
Double-Buffered, Heterogeneous CPU + GPU Integral
Digestion Algorithm for Single-Excitation Calculations
Involving a Large Number of Excited States
Adrian F. Morrison,[a,b] Evgeny Epifanovsky,[b] and John M. Herbert *[a]

The most widely used quantum-chemical models for excited
states are single-excitation theories, a category that includes
configuration interaction with single substitutions, time-
dependent density functional theory, and also a recently devel-
oped ab initio exciton model. When a large number of excited
states are desired, these calculations incur a significant bottle-
neck in the “digestion” step in which two-electron integrals are
contracted with density or density-like matrices. We present an
implementation that moves this step onto graphical processing
units (GPUs), and introduce a double-buffer scheme that mini-
mizes latency by computing integrals on the central processing
units (CPUs) concurrently with their digestion on the GPUs. An

automatic code generation scheme simplifies the implementa-
tion of high-performance GPU kernels. For the exciton model,
which requires separate excited-state calculations on each
electronically coupled chromophore, the heterogeneous imple-
mentation described here results in speedups of 2–6× versus a
CPU-only implementation. For traditional time-dependent den-
sity functional theory calculations, we obtain speedups of up to
5× when a large number of excited states is computed. © 2018
Wiley Periodicals, Inc.

DOI:10.1002/jcc.25531

Introduction

In an effort to increase the applicability and insight provided by
quantum-chemical calculations, a great deal of work has been
done to increase the size of the chemical systems that can be
treated with popular algorithms using reasonable computa-
tional resources. There are generally two avenues that are pur-
sued to make progress in this way: development of novel
algorithms that either reduce the scaling or run more efficiently
in certain situations by taking advantage of new physical
ansätze or clever mathematical manipulations; or alternatively,
one may reimplement existing algorithms to take advantage of
new facets of rapidly evolving modern computer architectures.
If both of these strategies can be pursued in tandem that is
clearly ideal.

Pursuing the first of these strategies, we have recently intro-
duced a novel method for computing excited-state properties
of extended molecular aggregates.[1–5] Our method is based on
the old idea of an exciton model,[6–9] originally due to Frenkel[6]

and Davydov,[7] but is a fully ab initio realization of this model
that we therefore dub the ab initio Frenkel-Davydov exciton
model (AIFDEM).[5] This method accelerates an excited-state cal-
culation by dividing it into monomer-sized components and
pairwise couplings between them, yet remains faithful to the
accuracy of excitation energies computed for the supersystem
(at the level of configuration interaction with single substitu-
tions), to within 0.1–0.2 eV.[1,2] Parallel efficiency is excellent by
design, and a robust parallel implementation with near-perfect
scaling was used to perform excited-state calculations in nano-
scale systems with the equivalent of up to 50,000 basis func-
tions, on laboratory-scale hardware, that is, a few hundred

processors at most.[2,5] Systems of this size were found to
exhibit quantum coherence effects in their excited-state
energy-transfer dynamics, which are missing from small model
systems.[2] Moving quantum chemistry to new architectures,
and specifically graphical processing units (GPUs), represents a
promising approach to extend these methods to the
nanoscale,[10–12] a strategy that we apply here to the AIFDEM.

About 10 years ago, what had been a steady increase in fre-
quency for integrated circuit switching hit a wall due to rapidly
increasing thermal output, the primary means of improving
computational capability up to that time. Since that point, the
means for improving computational capabilities has been hard-
ware that operates on many tasks concurrently, with the degree
of parallelism increasing over time. Multiple central processing
unit (CPU) cores are fabricated on a single chip and many chips
are chained together such that the most powerful modern
supercomputers have tens of thousands of CPU cores. Writing
software for such massively parallel machines is challenging
and often fundamentally limited by the nature of the algorithm.
Indeed, as core counts increase there is a degree of “diminish-
ing returns,” as many problems are bottlenecked by the neces-
sary communication of data and synchronization among the

[a] Adrian F. Morrison, John M. Herbert
Department of Chemistry and Biochemistry, The Ohio State University,
Columbus, Ohio
E-mail: herbert@chemistry.ohio-state.edu

[b] Adrian F. Morrison, Evgeny Epifanovsky
Q-Chem Inc., Pleasanton, California

Contract Grant sponsor: U.S. Department of Energy;Contract Grant number:
DE-SC0008550

© 2018 Wiley Periodicals, Inc.

WWW.C-CHEM.ORG FULL PAPER

Wiley Online Library Journal of Computational Chemistry 2018, 39, 2173–2182 2173

https://orcid.org/0000-0002-1663-2278
http://WWW.C-CHEM.ORG

many cores. As specialized vector processors, GPUs offer a path
to both complement and move beyond the coarse-grained task
parallelism offered by multicore CPUs. These processors have
stricter constraints on their programming models but have raw
processing capabilities that outstrip general-purpose CPUs and,
with an efficient implementation, many problems can be signifi-
cantly accelerated.[13]

As a practical yet expensive computational problem, quan-
tum chemistry has naturally been an attractive target for GPU
acceleration.[14] Electronic structure calculations based on
Gaussian orbitals typically have two primary operations that are
computationally expensive: generation of electron repulsion
integrals (ERIs) and also linear algebra, the latter including ten-
sor operations. The specific bottleneck depends upon the
method in question, but these two potential bottlenecks have
each been targeted for GPU acceleration. ERI generation was
originally tackled on GPUs by Yasuda[15] and by Martínez and
coworkers,[16–19] then later by others.[19–24] In early work, there
was difficulty extending GPU-based ERI algorithms to basis sets
with high angular momentum, as the intermediates required
for computing high angular momentum shells were too large
to store in GPU cache and registers, while the recursive nature
of the integrals generation algorithm became rather complex
for the “same instruction, multiple data” (SIMD)-style operations
where GPUs excel. Evolution in hardware capability and algo-
rithm design has since mitigated this difficulty,[19–22] to the
point that a GPU-based ERI algorithm for arbitrary angular
momentum has recently been reported.[22] That said, imple-
mentations for Gaussian basis sets with angular momentum
beyond d functions are not yet widely available.

Based on these GPU-accelerated ERIs, GPU-based algorithms for
self-consistent field (SCF) calculations were subsequently
reported,[25–27] including density functional theory (DFT),[18] semi-
empirical methods,[28] and also several resolution-of-identity SCF
methods.[22,29] GPU-based algorithms for single-reference excited-
state methods, including both configuration interaction singles
(CIS) and time-dependent DFT (TDDFT), are also available.[18,30]

Although ERI generation is a good candidate for GPU acceler-
ation, the complicated nature of ERI algorithms, including their
reliance on integral screening and control-flow,[17,24,31–33] is not
ideally suited for these devices. Automated code generation
can help in this respect,[19] but for methods based on corre-
lated, post-Hartree–Fock wave functions, often the bottleneck
computational steps involve linear algebra and tensor opera-
tions. Examples of GPU-accelerated post-Hartree–Fock algo-
rithms include implementations of second-order Møller–Plesset
perturbation theory,[34–38] symmetry-adapted perturbation
theory,[39] coupled-cluster theory,[40–43] complete active space
methods,[44–47] and full configuration interaction.[12] Taking
advantage of the fact that the correlated part of the calculation
can be cast as a series of matrix multiplications, these algo-
rithms achieve performance enhancements by exploiting GPU-
specific versions of basic linear algebra libraries. For higher-level
many-body theories, the more complicated nature of the tensor
operations may require specialized libraries to provide a gen-
eral, GPU-accelerated tensor framework,[48] as for example in
the case of coupled-cluster theory.[49]

In this work, we explore a GPU-accelerated version of the
AIFDEM by exploiting the SIMD-amenable nature of its bottle-
neck computational step, namely, contraction of numerous
density-like matrices with ERIs. This step also incurs significant
cost in single-excitation theories of excited states, namely, TDDFT
and CIS,[50] if the number of excited states is large. This might be
the case in a semiconductor, where even truncated models lead
to a very large density of states,[51] or in calculations of optical
rotation parameters and circular dichroism spectra within a sum-
over-states formalism,[52–55] where several hundred excited states
may be required to converge the spectrum.[55–57] AIFDEM calcu-
lations use single-excitation calculations on individual monomers
as basis states to describe collective excitations, and as such a
large number of monomer excited states is often required. We
discuss the implementation details including a double-buffer
scheme to hide CPU-to-GPU transfer latency, and machine gen-
erated code that simplifies the implementation of specialized
kernels. Finally, the algorithm is benchmarked with synthetic
examples as well as real systems, and its performance is detailed.

Background

The computationally intensive part of an AIFDEM calculation
involves formation of a Hamiltonian whose matrix elements are
given by

HAB ¼
X
i2A

X
j2B

t it jξijαξ
ij
βΓ

ij ð1Þ

where

Γ ij ¼ Gij
α +Gij

β

� �
�h+ 1

2
Gij
α�Π�Gij

α

+
1
2
Gij
β�Π�Gij

β +Gij
α�Π

� �Gij
β:

ð2Þ

The notation and underlying theory is explained more fully in
Ref. [4]. Briefly, we define the contraction of matrices
R and S as

R�S¼
X
ij

RijSij , ð3Þ

where in this work, at least one of R or S is always a symmetric
matrix. Indices i and j denote natural transition orbitals (NTOs)
on individual fragments (monomers) A and B, which contribute

to generalized density matrices Gij
α and Gij

β . The matrix h is the

one-electron Hamiltonian, the ti are the fragment configuration

interaction (CI) coefficients, and factors ξijα and ξijβ ensure consis-

tent normalization and phase.
Our concern is with the two-electron part of Γij. The four-

index tensor of anti-symmetrized ERIs is indicated by Π in
equation 2,

Πμνλσ ¼ μνkλσð Þ , ð4Þ

whereas Π
�
includes Coulomb integrals only, Π�

μνλσ ¼ μνjλσð Þ.
The dimension of ij is typically on the order of dozens to several

FULL PAPER WWW.C-CHEM.ORG

Journal of Computational Chemistry 2018, 39, 2173–2182 WWW.CHEMISTRYVIEWS.COM2174

http://WWW.C-CHEM.ORG
http://WWW.CHEMISTRYVIEWS.COM

hundred generalized densities Gij
σ , and contraction of ERIs with

this many density-like matrices constitutes the overwhelming
computational bottleneck in AIFDEM calculations. As noted
above, excited-state methods such as CIS and TDDFT[50] which
are the most widely used quantum chemistry methods for elec-
tronically excited states, also include a significant contraction
cost, when a large number of excited states is required.

In the language of ERI algorithms, contraction of integrals with
density-like matrices is sometimes called “digestion.”[32,33,58–61] A
call-graph diagram in Figure 1 demonstrates the proportion of
either a CIS calculation or an AIFDEM calculation that is taken up by
the digestion step. The latter calculation is rather modest, including
just one excited state on each of four H2O monomers, which is
the minimal basis to compute the lowest collective excitation of
the entire (H2O)4 cluster, yet digestion already consumes 80% of
the total calculation time. For comparison, a CIS calculation of the
lowest excited state of (H2O)4 spends only 30% of its time in the
digestion step, although this step will consume an increasingly
large fraction of the total job time as more excited states are
requested.

The digestion procedure in question can be written as the
contraction of a four-index tensor containing the ERIs with a
three-index tensor representing the generalized densities. The
result is a Fock-like matrix that, operationally, is another three-
index tensor. This operation can be expressed as

FIμν ¼
X
λσ

μνkλσð ÞGI
λσ , ð5Þ

where we have replaced the composite index ij with a single
index I for simplicity, and (μνkλσ) is an ERI in the atomic orbital
(AO) basis. Essentially, the same digestion procedure is required
in traditional CIS and TDDFT calculations, as discussed below.

An analogous digestion step, albeit with slightly more sym-
metry, is performed in the ground-state SCF iterations as well,
but only one or two densities need to be digested, depending
on whether the calculation is restricted or unrestricted. ERI
libraries are usually highly optimized for this task and the diges-
tion step is not a significant fraction of the cost. Integrals are
typically generated and then immediately digested in batches
that are small enough to fit in CPU caches. When the dimension
of the density or density-like matrices exceeds a certain limit,
however, these quantities no longer fit in cache and the requi-
site trips to main memory severely impact performance. On the
bright side, a large degree of data parallelism becomes appar-
ent when many density-like matrices are present as essentially
the same operation is performed for each, and the integrals can
therefore be reused. This general concept is the foundation of
vector processing (i.e., SIMD operations), for which specialized
instructions and execution units are present in modern proces-
sor architectures. These types of operations are abundant in
graphics rendering, and thus, GPUs are designed around this
type of work. (Technically, typical GPUs are designed such that
parallel operations execute in their own register spaces and as
such are more appropriately designated single instruction, mul-
tiple thread processors, or SIMT.) With these considerations in
mind, we expect that a GPU implementation of equation 5 will
accelerate AIFDEM calculations by a significant degree.

We note in passing that equation 5 can also be accelerated
by means of a resolution-of-identity approximation, also known
as “density fitting.”[62–64] The resolution-of-identity procedure
approximates the four-index tensor Π in terms of three-index
integrals and two-index fitting coefficients for products of
Gaussian basis functions, expanded in a (larger) auxiliary Gauss-
ian basis set. Although the resulting algorithm exhibits the
same formal scaling as the original one, the prefactor (and thus

Figure 1. Call graph diagrams for calculations on (H2O)4 using the 6-31G basis set: (a) a CIS calculation of only one excited state, and (b) an AIFDEM
calculation including one excited state per monomer. Both calculations used the Q-Chem program.58 The diagrams outline all the major routines called by
the program during the course of the calculation, with the size of the boxes representing the relative amount of wall time spent in the indicated routine. The
routines that perform integral digestion are colored and labeled. [Color figure can be viewed at wileyonlinelibrary.com]

WWW.C-CHEM.ORG FULL PAPER

Wiley Online Library Journal of Computational Chemistry 2018, 39, 2173–2182 2175

http://wileyonlinelibrary.com
http://WWW.C-CHEM.ORG

the computing time) is often dramatically reduced,[63–70] and
this approach has been used in particular in the context of
TDDFT.[65,67,71] The AIFDEM would likely benefit from a
resolution-of-identity implementation but the need for diges-
tion with a large number of density-like matrices necessitates a
more specialized implementation as compared to the normal
TDDFT one. Such an implementation would itself be amenable
to GPU acceleration, but these improvements lie beyond the
scope of this work.

Finally, we note that a different GPU-accelerated “ab initio
exciton model” has been reported by Martínez and
coworkers.[72–74] While the underlying physical model is similar
in spirit, the version developed by Martínez et al. invokes signif-
icant simplifying approximations, including a dipole–dipole
approximation for the coupling matrix elements HAB, and
neglect of exchange interactions. These approximations make
sense in the context of the photosynthetic light-harvesting
complex examined in Ref. [73], where the individual chromo-
phores are well separated, but may be problematic in densely
packed molecular crystals and aggregates, and in molecular liq-
uids, which are the applications that we have so far targeted
using the AIFDEM.[1–5] GPU acceleration reported in Refs. [72–
74] amounts to acceleration of ERIs needed for traditional
TDDFT calculations, whereas we have tackled the digestion step
instead.

Computational Details
Algorithm design

We have designed a heterogeneous CPU + GPU implementation
of equation 5, in which integral are generated on the CPU and
digested on the GPU. In some ways, this approach plays to the
strengths of each machine: integral generation requires branch-
ing recursion relations and generates many shared intermediate
quantities, whereas digestion entails straightforward (if copious)
multiply-add operations. However, this strategy runs directly up

against what is perhaps the biggest challenge in GPU algorithm
design, namely, transfer of data from CPU memory to GPU mem-
ory via the high-latency PCIE bus, potentially incurring significant
performance penalties. Recent versions of NVIDIA’s CUDA plat-
form have introduced capabilities for concurrent data transfer
and compute on GPU devices as well as APIs that allow for asyn-
chronous calls from the perspective of the CPU. Utilizing these
capabilities, our algorithm is implemented using a double-buffer
strategy that hides the PCIE transfer latency by concurrent exe-
cution of digestion on the GPU, data transfer over the bus, and
integral generation on the CPU. This strategy reduces stalls, in
which one part of the machine sits idle waiting for data. Our
approach is outlined schematically in Figure 2, which compares
it to a traditional CPU-based digestion algorithm.

Our approach preorganizes integrals into batches that fit into
available device memory, and furthermore makes use of two
instances of a buffer data structure with host and device compo-
nents. At step N, the CPU generates the Nth batch of integrals
and stores them in host buffer 0. A synchronization call here will
block the CPU until device buffer 0 is available and then the inte-
grals are transferred asynchronously to the device so that the
CPU can immediately begin to generate batch N + 1 in host
buffer 1. Meanwhile, the GPU has been digesting batch N – 2
while batch N – 1 is transferring to device buffer 1, such that
these integrals are now available for the GPU to digest when
batch N – 2 is complete. By the time batch N – 1 is digested, the
integrals for batch N are available on the GPU and the cycle con-
tinues until all batches are digested. In practice, there are bub-
bles in this pipeline, typically due to generation of high angular
momentum integrals that cause the GPU to stall, but we find that
the majority of the work overlaps nicely on our testbed, leading
to good performance as evidenced by results presented below.

Kernel design

The heart of any GPU algorithm is the computational kernels
that run on the device and the challenge is to map the

Figure 2. Schematic depiction of a tra-
ditional CPU-based digestion algorithm
used in CIS and TDDFT calculations, as
compared to the double-buffered, CPU
+ GPU algorithm implemented in
this work. [Color figure can be viewed
at wileyonlinelibrary.com]

FULL PAPER WWW.C-CHEM.ORG

Journal of Computational Chemistry 2018, 39, 2173–2182 WWW.CHEMISTRYVIEWS.COM2176

http://wileyonlinelibrary.com
http://WWW.C-CHEM.ORG
http://WWW.CHEMISTRYVIEWS.COM

particular problem to its hardware layout. Due to the symmetry
of the two-electron integrals, we can avoid computing all of the
integrals by transposing the tensor during digestion. With the
usual notation,[75] where J, K, and P denote the Coulomb,
exchange, and density-like matrices, respectively, the necessary
transpositions to construct J are

JIμν ¼
X
λσ

μνjλσð ÞPIλσ ð6aÞ

and

JIμν ¼
X
λσ

λσjμνð ÞPIλσ , ð6bÞ

while for K they are

K I
μν ¼

X
λσ

μλjνσð ÞPIλσ ð7aÞ

K I
μν ¼

X
λσ

λμjνσð ÞPIλσ ð7bÞ

K I
μν ¼

X
λσ

μλjσνð ÞPIλσ ð7cÞ

K I
μν ¼

X
λσ

λμjσνð ÞPIλσ : ð7dÞ

These equations assume that P is symmetric but the general-
ized density matrices G used in the AIFDEM (and in CIS and
TDDFT calculations) are not. If P is not symmetric, then con-
struction of the exchange matrix in equation (7) should be
modified according to

K I
νμ ¼

X
λσ

μλjνσð ÞPIσλ ð8aÞ

K I
νμ ¼

X
λσ

λμjνσð ÞPIσλ ð8bÞ

K I
νμ ¼

X
λσ

μλjσνð ÞPIσλ ð8cÞ

K I
νμ ¼

X
λσ

λμjσνð ÞPIσλ : ð8dÞ

When dealing with higher-order tensors, it is often advanta-
geous to reorder these quantities in memory prior to contrac-
tion, if this reordering can reduce a given tensor operation to a
matrix multiplication for which highly optimized routines are
available. As discussed below, however, the integrals in our
algorithm are digested in small blocks, in which case the mem-
ory operations associated with transposition outweigh the effi-
ciency benefits of matrix multiplication.[76] As such, in our
implementation the blocks of the integral tensor are not reor-
dered after production, however their elements are accessed in
the patterns dictated by equations (6) and (8).

Integrals are generated in blocks corresponding to shell quar-
tets, and rather than accumulate the entire tensor it is sensible
to digest the integrals block-wise by quartet. The dimension of
each block is then determined by the number of functions on

each center in the quartet. Therefore, there are a finite number
of possibilities for the contraction dimension, that is, the ranges
of μνλσ in equations (6)–(8), dictated by the degree of angular
momentum and occurrence of multishells in a given basis set.
Our strategy was to write a single kernel and utilize C++ tem-
plates to generate specialized code for each quartet dimension
and integral transposition. This maximizes opportunities for
compiler-level optimization and also simplifies the implementa-
tion, as a new kernel can be written with single line of code.
Tuning the kernels by hand for every quartet and contraction
length might result in better performance, but places the pro-
grammer’s sanity at risk. Note that the sheer number of differ-
ent parameters ensures that each individual kernel runs only
for a fraction of the total job time, making specialized optimiza-
tions impractical. A source-code illustration of the template
strategy is presented in Figure 3.

Although a kernel can be implemented in a single line of
code for a given quartet size, and there are a finite number of
possible contraction lengths (multishell component dimen-
sions), the number of possible kernels will still grow rapidly as
new basis sets are implemented. We used automatic code gen-
eration to simplify the implementation of new basis sets, via

Figure 3. Illustration of the C++ template strategy used for GPU kernel
generation. A single contraction kernel is instantiated with tensor data
structures that invoke integral tensor access patterns corresponding to
equations (6) and (7). The kernel is also templated over the number of
components of each shell in the quartet, na nb, nc, and nd. New kernels are
implemented by specifying these dimensions as template parameters.

WWW.C-CHEM.ORG FULL PAPER

Wiley Online Library Journal of Computational Chemistry 2018, 39, 2173–2182 2177

http://WWW.C-CHEM.ORG

auxiliary Python scripts. The code generator takes as inputs a
list of basis sets and the set of possible shell component dimen-
sions for each basis; these can be printed in a preliminary dry
run. For each basis, the script will generate all possible quartets
that are unique under the eightfold symmetry of the integral
tensor, and cull any repeated quartets among the basis sets.
Finally, the necessary C++ files are written to the source direc-
tory, which in practice is more than a single line per kernel to
reduce compile time. For the basis sets used in this work, a
total of 65 kernels were required.

We have found it advantageous to exclude very small quar-
tets, such as 1 × 1 × 1 × 1, from the GPU digestion as the
amount of GPU work is not worth the cost of the memory oper-
ations needed to move it onto the GPU. Several CPU threads
are reserved to compute and digest these cases entirely on the
CPU. In principal, these threads will also handle any quartet
cases for which CUDA kernels have not been implemented. For
the testbed considered here we found that reserving three such
threads was optimal, but this will need to be tuned for other
machines.

The basic contraction kernel assigns a group of GPU threads
to compute contributions to a given J or K matrix, arising from
a given integral quartet, for a portion of the I subspace. Each
thread accumulates a single J or K matrix element. Integral
quartets are presorted by dimension so all contractions for a
given quartet class are launched simultaneously; these thread
blocks will run concurrently on the device. The kernel will ini-
tially load the current block of integrals and density-like matri-
ces into fast level 2 cache, called shared memory in CUDA
parlance. After contraction, the matrix elements are summed
into the global J and K matrices in device memory, using
atomic add operations provided by the CUDA API. For the
applications considered here, we do not find these atomic
operations to be a major bottleneck, and they furthermore
eliminate the need for temporary buffers, thus reducing mem-
ory requirements significantly.

Results

All of our benchmarks were run on a single node with 2× Intel
Xeon E5–2680 v4 CPUs (28 total cores), 128 GB of main mem-
ory, and a NVIDIA Tesla P100 GPU with 16 GB of memory. All
tests were performed at the Ohio Supercomputer Center.[77] We
note that our algorithm utilizes the GPU as well as all CPU cores
on a node, therefore, we compare our accelerated CPU + GPU
algorithm to the CPU only case, with the same CPU type and
memory, rather than a direct CPU versus GPU comparison.

Synthetic benchmarks

We first tested our algorithm against the equivalent CPU-only
integral routine (as implemented in Q-Chem,[58] v. 5.0) on a set
of synthetic benchmarks. Here, density-like matrices, which we
henceforth call “pseudo-densities,” were generated randomly in
the AO basis set of the given test systems. These pseudo-
densities are asymmetric and restricted to a single spin.

Results in Figure 4 demonstrate impressive speedups. For a
linear chain of 100 helium atoms, the speedup (relative to the
CPU-only algorithm reported previously[1]) increases from ≈3 to
≈12.5 as the number of pseudo-densities is increased from 8 to
256. For that system, we use a toy basis set (not intended for
practical calculations) that contains only d functions, so that the
only quartet class is (dd|dd). As such, results for this test case
represent a practical upper limit on the performance that we
can expect, as this single shell-quartet class has the maximum
dimension (6 × 6 × 6 × 6) of any system and basis set consid-
ered here and so provides an optimal balance of memory and
arithmetic operations for the kernel.

For a realistic test case, namely, pentacene dimer in the cc-
pVDZ basis set, the CPU + GPU algorithm is already slightly
faster than CPU-only Q-Chem at 8 pseudo-densities and
approximately twice as fast at 32 pseudo-densities. For penta-
cene monomer in the cc-pVDZ basis, the CPU + GPU algorithm
achieves a 4× speedup relative to CPU-only Q-Chem when
digesting 256 pseudo-densities. (This is a realistic number of
generalized densities for a typical AIFDEM calculation.) Penta-
cene dimer in the same basis achieves approximately 6×
speedup, indicating that relative performance improves as sys-
tem size increases. There is plateau in the speedup provided by
the GPU + CPU algorithm that is evident in Figure 4 for all test
cases when the number of pseudo-densities increases from
128 to 256. The fundamental scaling of the CPU + GPU algo-
rithm is identical to the CPU only version and at 128 pseudo-
densities the GPU is saturated with digestion work. After this
point, the speedup of the CPU + GPU algorithm, while signifi-
cant, remains constant as the number of pseudo-densities
increases.

AIFDEM benchmarks

We have adapted the AIFDEM electronic structure method to
use our GPU-accelerated integral digestion algorithm, in a
locally modified version of Q-Chem,[58] v. 5.0. We next investi-
gate its performance, considering as a first example the penta-
cene dimer in a variety of AO basis sets, and varying also the
NTO threshold that is used in the calculations. This threshold

Figure 4. Speedup for the heterogeneous CPU + GPU algorithm relative to a
CPU-only algorithm running on equivalent hardware, for synthetic
benchmarks involving randomly generated AO density matrices. The He100
system uses a toy basis set containing only d functions and represents a
practical upper limit on expected performance improvements. [Color figure
can be viewed at wileyonlinelibrary.com]

FULL PAPER WWW.C-CHEM.ORG

Journal of Computational Chemistry 2018, 39, 2173–2182 WWW.CHEMISTRYVIEWS.COM2178

http://wileyonlinelibrary.com
http://WWW.C-CHEM.ORG
http://WWW.CHEMISTRYVIEWS.COM

represents a controlled approximation for discarding terms in
equation 1, based on the magnitudes of ti and tj.[1,2] Specifically,
we retain enough CI coefficients to obtain a specified fraction
of the norm ktk of the transition density. This truncation limits

the number of generalized densities Gij
σ that must be digested,

and this number grows approximately quadratically as the
threshold is tightened due to the product titj that appears in
equation 1. An 80% threshold is sufficient for an accuracy of
≈0.1 eV with respect to a supersystem calculation,[1] which we
judge to be acceptable.

Timing comparisons between the CPU-only and CPU + GPU
algorithms are provided in Table 1, for two different basis sets
and two different values of the NTO threshold. The number of

generalized densities Gij
σ that must be digested is listed in each

case and at first glance, the timings might not seem to corre-
late with those in Figure 4. For instance, a calculation with pen-
tacene dimer in the cc-pVDZ basis set yields a 2.3× speedup
relative to the CPU-only algorithm in Q-Chem, and while this is
impressive it is not the ≈6× speedup that one might have
expected for this calculation with 162 generalized density
matrices, based on Figure 4. This is because the AIFDEM

requires integrals over spin-unrestricted densities, Gij
α and Gij

β ,

although the Coulomb matrix can be formed from the total
density. As such, the effective number of density-like matrices
digested is approximately twice the value given in Table 1 and
the CPU-only algorithm does not see an increase in wall time to
the same degree as the GPU algorithm when moving from a
restricted to an unrestricted density, perhaps due to some over-
head that exists even in the restricted case. Nevertheless, the
hybrid CPU + GPU algorithm affords speedups of ≈4× for the
aug-cc-pVDZ test case, again indicating the value of this algo-
rithm for larger systems or those with less sparsity.

Lastly we performed tests on a much larger system, namely,
a substructure of a self-assembled organic semiconductor nano-
tube.[51] The complete nanotube is comprised of ~350 naphtha-
lene tetracarboxylate diimide chromophores; a nine-unit
substructure is used here, which is depicted in Figure 5 and
which we have considered also in previous work.[1,2,51] Timings
for this system are presented in Table 2. These calculations use
a charge-embedded version of the AIFDEM,[2] such that no
more than two monomers are included in the electronic

structure calculation at any one time, with the other monomers
described using atom-centered point charges. These calcula-
tions use Pople basis sets and calculations on the entire nine-
unit structure in Figure 5 would amount to 3150 basis functions
for 6-31G* and 3942 functions for 6-31+G*. Speedups for this
system are generally better than those for pentacene dimer
and range from 2.4× for the 6-31G* basis and 75% NTO thresh-
old, to more than 5× when diffuse functions are added
(6-31+G*) and the threshold tightened to 85%. The larger
speedups as compared to pentacene dimer likely arise from the
combination of a larger system (with a correspondingly larger
amount of contraction work) as well as the use of Pople-style
combined sp shells, resulting in more optimal contraction
dimensions than if s and p shells were separated, as is done in
(aug-)cc-pVDZ.

TDDFT benchmarks

Thus far, we have focused on examples where our CPU + GPU
algorithm was applied to AIFDEM calculations, but it may be

Table 1. Wall times for an AIFDEM calculation of the singlet excited
states of pentacene dimer, comparing a CPU-only algorithm to the
hybrid CPU + GPU algorithm.

Basis set

cc-pVDZ aug-cc-pVDZ

NTO threshold[a] 75% 85% 75% 85%
No. of gen. densities[b] 162 648 200 648

CPU-only time[c] (s) 3,462 13,679 114,866 365,567
CPU + GPU time[c] (s) 1,533 5,265 31,660 97,149

Speedup factor 2.26 2.60 3.63 3.76

[a] Percentage of ktk retained in the fragment calculations.
[b] Representative; for a single diagonal matrix element.
[c] Excludes fragment calculation time.

Figure 5. Nine-unit model of an organic semiconductor nanotube, from Ref.
[51]. The individual chromophores in this model system are N, N

0
-dimethyl-

1,4,5,8-naphthalene tetracarboxylic diimide, C16O4N2H10. [Color figure can be
viewed at wileyonlinelibrary.com]

Table 2. Wall times for a charge-embedded AIFDEM calculation of the
singlet excited states of the nine-unit naphthalene diimide structure in
Figure 5.

Basis set

6-31G* 6-31+G*

NTO threshold[a] 75% 85% 75% 85%
No. of gen. densities[b] 200 648 200 722
CPU-only time[c] (s) 16,718 50,876 101,135 379,751
CPU + GPU time[c] (s) 7,008 21,821 22,104 72,912

Speedup factor 2.38 4.58 4.58 5.21

[a] Percentage of ktk retained in the fragment calculations.
[b] Representative; for a single diagonal matrix element.
[c] Excluding fragment calculation time.

WWW.C-CHEM.ORG FULL PAPER

Wiley Online Library Journal of Computational Chemistry 2018, 39, 2173–2182 2179

http://wileyonlinelibrary.com
http://WWW.C-CHEM.ORG

useful to accelerate traditional CIS or TDDFT calculations as
well, within the Tamm-Dancoff approximation[50] in the latter
case. The bottleneck step in these single-excitation theories is

the formation of the subspace vectors σ Iia required by the itera-
tive eigensolver[78]:

σ Iia ¼
X
jb

h
ϵa−ϵið Þδijδab + aij jbð Þ

+ CHF abj jið Þ+ �
aij f̂ xcj jb

�i
tIjb:

ð9Þ

See Ref. [50] for a complete explanation of the notation. Briefly,
ERIs (ai| jb) and (ab| ji) are expressed in the molecular orbital
(MO) basis, with indices i, j, … and a, b, … corresponding to
occupied and virtual MOs, respectively. The quantities ϵi and ϵa
are orbital eigenvalues, and tI is a (trial) transition density matrix
for the Ith excited state.

As in the AIFDEM, the bottleneck step in CIS and TDDFT cal-
culations is formation of the two-electron contribution to the
subspace vectors, and this can be written in terms of a Fock-like

matrix eF:
eFIia ¼X

μν

cμacνi
X
λσ

h
μνjλσð Þ+CHF μσjλνð Þ

+ μνj f̂ xcjλσ
� �iePIλσ :

ð10Þ

Here, ePI
is the transition density matrix transformed to the AO

basis:

ePIλσ ¼X
jb

cλj t
I
jb cσb : ð11Þ

Contraction of the transition density matrix with the ERIs in
equation 11 is analogous to equation 5 and is operationally
equivalent. In this case, the dimension of the space indexed by
I is the number of unconverged roots at a given iteration of
Davidson’s procedure.[79] Initially, this dimension equals the
number of desired excited states, but decreases as the roots
iteratively converge.[78]

Typical calculations of this type do not request more than 10–20
excited states, but there are certain cases where a much larger
number of states is necessary, and it is in these cases where equa-
tion 11 is a good candidate for our GPU-accelerated digestion algo-
rithm. If the excited-state manifold is dense with near degeneracies,
for example, then the state of interest might be of high rank. The
electronic structure of the nine-chromophore model in Figure 5 is
nearly semiconductor-like, and its lowest optically bright transition
(at the LRC-ωPBE/3-21G* level of theory) is actually the 27th excited
state.[51] Numerous excited states are also required to compute cir-
cular dichroism spectra within a sum-over-states formalism,[52–55] as
this approach often requires hundreds of excited states to con-
verge, even for small organic molecules.[55–57] Circular dichroism
spectra for pyrrole (C4H5N) reported in Ref. [55], for example,
require a few dozen excited states just to reproduce the rough fea-
tures of the spectrum, while 200 states are required to begin to
resolve details in the short wavelength region, and 300 states to
obtain a fully converged spectrum.

With these examples in mind, we have adapted the
CIS/TDDFT code in a development version of Q-Chem,[58] v. 5.0,
to use our GPU-accelerated integral digestion algorithm, and
have benchmarked it against the original, CPU-only implemen-
tation. We took a Watson-Crick guanine/cytosine base pair as a
test system and computed several hundred states at the B3LYP
level of theory using two different basis sets; results are pre-
sented in Table 3. As with the AIFDEM calculations, the speedup
afforded by the CPU + GPU implementation increases in larger
basis sets, and is only 10%–20% in the cc-pVDZ basis but larger
in aug-cc-pVDZ. Larger speedups are also obtained as the num-
ber of transition densities increases, which is dictated in this
case by the number of excited states that is requested. In that
sense, CIS and TDDFT calculations are somewhat less amenable
to GPU acceleration as compared to the AIFDEM calculations,
because the number of density-like matrices that must be
digested decreases (and thus the relative advantage of using
GPUs also decreases) as the Davidson iterations proceed.
Regardless, the CPU + GPU algorithm does quite well in the
aug-cc-pVDZ example, with speedups approaching 5×.

Finally, as a realistic example where one might need 100+
excited states to obtain an electronic absorption spectrum we
consider the cobalt(II) corrinoid complex shown in Figure 6,
which is a truncated model of the adenosylcobalamin cofactor,
from a joint experimental and computational study in Ref.
[80]. In TDDFT calculations using either the local density
approximation (as in Ref. [80]) or the BP86 generalized gradient
approximation (which was preferred in other studies of cobala-
mins[81,82]), one must compute ~50, 100, or 200 excited states
to reach 4, 5, or 6 eV (respectively) above the ground state.
Other functionals have been examined for this system as

Table 3. Wall times for TDDFT calculations on a guanine/cytosine base
pair.

Basis set

cc-pVDZ aug-cc-pVDZ

No. of states 200 300 200 300

CPU-only time[a] (s) 312 537 2902 7691
CPU + GPU time[a] (s) 275 453 1088 1639

Speedup factor 1.13 1.23 2.67 4.69

[a] Excluding SCF time, B3LYP level.

Figure 6. Structure (from Ref. 80) of a truncated Co2+ corrinoid model of the
base-off form of cobalt(II)cobalamin. [Color figure can be viewed at
wileyonlinelibrary.com]

FULL PAPER WWW.C-CHEM.ORG

Journal of Computational Chemistry 2018, 39, 2173–2182 WWW.CHEMISTRYVIEWS.COM2180

http://wileyonlinelibrary.com
http://WWW.C-CHEM.ORG
http://WWW.CHEMISTRYVIEWS.COM

well,[81,82] and we have performed TDDFT calculations on the
complex in Figure 6 using B3LYP, computing 200 excited states
to obtain the spectrum up to 6 eV above the ground state. A
CPU-only version of Q-Chem required 3351 s (def2-SVP basis
set) or 23,499 s (def2-SVPD basis). Using our GPU + CPU algo-
rithm we were able to complete the same calculations in 1714
and 7551 s, respectively, corresponding to speedups of 2× for
def2-SVP and 3× for def2-SVPD. This is in line with results for
the other examples considered here.

Conclusions

We have reported a hybrid CPU + GPU algorithm for efficient
digestion of two-electron integrals with a large number of
density-like matrices, by appealing to the intrinsically data-
parallel nature of this operation. This effort specifically targets
the ab initio exciton model that we developed previously,[1–5]

for which the digestion step proves to be a significant bottle-
neck. For synthetic benchmarks on real systems, we demon-
strate speedups of over 6× as compared to a CPU-only
algorithm running on the same hardware, and speedups of 2–
6× for calculations using the AIFDEM on real systems. For CIS
and TDDFT calculations where numerous excited states are
required, as in a sum-over-states approach to circular dichroism
spectroscopy or simply for a system such as cobalt(II)cobalamin
with a high density of excited states, where 100+ states might
be required to compute an absorption spectrum, we have also
demonstrated speedups of up to 5×. Larger speedups as com-
pared to a CPU-only algorithm are obtained when the basis set
is augmented with diffuse functions (and for Pople-type basis
sets in particular), and in any circumstance that increases the
amount of digestion work, such as the use of tighter thresholds
or calculation of a larger number of excited states.

Acknowledgments

This work was supported by the U.S. Department of Energy, Office
of Basic Energy Sciences, Division of Chemical Sciences, Geos-
ciences, and Biosciences under Award No. DE-SC0008550. Calcula-
tions were performed at the Ohio Supercomputer Center under
project no. PAA-0003.[77] A.F.M. acknowledges a fellowship from
the Lubrizol Corporation. J.M.H. is a fellow of the Alexander von
Humboldt Foundation and serves on the Board of Directors of
Q-Chem Inc.

Keywords: quantum chemistry � excited states � graphics pro-
cessing units � TDDFT

How to cite this article: Adrian F. Morrison, E. Epifanovsky, John
M. Herbert. J. Comput. Chem. 2018, 39, 2173–2182.
DOI: 10.1002/jcc.25531

[1] A. F. Morrison, Z.-Q. You, J. M. Herbert, J. Chem. Theory Comput. 2014,
10, 5366.

[2] A. F. Morrison, J. M. Herbert, J. Phys. Chem. Lett. 2015, 6, 4390.

[3] A. F. Morrison, J. M. Herbert, J. Phys. Chem. Lett. 2017, 8, 1442.

[4] Morrison, A. F.; Herbert, J. M. J. Chem. Phys. 2017, 146, 224110.

[5] J. M. Herbert, X. Zhang, A. F. Morrison, J. Liu, Acc. Chem. Res. 2016,
49, 931.

[6] J. Frenkel, Phys. Rev. 1931, 37, 17.
[7] A. S. Davydov, Theory of Molecular Excitons, McGraw-Hill, New York,

1962.
[8] M. Kasha, Radiat. Res. 1963, 20, 55.
[9] M. Kasha, H. R. Rawls, M. A. El-Bayoumi, Pure Appl. Chem. 1965,

11, 371.
[10] I. S. Ufimtsev, N. Luehr, T. J. Martinez, J. Phys. Chem. Lett. 2011, 2, 1789.
[11] H. J. Kulik, N. Luehr, I. S. Ufimtsev, T. J. Martinez, J. Phys. Chem. B 2012,

116, 12501.
[12] B. S. Fales, B. G. Levine, J. Chem. Theory Comput. 2015, 11, 4708.
[13] D. van der Spoel, B. Hess, WIREs Comput. Mol. Sci. 2011, 1, 710.
[14] R. C. Walker, A. W. Götz, Eds., Electronic Structure Calculations on

Graphics Processing Units, Wiley, Chichester, UK, 2016.
[15] K. Yasuda, J. Comput. Chem. 2008, 29, 334.
[16] I. S. Ufimtsev, T. J. Martínez, J. Chem. Theory Comput. 2008, 4, 222.
[17] C. Song, L.-P. Wang, T. Sachse, J. Preiß, M. Presselt, T. J. J. Martínez,

Chem. Phys. 2015, 143, 014114.
[18] Luehr, N.; Sisto, A.; Martínez, T. J. In Electronic Structure Calculations on

Graphics Processing Units; Walker, R. C., Götz, A. W., Eds.; Wiley:
Chichester, UK, 2016; chapter 4, pages 67–100.

[19] C. Song, L.-P. Wang, T. J. Martínez, J. Chem. Theory Comput. 2016,
12, 92.

[20] A. Asadchev, V. Allada, J. Felder, B. M. Bode, M. S. Gordon, T. L. Windus,
J. Chem. Theory Comput. 2010, 6, 696.

[21] Y. Miao, K. M. Merz, J. Chem. Theory Comput. 2015, 11, 1449.
[22] J. Kalinowski, F. Wennmohs, F. Neese, J. Chem. Theory Comput. 2017,

13, 3160.
[23] C. A. Renison, K. D. Fernandes, K. J. Naidoo, J. Comput. Chem. 2015, 36,

1410.
[24] K. D. Fernandes, C. A. Renison, K. J. Naidoo, J. Comput. Chem. 2015, 36,

1399.
[25] K. Yasuda, J. Chem. Theory Comput. 2008, 4, 1230.
[26] I. S. Ufimtsev, T. J. Martinez, J. Chem. Theory Comput. 2009, 5, 1004.
[27] I. S. Ufimtsev, T. J. Martinez, J. Chem. Theory Comput. 2009, 5, 2619.
[28] Wu, X.; Koslowski, A.; Thiel, W. In Electronic Structure Calculations on

Graphics Processing Units; Walker, R. C., Götz, A. W., Eds.; Wiley:
Chichester, UK, 2016 239–258.

[29] T. Yoshikawa, H. Nakai, J. Comput. Chem. 2015, 36, 164.
[30] C. M. Isborn, N. Luehr, I. S. Ufimtsev, T. J. Martínez, J. Chem. Theory

Comput. 2011, 7, 1814.
[31] P. M. W. Gill, J. A. Pople, Int. J. Quantum Chem. 1991, 40, 753.
[32] P. M. W. Gill, Adv. Quantum Chem. 1994, 25, 141.
[33] T. R. Adams, R. D. Adamson, P. M. W. Gill, J. Chem. Phys. 1997, 107, 124.
[34] L. Vogt, R. Olivares-Amaya, S. Kermes, Y. Shao, C. Amador-Bedolla,

A. Aspuru-Guzik, J. Phys. Chem. A 2008, 112, 2049.
[35] R. Olivares-Amaya, M. A. Watson, R. G. Edgar, L. Vogt, Y. Shao,

A. Aspuru-Guzik, J. Chem. Theory Comput. 2010, 6, 135.
[36] Olivares-Amaya, R.; Jinich, A.; Watson, M. A.; Aspuru-Guzik, A. In Elec-

tronic Structure Calculations on Graphics Processing Units; Walker, R. C.,
Götz, A. W., Eds.; Wiley: Chichester, UK, 2016; 259–278.

[37] D. G. Tomlinson, A. Asadchev, M. S. Gordon, J. Comput. Chem. 2016,
37, 1274.

[38] Song, C.; Martinez, T. J. J. Chem. Phys. 2016, 144, 174111.
[39] R. M. Parrish, K. C. Thompson, T. J. Martínez, J. Chem. Theory Comput.

2018, 14, 1737.
[40] W.Ma, S. Krishnamoorthy, K. Kowalski, J. Chem. Theory Comput. 2011, 7, 1316.
[41] A. Asadchev, M. S. Gordon, J. Chem. Theory Comput. 2013, 9, 3385.
[42] De Prince III, A. E.; Hammond, J. R.; Sherrill, C. D. In Electronic Structure

Calculations on Graphics Processing Units; Walker, R. C., Götz, A. W.,
Eds.; Wiley: Chichester, UK, 2016; 279–300.

[43] Ma, W.; Bhaskaran-Nair, K.; Villa, O.; Tumeo, E. A. A.; Krishnamoorthy, S.;
Kowalski, K. In Electronic Structure Calculations on Graphics Processing
Units; Walker, R. C., Götz, A. W., Eds.; Wiley: Chichester, UK, 2016; 301–326.

[44] Hohenstein, E. G.; Luehr, N.; Ufimtsev, I. S.; Martínez, T. J. J. Chem. Phys.
2015, 142, 224103.

[45] Snyder Jr., J. W.; Hohenstein, E. G.; Luehr, N.; Martínez, T. J. J. Chem.
Phys. 2015, 143, 154107.

[46] Snyder, J. W.; Fales, B. S.; Hohenstein, E. G.; Levine, B. G.; Martínez, T. J.
J. Chem. Phys. 2017, 146, 174113.

WWW.C-CHEM.ORG FULL PAPER

Wiley Online Library Journal of Computational Chemistry 2018, 39, 2173–2182 2181

http://WWW.C-CHEM.ORG

[47] Fales, B. S.; Shu, Y.; Levine, B. G.; Hohenstein, E. G. J. Chem. Phys. 2017,
147, 094104.

[48] E. Epifanovsky, M. Wormit, T. Ku�s, A. Landau, D. Zuev, K. Khistyaev,
P. Manohar, I. Kaliman, A. Dreuw, A. I. Krylov, J. Comput. Chem. 2013,
34, 2293.

[49] I. A. Kaliman, A. I. Krylov, J. Comput. Chem. 2017, 38, 842.
[50] A. Dreuw, M. Head-Gordon, Chem. Rev. 2005, 105, 4009.
[51] M. Gao, S. Paul, C. D. Schwieters, Z.-Q. You, H. Shao, J. M. Herbert,

J. R. Parquette, C. P. Jaroniec, J. Phys. Chem. C 2015, 119, 13948.
[52] K. B. Wiberg, Y. Wang, S. M. Wilson, P. H. Vaccaro, J. R. Cheeseman,

J. Phys. Chem. A 2006, 110, 13995.
[53] M. Seth, J. Autschbach, T. Ziegler, J. Chem. Theory Comput. 2007, 3, 434.
[54] P. Štěpánek, P. Bouř, J. Comput. Chem. 2015, 36, 723.
[55] P. Štěpánek, P. Bouř, J. Comput. Chem. 2013, 34, 1531.
[56] S. Tonzani, G. C. Schatz, J. Am. Chem. Soc. 2008, 130, 7607.
[57] Kaminský, J.; Kříž, J.; Bouř, P. J. Chem. Phys. 2017, 146, 144301.
[58] Y. Shao, Z. Gan, E. Epifanovsky, A. T. B. Gilbert, M. Wormit, J. Kussmann,

A. W. Lange, A. Behn, J. Deng, X. Feng, D. Ghosh, M. Goldey, P. R. Horn,
L. D. Jacobson, I. Kaliman, R. Z. Khaliullin, T. Kús, A. Landau, J. Liu,
E. I. Proynov, Y. M. Rhee, R. M. Richard, M. A. Rohrdanz, R. P. Steele,
E. J. Sundstrom, H. L. Woodcock, III., P. M. Zimmerman, D. Zuev,
B. Albrecht, E. Alguire, B. Austin, G. J. O. Beran, Y. A. Bernard, E. Berquist,
K. Brandhorst, K. B. Bravaya, S. T. Brown, D. Casanova, C.-M. Chang,
Y. Chen, S. H. Chien, K. D. Closser, D. L. Crittenden, M. Diedenhofen,
R. A. DiStasio, Jr., H. Do, A. D. Dutoi, R. G. Edgar, S. Fatehi,
L. Fusti-Molnar, A. Ghysels, A. Golubeva-Zadorozhnaya, J. Gomes,
M. W. D. Hanson-Heine, P. H. P. Harbach, A. W. Hauser, E. G. Hohenstein,
Z. C. Holden, T.-C. Jagau, H. Ji, B. Kaduk, K. Khistyaev, J. Kim, J. Kim,
R. A. King, P. Klunzinger, D. Kosenkov, T. Kowalczyk, C. M. Krauter,
K. U. Lao, A. Laurent, K. V. Lawler, S. V. Levchenko, C. Y. Lin, F. Liu,
E. Livshits, R. C. Lochan, A. Luenser, P. Manohar, S. F. Manzer, S.-P. Mao,
N. Mardirossian, A. V. Marenich, S. A. Maurer, N. J. Mayhall, C. M. Oana,
R. Olivares-Amaya, D. P. O’Neill, J. A. Parkhill, T. M. Perrine, R. Peverati,
P. A. Pieniazek, A. Prociuk, D. R. Rehn, E. Rosta, N. J. Russ, N. Sergueev,
S. M. Sharada, S. Sharma, D. W. Small, A. Sodt, T. Stein, D. Stück,
Y.-C. Su, A. J. W. Thom, T. Tsuchimochi, L. Vogt, O. Vydrov, T. Wang,
M. A. Watson, J. Wenzel, A. White, C. F. Williams, V. Vanovschi,
S. Yeganeh, S. R. Yost, Z.-Q. You, I. Y. Zhang, X. Zhang, Y. Zhao,
B. R. Brooks, G. K. L. Chan, D. M. Chipman, C. J. Cramer, W. A. Goddard,
III., M. S. Gordon, W. J. Hehre, A. Klamt, H. F. Schaefer, III.,
M. W. Schmidt, C. D. Sherrill, D. G. Truhlar, A. Warshel, X. Xu,
A. Aspuru-Guzik, R. Baer, A. T. Bell, N. A. Besley, J.-D. Chai, A. Dreuw,
B. D. Dunietz, T. R. Furlani, S. R. Gwaltney, C.-P. Hsu, Y. Jung, J. Kong,
D. S. Lambrecht, W. Liang, C. Ochsenfeld, V. A. Rassolov,
L. V. Slipchenko, J. E. Subotnik, T. Van Voorhis, J. M. Herbert, A. I. Krylov,
P. M. W. Gill, M. Head-Gordon, Mol. Phys. 2015, 113, 184.

[59] R. A. Di Stasio, Jr., R. P. Steele, M. Head-Gordon, Mol. Phys. 2007, 105, 2731.

[60] Grimme, S.; Neese, F. J. Chem. Phys. 2007, 127, 154116.
[61] McKemmish, L. K. J. Chem. Phys. 2015, 142, 134104.
[62] R. A. Kendall, H. A. Früchtl, Theor. Chem. Acc. 1997, 97, 158.
[63] M. Feyereisen, G. Fitzgerald, A. Komornicki, Chem. Phys. Lett. 1993,

208, 359.
[64] G. R. Ahmadi, J. Almlöf, Chem. Phys. Lett. 1995, 246, 364.
[65] R. Bauernschmitt, M. Häser, O. Treutler, R. Ahlrichs, Chem. Phys. Lett.

1997, 264, 573.
[66] F. Weigend, M. Häser, J. Patzelt, R. Ahlrichs, Chem. Phys. Lett. 1998,

294, 143.
[67] F. Neese, G. Olbrich, Chem. Phys. Lett. 2002, 362, 170.
[68] X. Ren, P. Rinke, V. Blum, J. Wieferink, A. Tkatchenko, A. Sanfilippo,

K. Reuter, M. Scheffler, New J. Phys. 2012, 14, 053020.
[69] S. F. Manzer, E. Epifanovsky, M. Head-Gordon, J. Chem. Theory Comput.

2015, 11, 518.
[70] Manzer, S.; Horn, P. R.; Mardirossian, N.; Head-Gordon, M. J. Chem. Phys.

2015, 143, 024113.
[71] A. Ipatov, A. Fouqueau, C. P. del Valle, F. Cordova, M. E. Casida,

A. M. Köster, A. Vela, C. J. Jamorski, J. Mol. Struct. (Theochem) 2006,
762, 179.

[72] A. Sisto, D. R. Glowacki, T. J. Martinez, Acc. Chem. Res. 2014, 47, 2857.
[73] A. Sisto, C. Stross, M. W. van der Kamp, M. O’Connor, S. McIntosh-Smith,

G. T. Johnson, E. G. Hohenstein, F. R. Manby, D. R. Glowacki,
T. J. Martinez, Phys. Chem. Chem. Phys. 2017, 19, 14924.

[74] X. Li, R. M. Parrish, F. Liu, S. I. L. K. Schumacher, T. J. Martíez, J. Chem.
Theory Comput. 2017, 13, 3493.

[75] A. Szabo, N. S. Ostlund, Modern Quantum Chemistry, Macmillan,
New York, 1982.

[76] Y. Shi, U. N. Niranjan, A. Anandkumar, C. Cecka, IEEE 23rd International
Conference on High Performance Computing, Institute of Electrical
and Electronics Engineers: Hyderabad, India. 2016.

[77] Ohio Supercomputer Center. (it's what OSC uses to report its citation
statistics to the funding agencies):

[78] R. E. Stratmann, G. E. Scuseria, M. J. Frisch, J. Chem. Phys. 1998, 109,
8218.

[79] E. R. Davidson, J. Comput. Phys. 1975, 17, 87.
[80] T. A. Stich, N. R. Buan, T. C. Brunold, J. Am. Chem. Soc. 2004, 126, 9735.
[81] K. Kornobis, N. Kumar, B. M. Wong, P. Lodowski, M. Jaworska,

T. Andruniów, K. Ruud, P. M. Kozlowski, J. Phys. Chem. A 2011, 115, 1280.
[82] H. Solheim, K. Kornobis, K. Ruud, P. M. Kozlowski, J. Phys. Chem. B

2011, 115, 737.

Received: 4 March 2018
Revised: 12 May 2018
Accepted: 14 June 2018

FULL PAPER WWW.C-CHEM.ORG

Journal of Computational Chemistry 2018, 39, 2173–2182 WWW.CHEMISTRYVIEWS.COM2182

http://WWW.C-CHEM.ORG
http://WWW.CHEMISTRYVIEWS.COM

	 Double-Buffered, Heterogeneous CPU+GPU Integral Digestion Algorithm for Single-Excitation Calculations Involving a Large N...
	Introduction
	Background
	Computational Details
	Algorithm design
	Kernel design

	Results
	Synthetic benchmarks
	AIFDEM benchmarks
	TDDFT benchmarks

	Conclusions
	Acknowledgments

