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Adiabatic diffusion Monte Carlo approaches for studies of ground
and excited state properties of van der Waals complexes
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Department of Chemistry, The Ohio State University, Columbus, Ohio 43210

~Received 16 December 1998; accepted 15 January 1999!

Several adiabatic extensions to the diffusion Monte Carlo approach are presented. In the first, an
adiabatic form of the finite field method is developed for the systematic evaluation of expectation
values. In addition, an adiabatic flexible node method for calculating excited states is described. The
above methods are applied to NeSH and Ar2HCl where comparisons to results of variational
calculations can be made. ©1999 American Institute of Physics.@S0021-9606~99!02712-9#
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I. INTRODUCTION

The diffusion Monte Carlo~DMC! approach, initially
proposed by Anderson,1 has developed into a very powerfu
technique for studying low-lying vibrational states of weak
bound complexes.2 The advantage of this approach comes
its generality and its favorable scaling with the size of t
system. The basis of DMC comes from the identical str
tures of the diffusion equation and the time-depend
Schrödinger equation, when it is written in terms oft5 i t . In
DMC, an ensemble of several thousand replicas, called w
ers, are allowed to diffuse in the configuration space of
system of interest, with the masses providing the diffus
constants and the potential energy adding a source/
term.1,3 At long t, the distribution of configurations repre
sents the ground state wave function and the ground s
energyE0 is obtained by the requirement that the number
walkers is approximately constant. TypicallyE0 can be cal-
culated with a 1% uncertainty. While this is not as accur
as variational treatments, the DMC approach is general
can be easily applied from complexes consisting of two
more weakly bound species without significant modificatio
to the algorithm.

There are several potential drawbacks of the DMC
proach. First, because the calculatedE0 contains statistica
uncertainty, it is advantageous to remove the contribution
E0 from the high frequency intramolecular vibrations
studies of the spectroscopy and dynamics of the weak in
molecular interactions in van der Waals complexes. Bu
has proposed a rigid body formulation of DMC~RBDMC!
that treats only the translational and rotational motions of
molecular units in the complex.4 Even within the RBDMC
framework, the wave function is given as a distribution
thousands of replicas, making the direct calculation of pr
erties other than the energy, non trivial. In addition, beca
DMC is a relaxation method, it can only be directly appli
to states for which one already knows the location of
nodes, for example the lowest energy state of a partic
symmetry. In this communication, we will present our so
tions to these two problems, and will compare the results
5480021-9606/99/110(12)/5481/4/$15.00

Downloaded 05 Nov 2006 to 128.146.173.210. Redistribution subject to A
-
t

k-
e
n
nk

te
f

e
nd
r
s

-

to

r-
h

e

f
-
e

e
ar
-
f

RBDMC simulations for NeSH and Ar2HCl to those ob-
tained from calculations based on the variational principle5,6

II. ADIABATIC DIFFUSION MONTE CARLO „ADMC…

One of the severe disadvantages of DMC approac
comes from the fact that the distributions that are obtain
from a random walk represent the wave function, rather th
ucu2. As such, there is no way to directly calculate propert
of the system other than the energy by DMC. Several
proaches have been suggested for evaluating expectation
ues from DMC runs.3,7 One promising approach uses a fini
field scheme8 that is similar to the one used in electron
structure calculations to evaluate electric and magnetic p
erties of molecules.9

In the finite field approach, one takes advantage of
result of first order perturbation theory that if

Ĥ5Ĥ ~0!1lW, ~1!

then En(l)5En
(0)1l^cn

(0)uWuc0
(0)&, where En

(0) is the nth
energy level ofH (0) and ucn

(0)& is the corresponding eigen
state. As such, one adds to the Hamiltonian for the system
interest a correction term that is proportional to the opera
of which one wants to calculate the expectation value.
plotting En(l) as a function ofl, one should obtain a
straight line, the slope of which iŝW&. While this is poten-
tially a very powerful procedure, there are two practical
sues that can make it challenging to implement. First, a
energy that is calculated by DMC will have an uncertain
that is typically at least 1% of the energy that is being c
culated. As such, the range ofl that is being sampled mus
be sufficiently large to ensure that the variation inE(l) ex-
ceeds the size of the statistical fluctuations. In additionl
must be kept small enough to ensure that the calculations
performed in the linear regime ofE(l) vs l. If the range of
l is too large, first order perturbation theory no longer a
plies and systematic errors will result. This means that so
trial and error is necessary to determine the proper rangel
over which the calculations should be performed. In ad
1 © 1999 American Institute of Physics
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tion, each point in anE vs l plot will require several DMC
runs and at least four or five such points will be required
obtain a reliable slope.

In order to address the above issues, we have develo
an adiabatic diffusion Monte Carlo~ADMC! scheme for
evaluating expectation values that we find to be more e
cient than the previously formulated approaches and wh
can be applied more systematically. As in the finite fie
approach, we base our evaluation of^W& on perturbation
theory which says that for the Hamiltonian in Eq.~1!, we can
approximateucn& andEn by

ucn&5ucn
~0!&1lucn

~1!&1
l2

2
ucn

~2!&1¯ ~2!

and

En5En
~0!1lEn

~1!1
l2

2
En

~2!1¯ . ~3!

As before, the first order correction to the energy provid
^cn

(0)uWucn
(0)&.

In a typical DMC simulation,E0 is obtained by taking a
time average ofE(t). In ADMC, our only modification is
that we propagateĤ in Eq. ~1! wherel is a linear function of
t. We choosedl/dt to be sufficiently small to ensure tha
over a single time step the change in the lowest eigenvalu
Ĥ(l) is much smaller than the statistical fluctuations of t
ADMC simulation. In this way,lŴ in Eq. ~1! is introduced
adiabatically and the resultingE(t) will fluctuate around the
curve defined by Eq.~3! rather than a single energy level.
we choose the range ofl so that the calculatedE(t) can be
fit to a low order polynomial inl, the coefficient of the linear
term in the expansion can be taken to be^cn

(0)uWucn
(0)&.

Another difficulty with using DMC techniques come
from the fact that energies and other properties of exc
states cannot be obtained readily. One effective approach
calculating excited state energies involves the fixed node
proximation, first proposed by Anderson.10 In this approach,
the wave function is forced to go to zero at specific config
rations of the system. This is achieved by removing a
walkers that cross a predefined nodal surface. While this
proach is very powerful, it has a serious drawback in tha
requires prior knowledge of the location of the nodal surfa
Several authors have suggested that one can obtain an
proximate nodal surface by defining its location in terms o
single parameter,h, that is a function of the internal coord
nates of the system.7,11 As long as the form of the approxi
mate nodal surface is close to the position of the true no
this procedure will provide a good approximation to the e
ergy of the excited state of interest.

In the fixed node approach the wave function is cal
lated on one side of the nodal surface, while the excited s
energy, calculated by this method, should be independen
which part of the wave function is used. Therefore, one
determine the optimal location of the nodal surface by r
ning a series of DMC simulations on either side of the no
until the differences between these energies are smaller
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the uncertainty of the approach. A major drawback of t
approach is that locating the position of the node can
tedious.

One way around this problem is to apply an adiaba
scheme similar to that proposed above for obtaining exp
tation values. In this approach, two DMC simulations a
run, one for the part of the wave function that is on eith
side of the nodal surface. Once the two simulations are
lowed to equilibrate for an initial position of the nodal su
face, the position of the node,h, is varied linearly with time.
At the end of the propagation, the energies obtained from
two simulations are plotted as functions ofh on the same
graph. The value ofh where the two curves cross corre
sponds to the optimal position of the nodal surface and
energy gives the energy of that particular excited state.
find that when the range ofh is relatively small, theE(h)
are approximated well by straight lines, permitting syste
atic determination of the location of the nodal surface.

III. RESULT AND DISCUSSION

The two approaches, described above, are tested by
ning ADMC simulations on NeSH and Ar2HCl van der
Waals complexes. For the NeSH system, the simulations
performed on the potential energy surface that was rece
developed by some of us.5 Following Cooper and Hutson,6

the Ar2HCl potential is approximated by a sum of th
HFD-C of Ar2 potential of Aziz and Chen12 and the H6~3!
ArHCl potential of Hutson.13 The ADMC simulations are
performed using 7000 walkers for NeSH and 10 000 walk
for Ar2HCl, where all of the walkers are given equ
weights. In these simulations, we employ a rigid body v
sion of DMC that is based on the algorithm proposed
Buch.4 The time steps of the ground state and excited s
simulations are 100 and 20 a.u., respectively. The repo
expectation values are the averages of the results of
simulations, with the exception of^cosu& for NeSH where
seven simulations are used. Five simulations are also u
for each calculation of the excited state energies, when
node can be determined by symmetry and three simulat
are used for the flexible node calculations. We have not e
ployed the recrossing corrections in our calculations of
excited state energies, but, based on results of excited

FIG. 1. Raw data used to calculate theB rotational constant for NeSH.
IP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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simulations withDt52 to 50 a.u., we expect that this co
rection would raise the calculated excited state energies
approximately 1 cm21.

To illustrate how we use the ADMC approach to calc
late expectation values, we have plotted, in Fig. 1, the
results for the calculation of theB rotational constant for
NeSH. In this simulation,l52200 att50. After the en-
ergy is stabilized,l is increased by 0.05 for each of the ne
8000 time steps. The choice of the range ofl is determined
by two factors. First, we want to ensure that the change iE
over the chosen range ofl is larger than statistical fluctua
tions. In addition, we want to keep the range ofl small
enough that the energy is a linear function ofl. In the case of
the results plotted in Fig. 1, the ADMC results fall in th
linear regime. The accuracy of the linear fit can be chec
by using a higher order polynomial in the fit. In this case t
coefficients of higher order terms in the expansion
smaller than that of linear term at least by factor of 104.

In Table I, we present a variety of expectation values
NeSH and Ar2HCl. Specifically we calculate expectatio
values ofR, the Ne–SH distance; cosu, whereu is the Ne–
H–S angle; andB5\2/2mR2. For Ar2HCl, we calculate the
A, B, andC rotational constants using the expressions giv
by Cooper and Hutson. Comparison with the results of va
tional calculations5,6 shows that in all cases the error in th
ADMC results is smaller than 0.75% while the uncertainty
approximately 1%. The largest error is found for the^cosu&.
This is the only one of the reported quantities for which t
range over whichE(l) is linear is too small and a highe
order expansion ofE is needed to converge the expectati
value.

An important aspect of these results comes in the r
tive ease with which they can be obtained. In contrast to
finite field scheme of Sandleret al.,8~b! where at least 25
simulations are required for each expectation value, eac
the reported results is based on five simulations. In addit
by making l a function of t in the simulation, we have
eliminated the possibly tedious search for the appropr
range ofl. We have also extended the acceptable rangel
by removing the constraint thatE(l) be approximated by a
linear fit. Finally, based on Eq.~3!, the constant term in ou
fits of E(l) is E0 . Therefore, we can use theE0 calculated
from all of our runs on NeSH and Ar2HCl to obtain the

TABLE I. Comparison of expectation values from ADMC with the vari
tional result for NeSH and Ar2HCl.

System Property ADMCa Exactb % error

NeSH E0
c @ /cm21# 241.11(0.08) 241.112 0.005

^R& @/Å# 3.928~0.015! 3.907 0.5
^cosu& 0.649~0.027! 0.6534 0.7
B @/MHz# 2653~17! 2659.9 0.2

Ar2HCl E0
d @ /cm21# 2323.17(0.07) 2323.324 0.005

A @/MHz# 1759.1~10.7! 1757.19 0.1
B @/MHz# 1672.9~9.9! 1671.10 0.1
C @/MHz# 851.4~8.9! 849.53 0.2

aValues in parentheses provide one standard deviation.
bResults reported in Ref. 5 for NeSH and Ref. 6 for Ar2HCl.
cCalculated from 17 ADMC simulations.
dCalculated from 15 ADMC simulations.
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ground state energy for these systems. These results are
reported in Table I. For comparison,E0 for NeSH and
Ar2HCl, obtained from five regular DMC simulations ar
241.05(0.07) and2323.27(0.20) cm21, respectively.

Our evaluation of energies of excited states of van
Waals complexes follows a similar philosophy to that us
for evaluating expectation values. When the position of
nodal surface can be defined by symmetry, for example
fundamental excitations in modes that are not totally sy
metric, we use a fixed node approximation based on
node. For the totally symmetric modes we use ADMC
determine the location of the node and corresponding ene
of these excited states. In Fig. 2, we plot raw results fo
simulation of the fundamental in the breathing mode
Ar2HCl, and the linear fits to these results. The gray a
black data represent simulations of the wave function on
ther side of a node whereR11R25h. Each simulation con-
sists of 6000 time steps andh is increased by 2.131025 Å at
each time step. This data has been fit to the two white lin
The point at which the two lines cross provides the appro
mate location of the node and the corresponding energy
with the calculation of the expectation values, because
are allowingh to vary linearly with time, we can use a crud
simulation over a large range ofh to locate the approximate
location of the node. Once we have located the node, we
perform a second simulation over a much smaller region oh
whereE(h) is expected to be approximately linear, and u
linear fits of the raw data to calculate the position of the no
and the corresponding energy.

FIG. 2. Raw data used to calculate the energy of the fundamental in
breathing mode in Ar2HCl.

TABLE II. Comparison of excited vibrational state energies of Ar2HCl
calculated using a fixed node ADMC approximation with those reported
Ref. 6. The locations of the nodes have been reported as footnotes.

Nodal surfacea DMCb Ref. 6 % error

Q557.502° 2299.09(0.12) 2298.35 0.2
R15R2 2297.78(0.34) 2296.82 0.3
uR11R2u58.000 Å 2289.02(0.20) 2287.10 0.7
u15u2 2285.23(0.20) 2283.74 0.5
Molecular plane 2278.45(0.16) 2276.64 0.7

aThe internal coordinates used to describe the Ar2HCl complex are the two
Ar–HCl distances,Rj ; the corresponding anglesu j , whereu50 corre-
sponds to the Ar–HCl geometry; and the Ar1–HCl–Ar2 angle,Q.

bCalculated witht520 a.u.; values in parentheses provide one standard
viation.
IP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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The resulting excited state energies for Ar2HCl are re-
ported in Table II. In general, the energies are within 1%
the values reported by Cooper and Hutson. Unlike the exp
tation values, where the statistical uncertainty is larger t
the error, here the statistical uncertainty is much smaller t
the error. The reason for this can be understood in term
what is being calculated. We have approximated the low
energy state with a node at a particular value ofh. On the
other hand, the nodal surface obtained in the exact calc
tions is much more complicated, and it is our simplifyin
approximation to the nodal surface that is leading to
1 – 2 cm21 errors in the predicted energies. In spite of th
the agreement between the ADMC results and those obta
from exact treatments is remarkably good.

IV. SUMMARY AND CONCLUSIONS

We have presented a systematic approach for u
DMC to calculate ground and excited state properties of m
lecular clusters. The advantage of these methods comes
the fact that because a parameter is varied witht through the
simulation, we have simplified the search for the range ol
for calculations of expectation values and for the position
a nodal surface for fixed node calculations. Once the ap
priate range ofl or h has been determined, the use
ADMC will minimize the number of simulations required t
obtain the desired level of accuracy from the calculati
While DMC approaches are clearly not as accurate as
proaches that are based on the variational principle, t
scale favorably with system size, making studies of fai
large complexes tractable. It is our belief that the ADM
approaches outlined above will provide an important too
future studies that employ DMC.
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