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S1 Computational Details

S1.1 XSAPT+MBD Method

To understand the XSAPT+MBD procedure it is helpful to start from the so-called “SAPT0”

model for Eint,
1–3 which is

ESAPT0
int = E

(10)
elst︸ ︷︷ ︸

ESAPT0
elst

+ E
(10)
exch︸ ︷︷ ︸

ESAPT0
exch

+E
(20)
disp + E

(20)
exch-disp︸ ︷︷ ︸

ESAPT0
disp

+E
(20)
ind,resp + E

(20)
exch-ind,resp + δEHF︸ ︷︷ ︸
ESAPT0

ind

. (S1)

Superscripts (mn) in Eq. (S1) indicate that this model is zeroth-order in the Møller-Plesset fluc-

tuation potentials, meaning that it uses Hartree-Fock wave functions for the monomers, while

SAPT0 includes terms up to second order in the intermolecular Coulomb and exchange interac-

tions. Second-order induction (E
(20)
ind,resp +E

(20)
exch-ind,resp) is usually augmented with an infinite-order

correction, contained in the so-called δ(Hartree-Fock) or δEHF term. This is defined as

δEHF = ∆EHF
int −

(
E

(10)
elst + E

(10)
exch + E

(20)
ind,resp + E

(20)
exch-ind,resp

)
, (S2)

where ∆EHF
int is the Hartree-Fock interaction energy computed via the supramolecular approach.

In XSAPT+MBD, we identify

EXSAPT+MBD
elst = E

(10)
elst (S3)

and

EXSAPT+MBD
exch = E

(10)
exch , (S4)

which is the same as the SAPT0 model in Eq. (S1).

For the induction energy we have elsewhere experimented with omitting the ∆EHF
int correction

that is commonly used in SAPT0.4 However, it is included in all of the calculations reported here.

Thus, we start from the SAPT0 induction energy,

ESAPT0
ind = E

(20)
ind,resp + E

(20)
exch-ind,resp + δEHF . (S5)

The present calculations also include point-charge embedding via the “XPol” procedure,5,6 by

means of which atomic point charges are derived from the monomer self-consistent field (SCF)

calculations and included in the SCF calculations for other monomers.6,7 In the present work,

we employ CM5 embedding charges,8 whose accuracy for this purpose has been documented else-

where.7 This procedure in implemented in the Q-Chem program.9

For a dimer system, the XSAPT induction energy thus includes a correction that amounts to the

difference between the XSAPT total energy (with charge embedding) and the SAPT total energy

(sans embedding),

∆EXPol = EXSAPT − ESAPT . (S6)

(It is slightly unusual to consider SAPT total energies; see Ref. 10 for an explanation.) Putting

this all together, the induction energy in XSAPT+MBD is

EXSAPT+MBD
ind = ESAPT0

ind + ∆EXPol . (S7)
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The most important difference between SAPT0 and XSAPT+MBD is that the latter replaces

the second-order dispersion in Eq. (S1) with the MBD model as defined in Ref. 7,

EXSAPT+MBD
disp = EMBD . (S8)

This is a slightly modified version11 of the MBD model developed for DFT calculations by

Tkatchenko an co-workers.12 It achieves quantitative accuracy as compared to SAPT2+(3) cal-

culations,3,4,11,13 whereas conventional second-order dispersion (E
(20)
disp +E

(20)
exch-disp) does not.14 Im-

portantly, the individual energy components agree with SAPT2+(3) energy components,13 demon-

strating that the accuracy of XSAPT+MBD is not an artifact of error cancellation and that the

components can be taken seriously for interpretative purposes.

The energy components in Eqs. (S3), (S4), (S7), and (S8) constitute the elements of the energy

decomposition in Eq. (3). The raw data needed to make the plots, in the form of these energy

components for each system, are provided in a separate attachment.

S1.2 Electrostatics

S1.2.1 General

Qualitative descriptions of the various energy components in Eq. (3) can be found in a recent

Perspective on electrostatic interactions.15 However, since electrostatics is a key aspect of the

present work, we pause to explicate Eelst in more detail. The first-order SAPT electrostatic inter-

action (E
(10)
elst ) is nothing other than the conventional Coulomb interaction between non-interacting

monomer wave functions, computed at the SCF level.16 This means that Eelst in XSAPT+MBD can

be partitioned into nuclear–nuclear (Enn
elst), electron–electron (Eee

elst), and electron–nuclear (Een
elst)

components,

Eelst = Enn
elst + Eee

elst + Een
elst . (S9)

Although we do not separate these contributions in the present work, Eq. (S9) is introduced here

in order to note that each separate contribution has a familiar form.

For a noncovalent complex A· · ·B with isolated-monomer electron densities ρA0 (r) and ρB0 (r),

computed in practice using Kohn-Sham DFT (Section S1.3), these three components are defined

as15

Enn
elst =

∑
a∈A

∑
b∈B

ZaZb
Rab

, (S10a)

Eee
elst =

∫
ρA0 (r1) ρ

B
0 (r2)

‖r1 − r2‖
dr1 dr2 , (S10b)

and

Een
elst = −

∑
a∈A

∫
Za ρ

B
0 (r)

‖r−Ra‖
dr−

∑
b∈B

∫
Zb ρ

A
0 (r)

‖r−Rb‖
dr . (S10c)

Here, Za and Zb are atomic numbers and these expressions are written in atomic units where

e2/4πε0 = 1. The signs in Eq. (S10c) reflect the convention that electron densities are output from

S3



electronic structure programs as strictly positive quantities, representing probability densities of

negatively-charged electrons. To make contact with Eq. (2) in the main text, one should identify

ρA(r) and ρB(r) in that equation as the total charge densities, including both nuclei and electrons,

computed for the isolated monomers. (See, for example, the discussion in Ref. 15.)

S1.2.2 Multipolar

Multipolar electrostatics calculations in Section 3 .4 were performed using standard formulas,17

which are briefly outlined here. The multipolar expansion of the electrostatic interaction between

two charge-neutral molecules A and B is

Uelst = −
∑
α,β

Tαβµ
A
αµ

B
β −

1

3

∑
α,β,γ

Tαβγ
(
µAαΘB

βγ −ΘA
αβµ

B
γ

)
−
∑
α,β,γ,δ

Tαβγδ
(

1
15µ

A
αΩB

βγδ − 1
9ΘA

αβΘB
γδ + 1

15ΩA
αβγµ

B
δ

)
+ · · ·

(S11)

where α, β, γ, δ ∈ {x, y, z} are Cartesian components of the various multipole tensors. These

include the multipole interaction tensor T, the dipole moment vector µ, and the quadrupole (Θ)

and octupole (Ω) tensors. Quadrupole moment tensors in this expression are traceless: Θαα +

Θββ + Θγγ = 0. Expressions for the elements of T can be found in Ref. 17.

For calculations reported in Section 3 .4, we include up to 16-pole terms based on dipole and

quadrupole moments computed at the optimally tuned LRC-ωPBE18/def2-TZVPD19 level of the-

ory, which is consistent with the way that the monomers are described in the XSAPT+MBD

calculations (see Section S1.3), thus consistent with the exact electrostatics calculations (Eelst).

Traceless quadrupole moment tensors are computed directly from Q-Chem calculations, as de-

scribed elsewhere,20 in a coordinate system where the origin lies at the center of the arene ring

(rather than at the center of mass or center of nuclear charge). Terms in Eq. (S11) involving the

octupole moment tensor (Ω) are neglected, although for benzene the octupole moments are already

zero by symmetry.

S1.3 SCF Procedure

The sum Eelst + Eexch + Eind in Eq. (3) looks much like SAPT0 but the relevant terms are eval-

uated using Kohn-Sham molecular orbitals, in what has sometimes been called “SAPT0(KS)”.3,4

The use of Kohn-Sham orbitals represents a low-cost way to incorporate intramolecular electron

correlation. Such calculations must employ functionals that are asymptotically correct,4,21–23 else

they are subject to artifacts arising from too-small HOMO/LUMO gaps. Correct asymptotic be-

havior is readily achieved using monomer-specific tuning4,14,23 of the range-separation parameter

ω in a long-range corrected (LRC) density functional.18,24,25 (The LRC-ωPBE functional18 is used

for the present calculations.) The tuning procedure, which is described elsewhere,4 is based upon

the global density-dependent (“ωGDD”) scheme developed by Modrzejewski et al..26 It is a compu-

tationally facile approximation to “optimal tuning” or “IE tuning” based on the ionization energy

(IE) theorem of DFT.27 The ωGDD procedure also avoids some problems associated with IE-tuning

for large conjugated molecules.4
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All calculations reported here employ ωGDD-tuned LRC-ωPBE calculations for the monomers.

In addition, the SCF calculations use the “XPol” procedure,5,6 with CM5 embedding charges7,8 that

are derived from the monomer wave functions, is used to polarize the monomer SCF densities. This

offers a slightly improvement in accuracy for dispersion-bound complexes,4 because the polarized

density is used to compute the MBD dispersion energy, though the effect is small.

All calculations were performed using Q-Chem.9 For the SCF calculations, the integral drop

screening threshold and the shell-pair drop tolerance were both set to 10−14 a.u.. (This is typically

done to avoid problems with linear dependencies28 but those are unlikely to be a problem for the

small systems considered here.) The SCF convergence threshold was set to 10−5 a.u.. We used the

def2-TZVPD basis set29 for the XSAPT+MBD calculations, as this affords converged results for

each energy component.13 For the δEHF correction, the 6-311G basis set was used instead, as this

term contributes only to the (already small) induction energy, and furthermore out testing confirms

that this correction is rather insensitive to basis set.13

S1.4 Geometries

Monomer gometries for the nitrogen-containing heterocycles were optimized at the ωB97X-V/def2-

TZVPD level.29,30 Th other monomer geometries were taken from the work of Wheeler and Houk,31

who previously considered substituent effects on stacking energies. These monomer geometries are

provided in a separate attachment.

To obtain optimal face-to-face separations (R), we wanted to keep the aromatic ring struc-

tures strictly coplanar. This is challenging to do in a geometry optimization (and in any case,

XSAPT+MBD gradients are not available), so the following three-step procedure was used in-

stead. First, the minimum-energy separation for the cofacial arrangement was determined via a

one-dimensional scan from 2.5 Å to 4.3 Å in increments of 0.2 Å. From that optimal cofacial ge-

ometry, a second potential energy scan was performed in which one monomer was translated along

a parallel-sliding coordinate until the ring centers were 3 Å apart when projected onto the par-

allel plane between the two aromatic moieties. This parallel-displaced minimum-energy structure

was then used for a second scan along the face-to-face separation coordinate, from R = 2.5 Å

to R = 4.4 Å in increments of 0.1 Å. The minimum-energy separation in the parallel-displaced

configuration, obtained in this way, is the value of R that is used in Figs. 4, 5, and 9. Monomer

geometries were kept rigid throughout this process.

Optimal values of R for both the sandwich and parallel-displaced arrangements of several ho-

momolecular dimers, determined by the procedure outlined above, are listed in Table S1. For the

benzonitrile dimer, we repeated this procedure at the ωB97X-V/def2-TZVPD level as a check.

In that case, the same optimal separations are obtained for both the sandwich configuration

(Rsandw = 3.9 Å) and the parallel-displaced arrangement (RPD = 3.55 Å), to within the width

of the increments used in the coordinate scans.

Data for the two-dimensional surfaces were then generated via translations along different radial

axes as shown in Fig. S1, fixing one monomer in space.
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S3 Additional Figures & Tables

Table S1: Face-to-face separations (R) for various homomolecular dimers, determined using XSAPT+MBD
via the procedure outlined in Section S1.4.

Monomer
R (Å)

sandwich parallel-displaced

benzene 3.4 3.8

benzonitrile 4.1 3.5

phenol 3.9 3.4

pyridine 3.9 3.5

thiophene 4.0 3.6

toluene 3.9 3.5

triazine 3.7 3.5

y 
(Å

)

x (Å)

3

2

1

0

–1

–2

–3
–3 –2 –1 0 1 2 3

Fig. S1: Radial translations used to generate two-dimensional potential energy surfaces at a given value of
the face-to-face separation, R.
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Fig. S2: Energy profile of (1,3,5-triazine)2 at R = 3.4 Å, as one monomer is rotated around its central C3

axis while the other is held fixed.
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