, the total density on the grid is separated into two parts: ρsolute, which
consists of the electronic and nuclear charge contributions from the solute (QM region), and
ρpol, a polarization charge density arising from interactions with the dielectric medium. In
detail,

ρtot(r) = ρelec(r) + ρnuc(r) + ρpol(r)
= ρsolute(r) + ρpol(r)

(S7)

where
ρsolute(r) = ρelec(r) + ρnuc(r) (S8)

is the charge density of the QM region. Its electronic part is

ρelec(r) = −
Nbasis∑
µν

Pµν gµ(r) gν(r) , (S9)

where P is the one-electron density matrix and gµ is an atom-centered Gaussian basis func-
tion.

The point charge Z on a given nucleus can lead to singularities in grid-based solutions
of Poisson’s equation. Following the procedure used in Ref. S65 for classical atom-centered
point charges, we therefore add the nuclear charge Z to the nearest Cartesian grid point but
with a value Z/(∆x)3 that reflects the smearing of this charge over one voxel of the Cartesian
grid. Formally, this means that we represent the nuclear contribution to the charge density
as

ρnuc(r) =
atoms∑
A

(
ZA

(∆x)3

)
δ (r−RA) , (S10)

where RA is the position vector of the Cartesian grid point nearest to nucleus A.

3.2.2 Numerical Solution of Poisson’s Equation

We first solve the Poisson equation

∇̂2ϕsolute(r) = −4πρsolute(r) (S11)
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for the solute’s electrostatic potential in vacuum, ϕsolute(r). This is accomplished using a
finite-difference, pre-conditioned conjugate gradient algorithm adapted from Ref. S49. Con-
vergence is achieved when the residual vector reaches a Euclidean norm of 10−5 a.u. Having
determined the electrostatic potential of the solute in vacuum, Poisson’s equation

∇̂ ·
[
ε(r)∇̂ϕtot(r)

]
= −4πρtot(r)

= −4π
[
ρsolute(r) + ρpol(r)

] (S12)

is then solved in the presence of a spatially-inhomogeneous dielectric function ε(r), in order
to obtain the polarization charge density and the corresponding polarization potential. We
separate the polarization charge density into two contributions, as follows:

ρpol(r) = ρiter(r) +
(

1− ε(r)
ε(r)

)
ρsolute(r) . (S13)

The iterative charge density ρiter(r) is induced by the dielectric function acting over the
whole simulation grid, and acts as an additional source term to the total charge density for
Poisson’s equation.S49,S67 The second term in Eq. (S13) is a scaled solute charge density.

To iterate ρiter(r) to convergence, we perform updates ρ(i)
iter → ρ

(i+1)
iter where

ρ
(i+1)
iter (r) = 1

4π
[
∇̂ ln ε(r)

]
·
[
∇̂ϕ(i)

tot(r)
]
. (S14)

[Note that ρpol(r) = ρiter(r) at any point r for which ε(r) = 1.] Once the solute’s electrostatic
potential is obtained in vacuum, the polarization charge density is updated according to
Eq. (S13) and then the total charge density is constructed using Eq. (S7). The latter is the
density utilized in solving Poisson’s equation, Eq. (S5).

For the first iteration of the conjugate gradient routine (i = 0), the total electrostatic
potential in Eq. (S14) is simply the solute’s “gas-phase” (vacuum boundary conditions)
electrostatic potential. Subsequently, Eq. (S12) is solved for the total electrostatic potential
using the total charge density at the current iteration, and this in turn is used to update
the iterative charge density via Eq. (S14). Following the procedure outlined in Refs. S49
and S67, a damping procedure is applied to stabilize the updates ρiter(r) in Eq. (S14). This
consists of a linear combination of the densities at iterations i and i+ 1:

ρ
(i+1)
iter (r) = η

4π
[
∇̂ ln ε(r)

]
·
[
∇̂ϕ(i)

tot(r)
]

+ (1− η) ρ(i)
iter(r)

= ηρ
(i+1)
iter + (1− η) ρ(i)

iter(r) .
(S15)

We take η = 0.6. The iterative charge density, and therefore the polarization charge density,
is updated until the Euclidean norm of the residual vector between iterations falls below a
threshold of 10−5 a.u.

Once the total electrostatic potential and polarization response arising from the dielectric
medium are known, the solute electrostatic energy can be computed:

Eelst = 1
2

∫
dr ϕtot(r) ρsolute(r) . (S16)
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Exploiting the density partition in Eq. (S7) along with the linearity of Poisson’s equation,
we can express the total electrostatic potential as ϕtot(r) = ϕsolute(r) +ϕpol(r), which affords

Eelst = 1
2

∫
dr ϕsolute(r) ρsolute(r) + 1

2

∫
dr ϕpol(r) ρsolute(r)

= Esolute +Gpol .
(S17)

The first term, Esolute, represents the solute charge density interacting with its own electro-
static potential. This is equivalent to the explicit inter-particle Coulomb interactions that
are already handled by the QM description of the solute. The second term,

Gpol = 1
2

∫
dr ϕpol(r) ρsolute(r) (S18)

represents the additional electrostatic stabilization engendered by the QM solute charge
density interaction with the polarization response of the dielectric medium.

Note that ϕtot(r) and ρtot(r) are computed self-consistently at each SCF iteration. To
properly incorporate solvent polarization effects, ϕpol(r) must be added to the effective Kohn-
Sham Hamiltonian, which constitutes a solvation correction to the Fock matrix. This cor-
rection is equal to the functional derivative δGpol/δρ, or in matrix form it is a correction ∆F
having matrix elements

∆Fµν =
∫
dr ϕpol(r) gµ(r) gν(r) . (S19)

The quantity Gpol should be added to the SCF energy. An outline of the QM/Poisson SCF
algorithm appears as Algorithm 1 on pg. S19.

3.2.3 Dielectric Function

In order to describe anisotropic dielectric environments, we employ a dielectric function ε(r)
that can assume a different value at each grid point in three-dimensional space. For testing
and comparison purposes we have also implemented this approach for isotropic solvation,
which we describe first. For e−(aq) in bulk water, we imagine a spherical cavity whose radius
is 2.75 Å larger than the radius of the QM region (rQM), as in the PCM calculations described
in Section 3.1. Across this boundary, we interpolate ε(r) between the values εvac = 1.0 inside
the cavity, where matter is described atomistically, and εstatic = 78.39 outside the cavity.
(This smooth change in the dielectric aids with convergence of the finite-difference Poisson
solver.S68,S69) Interpolation is accomplished as a function of the radial distance r from the
center of the grid using a hyperbolic tangent switching function. In detail, the r-dependent
dielectric function that we use is

ε(r) = 1
2

{
εstatic + εvac + (εstatic − εvac)tanh

[
α(r − rmid)

]}
. (S20)

The parameter α = 3.9 Å−1 controls the length scale of the switching process and rmid is
the midpoint of the interpolation. We take rmid = rQM + 1.375 Å, so that the dielectric
assumes the value ε = (εvac + εstatic)/2 halfway between rQM and rcavity = rQM + 2.75 Å.
(See Fig. S6 for an example.) Numerical results are not strongly dependent on the details of
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Algorithm 1: Equilibrium QM/Poisson SCF Procedure
Data: If feasible, precompute the value of gµ(ri) at each grid point ri for each basis

function gµ.
/* This requires Ngrid ×Nbasis storage, and if this is not feasible then

the basis function values can instead be computed on-the-fly at each
SCF iteration. */

1 begin SCF procedure
2 Initialize ∆F ≡ 0.
3 repeat n = 1, 2, . . . SCF iterations
4 Diagonalize the Fock matrix F = F0 + ∆F to obtain the density matrix P(n),

where F0 is the gas-phase Fock matrix and ∆F is the solvation correction.
5 Compute the electronic and nuclear charge densities at each grid point using

Eqs. (S9) and (S10), and the solute charge density using Eq. (S8).
6 begin Finite-difference Poisson solver
7 Use the conjugate gradient Poisson solver (adapted from Ref. S65) to

compute ϕsolute(r) with ε(r) ≡ 1.
8 Use ϕsolute(r) to form ρiter(r) and update ρtot(r).
9 repeat i = 1, 2, . . . Poisson solver iterations

10 begin Electrostatic potential solver
11 Compute ϕ(i)

tot(r) using Eq. (S12) and dielectric function ε(r).
12 // The form of the dielectric function is discussed in

Section 3.2.3.

13 Use ϕ(i)
iter to form the updated density ρ(i+1)

iter [Eq. (S15)]. Also update ρpol
[Eq. (S13)] and ρtot [Eq. (S7)].

14 until ||ρ(i+1)
iter (r)− ρ(i)

iter(r)|| < 10−5 a.u.
15 Compute ϕpol = ϕtot − ϕsolute.

16 Generate the Fock matrix correction in Eq. (S19).
17 Compute the polarization free energy Gpol [Eq. (S18)] and add it to the SCF

energy.
18 until DIIS error < 10−5 a.u.
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Figure S6: Dielectric function ε(r) from Eq. (S20), as a function of the distance r from the center of the
QM region. The parameters of the switching function are α = 3.9 Å−1 and rmid = 9.375 Å, as used in this
work for a QM radius of 8.0 Å. In this example, ε(rQM) = 1.002, ε(rmid) = 39.695, and ε(rcavity) = 78.388.

this smoothing procedure, and the calculations reported in Table 2 for e−(aq) in bulk water
demonstrate the extent to which IEF-PCM results agree with this QM/Poisson procedure.

The QM/Poisson procedure for the interfacial species is similar. We first use the Turi-
Borgis model to estimate the center point of the electronic wave function and thus locate
the center of the grid. Across a spherical cavity of radius rcavity = rQM + 2.75 Å surrounding
the Turi-Borgis centroid, we smoothly interpolate ε(r) as indicated in Eq. (S20). However,
we also compute the instantaneous distance d between the centroid of the electron and the
GDS, for each snapshot from the simulations. Since the vapor phase should have a dielectric
of εvac = 1, we use a similar hyperbolic tangent function to interpolate ε(z) across the GDS:

ε(z) = 1
2

[
εstatic + εvac + (εvac − εstatic)tanh

(
α|z − d|

)]
. (S21)

Here, z = 0 defines the middle of the slab, so Eq. (S21) corresponds to a midpoint of z = d
for the switching function at the water/vapor interface. A diagram of this interfacial setup
appears in Fig. S7.

3.2.4 Non-Equilibrium Poisson Formalism

To compute the solvation free energy due to the solvent polarization response arising from
vertical detachment of an electron in an anionic system, we follow the non-equilibrium solva-
tion formalism presented in Refs. S50 and S51, adapting it from the two-dimensional surface
approach that is appropriate for apparent surface charge PCMs to the three-dimensional
approach that is required here. Within this methodology, two separate SCF calculations are
required. The first one generates the electrostatic potentials and solvation free energies of
the reference state, which we denote as “0”, and the second generates the necessary quan-
tities for the final state, “1”. In the interest of generality, we will refer to the latter as the
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Figure S7: Diagram of the setup for the QM/Poisson calculations at the water/vacuum interface. Within
the two shaded regions, the dielectric function is interpolated between ε = 1.0 and ε = 78.39, as described
in the text. The interfacial region around the GDS uses the switching function in Eq. (S21), whereas the
spherical cavity in bulk water uses the same switching function used for bulk solvation, Eq. (S20).

“ionized” state, but bear in mind that for the present application the reference state is an
anionic water cluster so the “ionized” state is actually a neutral water cluster.

The free energy G0 of the (anionic) reference system is computed in the usual way:S50,S51

G0 = Esolute,0 + 1
2

∫
dr ϕpol,0(r) ρsolute,0(r) . (S22)

The “0” subscripts indicate that the quantities in question arise from the reference state;
later we will require similar quantities for the final state. All of the necessary terms in
Eq. (S22) can be obtained from the QM/Poisson algorithm presented in Section 3.2.2. The
energies, electrostatic potentials, and charge densities of the reference state are stored in
core memory to be used in the second calculation, for the ionized final state “1”.

Once the first SCF calculation is complete for the anionic reference state, the second
calculation begins for the ionized state. We have chosen to adapt the first-order perturbative
correction scheme for non-equilibrium PCMS50,S51 for use with our Poisson equation solver.
Although originally presented in the context of polarizable continuum solvation effects on
vertical excitation energies, it is noted in Refs. S50 and S51 that the formalism is equally
valid for vertical ionization. The algorithm outlined in Section 3.2.2 requires a few minor
adjustments for the non-equilibrium case, as discussed below.

Within the first-order perturbative approximation, the effective Hamiltonian for the ion-
ized state is given byS50

Ĥ1 = Ĥvac + V̂ slow
pol,0 + V̂ fast

pol,0 + λ
(
V̂ fast

pol,1 − V̂ fast
pol,0

)
, (S23)

where Ĥvac is the vacuum Hamiltonian (Kohn-Sham operator) for the ionized solute and the

S21



operator V̂pol,k (k = 0 or 1) generates the polarization potential ϕpol,k(r) due to the dielectric
response. The superscripts “slow” and “fast” reflect which component of the polarization
charge density we are using to construct the potential; see discussions in Section 3.1 and
below. The quantity λ is the usual perturbation parameter.

For the ionized final state, two modifications of the equilibrium QM/Poisson algorithm
presented above are required in the non-equilibrium case. First, the total free energy is
computed differently due to the first-order perturbative correction, and second, the Fock
matrix correction [Eq. (S19)] must use the reference state polarization potential as opposed
to using the polarization potential arising from the ionized state.S50,S51 The first-order energy
correction E(1), specifically for the ionized state, is

E
(1)
1 =

∫
dr ϕsolute,1(r)

[
ρfast

pol,1(r)− ρfast
pol,0(r)

]
, (S24)

where the term in square brackets is the difference between the fast components of the
ionized- and reference-state densities. We use the Marcus partitionS51,S70–S73 to separate the
polarization charge densities into fast and slow contributions. This amounts to

ρpol,k(r) = ρslow
pol,k(r) + ρfast

pol,k(r) (S25)

ρslow
pol,k(r) = (χslow/χe) ρpol,k(r) (S26)

χslow
χe

= εstatic − ε∞
εstatic − 1 . (S27)

(Consult Ref. S51 for a discussion of the Marcus partition versus the Pekar partition in
the context of non-equilibrium dielectric continuum solvation. Solvation energies are nearly
identical between the two models, although the interpretation of fast versus slow charge is
different, but this is of no consequence here.)

The dielectric constants on the right side of Eq. (S27) are the same as those discussed in
Section 3.1, thus the requisite fast and slow components of the polarization potentials can
be found using Eqs. (S25)–(S27), then using the definition of the electrostatic potential to
obtain

ϕpol,k(r) =
∫
dr′

ρpol,k(r′)
|r− r′|

. (S28)

It should be noted that employing Eqs. (S20) and (S21) to create spatially-varying dielectric
functions in Eq. (S27) is unnecessary; the component of the smoothing functions containing
the spatial dependence algebraically cancels out, and thus the ratio χslow/χe is constant
across the grid. The spatially-varying nature of the dielectric is carried solely by the static
dielectric function used to compute the polarization charge in Eq. (S13) and iterative charge
densities in Eqs. (S14) and (S15).

Next we discuss the first-order polarization energy within the perturbative scheme as well
as an additional correction that must be included due to our choice of the Marcus partition.
The first-order polarization energy correction term is

W
(1)
1 = 1

2

∫
dr ϕsolute,1(r)

[
ρfast

pol,1(r)− ρfast
pol,0(r)

]
−W0,1 , (S29)
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Algorithm 2: Non-Equilibrium QM/Poisson SCF Procedure
1 begin Reference State Calculation
2 Use Algorithm 1 to compute the energies, electrostatic potentials, and charge

densities for the solvated reference state and save to disk.
Input: G0, ϕpol,0, and ρtot,0 for the reference state.

3 begin Final State Procedure
4 Initialize ∆F ≡ 0.
5 repeat n = 1, 2, . . . SCF iterations
6 Diagonalize the Fock matrix F = F0 + ∆F to obtain the density matrix P(n),

where F0 is the gas-phase Fock matrix and ∆F is the solvation correction.
7 Compute the electronic and nuclear charge densities at each grid point using

Eqs. (S9) and (S10), and the solute charge density using Eq. (S8).
8 begin Finite-difference Poisson solver
9 Use the conjugate gradient Poisson solver (adapted from Ref. S65) to

compute ϕsolute,1(r) with ε(r) ≡ 1.
10 Use ϕsolute,1(r) to form ρiter,1(r) and update ρtot,1(r).
11 repeat i = 1, 2, . . . Poisson solver iterations
12 begin Electrostatic potential solver
13 Compute ϕ(i)

tot,1(r) using Eq. (S12) and dielectric function ε(r).
14 // The form of the dielectric function is discussed in

Section 3.2.3.

15 Use ϕ(i)
iter,1 to form the updated density ρ(i+1)

iter,1 [Eq. (S15)]. Also update ρpol,1
[Eq. (S13)] and ρtot,1 [Eq. (S7)].

16 until ||ρ(i+1)
iter,1 (r)− ρ(i)

iter,1(r)|| < 10−5 a.u.
17 Compute ϕpol,1 = ϕtot,1 − ϕsolute,1.

18 Generate the Fock matrix correction in Eq. (S19) using the reference state
polarization potential, ϕpol,0.

19 Compute the final-state polarization free energy G1 using Eq. (S31) and add it
to the SCF energy

20

21 until DIIS error < 10−5 a.u.
22 Compute VEBE = G1 −G0

S23



where the first term is half of the first-order energy correction and the second corrects for
the Coulomb interaction between the slow and fast polarization charges. (Physically, this
describes a situation in which the slow component of the reference-state polarization affects
the fast polarization from the ionized state.S51,S59,S70,S74) The final term in Eq. (S29) is

W0,1 = 1
2

∫
dr ϕslow

pol,0(r)
[
ρfast

pol,1(r)− ρfast
pol,0(r)

]
. (S30)

The total solvation free energy for the ionized state can now be computed according to

G1 = Esolute,1 + 1
2

∫
dr ϕpol,0(r) ρsolute,1(r) + E

(1)
1 −W

(1)
1 . (S31)

Note that the integral on the right is identical to that in Eq. (S22) because the same an-
ionic reference-state polarization potential is used to update the Fock matrix for both SCF
calculations.S51 An outline of the non-equilibrium QM/Poisson procedure is presented as
Algorithm 2 on pg. S23.
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