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Adiabatic diffusion Monte Carlo approaches for studies of ground
and excited state properties of van der Waals complexes
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Several adiabatic extensions to the diffusion Monte Carlo approach are presented. In the first, an
adiabatic form of the finite field method is developed for the systematic evaluation of expectation
values. In addition, an adiabatic flexible node method for calculating excited states is described. The
above methods are applied to NeSH andHCI where comparisons to results of variational
calculations can be made. @999 American Institute of Physid$§0021-96069)02712-9

I. INTRODUCTION RBDMC simulations for NeSH and AiICl to those ob-

tained from calculations based on the variational princifle.
The diffusion Monte CarloDMC) approach, initially

proposed by Anderschhas developed into a very powerful
technique for studying low-lying vibrational states of weakly Il. ADIABATIC DIFFUSION MONTE CARLO (ADMC)

bound complexe$The advantage of this approach comesin  One of the severe disadvantages of DMC approaches
its generality and its favorable scaling with the size of thecomes from the fact that the distributions that are obtained
system. The basis of DMC comes from the identical strucfrom a random walk represent the wave function, rather than
tures of the diffusion equation and the time-dependenty|2. As such, there is no way to directly calculate properties
Schralinger equation, when it is written in terms ofit. I of the system other than the energy by DMC. Several ap-
DMC, an ensemble of several thousand replicas, called walkproaches have been suggested for evaluating expectation val-
ers, are allowed to diffuse in the configuration space of thaies from DMC runs:” One promising approach uses a finite
system of interest, with the masses providing the diffusiorfield schem® that is similar to the one used in electronic
constants and the potential energy adding a source/singtructure calculations to evaluate electric and magnetic prop-
term2® At long 7, the distribution of configurations repre- erties of molecule&.
sents the ground state wave function and the ground state In the finite field approach, one takes advantage of the
energyE, is obtained by the requirement that the number ofresult of first order perturbation theory that if
walkers is approximately constant. Typicaliy can be cal-
culated with a 1% uncertainty. While this is not as accurate  {=H© +)\Ww, 1)
as variational treatments, the DMC approach is general and
can be easily applied from complexes consisting of two ohen E,(\)=E?+ A (4O|W| ), whereE(? is the nth
more weakly bound species without significant modification%nergy level ofH(® and|¢§1°)> is the corresponding eigen-
to the algorithm. state. As such, one adds to the Hamiltonian for the system of
There are several potential drawbacks of the DMC apinterest a correction term that is proportional to the operator
proach. First, because the calculategl contains statistical of which one wants to calculate the expectation value. By
uncertainty, it is advantageous to remove the contributions tplotting E(\) as a function of\, one should obtain a
Eo from the high frequency intramolecular vibrations in straight line, the slope of which {dV). While this is poten-
studies of the spectroscopy and dynamics of the weak intetially a very powerful procedure, there are two practical is-
molecular interactions in van der Waals complexes. Buchsues that can make it challenging to implement. First, any
has proposed a rigid body formulation of DM®BDMC)  energy that is calculated by DMC will have an uncertainty
that treats only the translational and rotational motions of thehat is typically at least 1% of the energy that is being cal-
molecular units in the complékEven within the RBDMC  culated. As such, the range wfthat is being sampled must
framework, the wave function is given as a distribution ofbe sufficiently large to ensure that the variatiorEi(\) ex-
thousands of replicas, making the direct calculation of propeeeds the size of the statistical fluctuations. In addition,
erties other than the energy, non trivial. In addition, becausenust be kept small enough to ensure that the calculations are
DMC is a relaxation method, it can only be directly applied performed in the linear regime &(\) vs \. If the range of
to states for which one already knows the location of the\ is too large, first order perturbation theory no longer ap-
nodes, for example the lowest energy state of a particulgplies and systematic errors will result. This means that some
symmetry. In this communication, we will present our solu-trial and error is necessary to determine the proper range of
tions to these two problems, and will compare the results obver which the calculations should be performed. In addi-
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tion, each point in arE vs \ plot will require several DMC -10 ' ' T
runs and at least four or five such points will be required to
obtain a reliable slope.

In order to address the above issues, we have developed
an adiabatic diffusion Monte CarlGADMC) scheme for
evaluating expectation values that we find to be more effi-
cient than the previously formulated approaches and which
can be applied more systematically. As in the finite field
approach, we base our evaluation (3) on perturbation
theory which says that for the Hamiltonian in Ed), we can

E(A) lem™

approximatd ¢,) andE,, by 200 oo 2 0 200
A2 FIG. 1. Raw data used to calculate tBeaotational constant for NeSH.
[y =)+ M)+ o)+ v
and the uncertainty of the approach. A major drawback of this
approach is that locating the position of the node can be
A2 tedious.
E,=EQ+NEM+ ?Eﬁfhr---. (3) One way around this problem is to apply an adiabatic

scheme similar to that proposed above for obtaining expec-
tation values. In this approach, two DMC simulations are
Sun, one for the part of the wave function that is on either

(0) (0) - . -
(U [Wlgy”). _ _ _ _ _ side of the nodal surface. Once the two simulations are al-
In a typical DMC simulationE, is obtained by taking a |64 to equilibrate for an initial position of the nodal sur-

time average OEST)' In ADMC, our only modification is face, the position of the node, is varied linearly with time.
that we propagat®l in Eq. (1) where is a linear function of At the end of the propagation, the energies obtained from the
7. We choosed\/d7 to be sufficiently small to ensure that two simulations are plotted as functions gfon the same
over a single time step the change in the lowest eigenvalue @craph. The value ofy where the two curves cross corre-
H(\) is much smaller than the statistical fluctuations of thesponds to the optimal position of the nodal surface and the
ADMC simulation. In this wayAW in Eq. (1) is introduced ~ energy gives the energy of that particular excited state. We
adiabatically and the resultirig( ) will fluctuate around the find that when the range of is relatively small, theE(7)
curve defined by Eq(3) rather than a single energy level. If are approximated well by straight lines, permitting system-
we choose the range afso that the calculateB(7) can be  atic determination of the location of the nodal surface.
fit to a low order polynomial in\, the coefficient of the linear
term in the expansion can be taken to(gé®| W] 4(%).

Another dlfflCUlty with USing DMC teChniqueS comes IIl. RESULT AND DISCUSSION
from the fact that energies and other properties of excited
states cannot be obtained readily. One effective approach for The two approaches, described above, are tested by run-
calculating excited state energies involves the fixed node apting ADMC simulations on NeSH and AiCl van der
proximation, first proposed by Andersbhin this approach, Waals complexes. For the NeSH system, the simulations are
the wave function is forced to go to zero at specific configu-performed on the potential energy surface that was recently
rations of the system. This is achieved by removing anydeveloped by some of dsFollowing Cooper and Hutsdh,
walkers that cross a predefined nodal surface. While this aghe ArLHCI potential is approximated by a sum of the
proach is very powerful, it has a serious drawback in that itHFD-C of Ar, potential of Aziz and Ched and the H§3)
requires prior knowledge of the location of the nodal surfaceArHCI potential of Hutsort® The ADMC simulations are
Several authors have suggested that one can obtain an gperformed using 7000 walkers for NeSH and 10 000 walkers
proximate nodal surface by defining its location in terms of afor Ar,HCI, where all of the walkers are given equal
single parametery, that is a function of the internal coordi- weights. In these simulations, we employ a rigid body ver-
nates of the systeftt! As long as the form of the approxi- sion of DMC that is based on the algorithm proposed by
mate nodal surface is close to the position of the true nodeBuch? The time steps of the ground state and excited state
this procedure will provide a good approximation to the en-simulations are 100 and 20 a.u., respectively. The reported
ergy of the excited state of interest. expectation values are the averages of the results of five

In the fixed node approach the wave function is calcusimulations, with the exception ditosé) for NeSH where
lated on one side of the nodal surface, while the excited stateeven simulations are used. Five simulations are also used
energy, calculated by this method, should be independent dér each calculation of the excited state energies, when the
which part of the wave function is used. Therefore, one camode can be determined by symmetry and three simulations
determine the optimal location of the nodal surface by run-are used for the flexible node calculations. We have not em-
ning a series of DMC simulations on either side of the nodeployed the recrossing corrections in our calculations of the
until the differences between these energies are smaller thaxcited state energies, but, based on results of excited state

As before, the first order correction to the energy provide
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TABLE I. Comparison of expectation values from ADMC with the varia-
tional result for NeSH and AHCI.

-270 T T T T T

System Property ADME ExacP % error 280
-280 fi

NeSH Eo [/em™Y —41.11(0.08) —41.112 0.005 -

(R) [1A] 3.9280.015 3.907 0.5 £

(cos6) 0.6490.027 0.6534 0.7 = o

B [/MHz] 265317 2659.9 0.2 =
A HCI  Eyf [/em™Y —323.17(0.07) —323.324 0.005 -300 [

A [IMHZz] 1759.110.9 1757.19 0.1

B [/MHz] 1672.99.9) 1671.10 0.1

c [/MHZ] 851489) 849.53 0.2 _3107.94 7.1‘36 7.198 8[:}%] 8,;)2 8.;)4 8.06

n

&/alues in parentheses provide one standard deviation.
PResults reported in Ref. 5 for NeSH and Ref. 6 fopAC!. FIG. 2. Raw data used to calculate the energy of the fundamental in the
“Calculated from 17 ADMC simulations. breathing mode in AHCI.

dCalculated from 15 ADMC simulations.

ground state energy for these systems. These results are also
simulations withA7=2 to 50 a.u., we expect that this cor- reported in Table I. For comparisoi, for NeSH and
rection would raise the calculated excited state energies bxr,HCI, obtained from five regular DMC simulations are
approximately 1 crmt. —41.05(0.07) and-323.27(0.20) ci?, respectively.

To illustrate how we use the ADMC approach to calcu-  Our evaluation of energies of excited states of van der
late expectation values, we have plotted, in Fig. 1, the rawVaals complexes follows a similar philosophy to that used
results for the calculation of th8 rotational constant for for evaluating expectation values. When the position of the
NeSH. In this simulation\ = —200 at7=0. After the en- nodal surface can be defined by symmetry, for example for
ergy is stabilized) is increased by 0.05 for each of the next fundamental excitations in modes that are not totally sym-
8000 time steps. The choice of the range\df determined metric, we use a fixed node approximation based on that
by two factors. First, we want to ensure that the chandgé in node. For the totally symmetric modes we use ADMC to
over the chosen range afis larger than statistical fluctua- determine the location of the node and corresponding energy
tions. In addition, we want to keep the range Yofsmall  of these excited states. In Fig. 2, we plot raw results for a
enough that the energy is a linear functiorhofn the case of  simulation of the fundamental in the breathing mode of
the results plotted in Fig. 1, the ADMC results fall in the Ar,HCI, and the linear fits to these results. The gray and
linear regime. The accuracy of the linear fit can be checkedlack data represent simulations of the wave function on ei-
by using a higher order polynomial in the fit. In this case thether side of a node whe, +R,= 5. Each simulation con-
coefficients of higher order terms in the expansion aresists of 6000 time steps angiis increased by 2210 ° A at
smaller than that of linear term at least by factor of.10 each time step. This data has been fit to the two white lines.

In Table I, we present a variety of expectation values forThe point at which the two lines cross provides the approxi-
NeSH and A$HCI. Specifically we calculate expectation mate location of the node and the corresponding energy. As
values ofR, the Ne—SH distance; c#swhered is the Ne—  with the calculation of the expectation values, because we
H-S angle; an®=#2/2.R?. For Ar,HCI, we calculate the are allowingz to vary linearly with time, we can use a crude
A, B, andC rotational constants using the expressions giversimulation over a large range afto locate the approximate
by Cooper and Hutson. Comparison with the results of variatocation of the node. Once we have located the node, we can
tional calculation® shows that in all cases the error in the perform a second simulation over a much smaller region of
ADMC results is smaller than 0.75% while the uncertainty iswhereE( %) is expected to be approximately linear, and use
approximately 1%. The largest error is found for tlo@sé). linear fits of the raw data to calculate the position of the node
This is the only one of the reported quantities for which theand the corresponding energy.
range over whichE(\) is linear is too small and a higher
order expansion oE is needed to converge the expectationTagLg 1. comparison of excited vibrational state energies obHEI
value. calculated using a fixed node ADMC approximation with those reported in

An important aspect of these results comes in the relaRef. 6. The locations of the nodes have been reported as footnotes.
tive ease with which they can be obtained. In contrast to the

- . Nodal surfacg DMCP Ref. 6 % error
finite field scheme of Sandleet al.®® where at least 25
simulations are required for each expectation value, each of ®=57.502° —299.09(0.12)  —298.35 0.2
the reported results is based on five simulations. In addition, |RR1=+F;§ —6.000 A _gg;'gggggg; 2 o3

. . . . . 1 2] — . - . . - . .
by r_nakmg)\ a functllon OfT. in the simulation, we have_ 6, 0, —285.23(0.20)  —283.74 05
eliminated the possibly tedious search for the appropriate wolecular plane —278.45(0.16)  —276.64 0.7

range of\. We have also extended the acceptable range of
by removing the constraint th&(\) be approximated by a #The internal coordinates used to describe thgH® complex are the two

. - . . Ar—HCI distancesR; ; the corresponding angle® , where =0 corre-
linear fit. Finally, based on Eq3), the constant term in our sponds to the Ar—HC! geometry: and the, AHCI_Ar, angle.®.

fits of E(\) is Eq. Therefore, we can use thig, calcglated bCalculated withr=20 a.u.; values in parentheses provide one standard de-
from all of our runs on NeSH and AHCI to obtain the  viation.
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