Supporting Information for:

Quick-and-Easy Construction and Validation of Protein–Ligand Binding Models Using Fragment-Based Semi-Empirical Quantum Chemistry

 Paige E. Bowling,^{1,2} Dustin R. Broderick,² and John M. Herbert^{1,2*}
¹Biophysics Graduate Program, The Ohio State University, Columbus, Ohio 43210 USA
²Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210 USA

December 2, 2024

List of Figures

$\mathbf{S1}$	Correlations between HF-3c and ω B97X-V for (a) two-body and (b) three-body corrections,	
	for 1LI2. This plot is analogous to the one in Fig. 2.	S2
S2	Correlations between HF-3c and ω B97X-V for two-body corrections in 1O48. This plot is	
	analogous to the one in Fig. 2 except that only the two-body terms are plotted here.	S2
$\mathbf{S3}$	Correlations between HF-3c and ω B97X-V for two-body corrections in 1BOZ. This plot is	
	analogous to the one in Fig. 2 except that only the two-body terms are plotted here.	S3

List of Tables

S1	Linear fit parameters for the $\Delta E_{I,\text{ligand}}$ data	 •			•							. S	3
	Results for distance-based models of 181L.												
$\mathbf{S3}$	Results for distance-based models of 1LI2.											. S	4
$\mathbf{S4}$	Results for distance-based models of 1O48.											. S	4
$\mathbf{S5}$	Results for distance-based models of 1BOZ.				 •		•			 •		. S	4

^{*}herbert@chemistry.ohio-state.edu

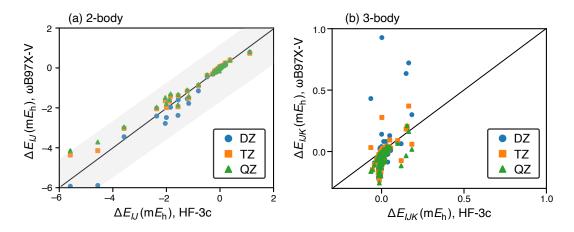


Figure S1: Correlations between HF-3c and ω B97X-V for (a) two-body and (b) three-body corrections, for 1LI2. This plot is analogous to the one in Fig. 2.

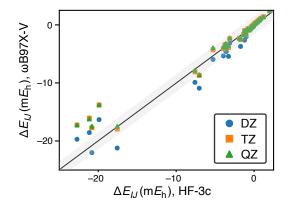


Figure S2: Correlations between HF-3c and ω B97X-V for two-body corrections in 1O48. This plot is analogous to the one in Fig. 2 except that only the two-body terms are plotted here.

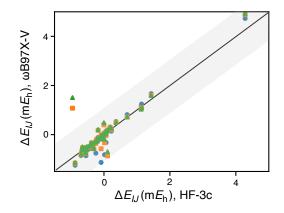


Figure S3: Correlations between HF-3c and ω B97X-V for two-body corrections in 1BOZ. This plot is analogous to the one in Fig. 2 except that only the two-body terms are plotted here.

Basis	18	1L	1I	1LI2		1048			1BOZ			
Set	slope	R^2	slope	R^2		slope	R^2		slope	R^2		
DZ	1.12	0.963	1.14	0.980		0.97	0.959		1.24	0.946		
TZ	0.85	0.928	0.86	0.983		0.82	0.969		0.84	0.877		
QZ	0.81	0.919	0.80	0.981		0.81	0.973		0.79	0.853		

Table S1: Linear fit parameters for the $\Delta E_{I,\text{ligand}}$ data.

Table S2:	Results	for	distance-based	models	of	181L.

d	No.	Error (k	cal/mol)
(Å)	Atoms	MBE(2)	MBE(3)
2.5	120	-10.4	-10.5
3.0	204	-5.7	-5.8
4.0	243	-4.2	-4.1
5.0	284	-2.2	-2.4
6.0	452	-1.3	-1.6
7.0	665	-0.4	-0.7
8.0	744	-0.4	-0.7
9.0	927	-0.3	-0.6
10.0	$1,\!050$	-0.3	-0.6

d	No.	Error (kcal/mol)					
(Å)	Atoms	MBE(2)	MBE(3)				
2.5	124	-7.3	-7.4				
3.0	205	-2.1	-2.1				
4.0	244	-2.3	-2.3				
5.0	302	-0.6	-0.7				
6.0	475	0.3	0.0				
7.0	619	0.6	0.4				
8.0	758	0.9	0.6				
9.0	903	0.9	0.6				
10.0	1,064	0.9	0.6				

Table S3: Results for distance-based models of 1LI2.

Table S4:	Results for distance-based models of 1O48.	

d	No.	Error (kcal/mol)				
(Å)	Atoms	MBE(2)	MBE(3)			
2.5	226	-29.2	-34.4			
3.0	381	2.5	-1.7			
4.0	418	3.3	-0.8			
5.0	502	1.8	-1.9			
6.0	619	2.4	-1.2			
7.0	797	2.3	-1.5			
8.0	928	3.5	-0.2			
9.0	$1,\!004$	3.6	-0.2			
10.0	$1,\!154$	3.8	0.0			

Table S5: <u>Results for distance-based models of</u> 1BOZ.

d	No.	Error ($(\rm kcal/mol)$
(Å)) Atoms	MBE(2)) $MBE(3)$
2.	5 305	-3.2	-3.5
3.0) 340	-0.5	-1.0
4.0	0 467	3.3	1.5
5.0) 474	4.0	2.4
6.0	658	3.9	2.5
7.0	947	5.8	4.3
8.0) 1,292	5.6	4.2
9.0	0 1,471	5.7	4.3
10.0) 1,726	5.5	4.1