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Structure and spectroscopy of Ne nSH „Ã 2S1
… complexes using adiabatic

diffusion Monte Carlo „ADMC…

Hee-Seung Lee, John M. Herbert,a) and Anne B. McCoy
Department of Chemistry, The Ohio State University, Columbus, Ohio 43210

~Received 6 July 1999; accepted 31 August 1999!

Adiabatic rigid body diffusion Monte Carlo techniques are used to investigate the structure
and spectroscopy of complexes of one to four neon atoms with SH (Ã 2S1). While these systems
contain multiple low-lying minima, the ground state wave functions are well described by a
neon cluster weakly interacting with SH. This structure persists in low-lying excited states, in the
case of complexes of two neon atoms with SH or SD. ©1999 American Institute of Physics.
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I. INTRODUCTION

A longstanding challenge in chemical physics is to dr
connections between spectroscopic information about p
atomic systems and the underlying forces between the at
of which they are composed. If the system of interest
strongly bound and the range of energies that is probed
perimentally corresponds to a regime over which the vib
tional dynamics is nearly harmonic, the solution to this pro
lem is relatively straightforward.1 In this case, the spectrum
can be fit to a model Hamiltonian in which the energy lev
are parameterized in terms of the number of quanta in e
of the normal modes and the angular momentum opera
The form of the Hamiltonian is based on perturbation the
and direct connections can be made between the terms i
perturbative expansion and terms in the normal mo
Hamiltonian.2 On the other hand, van der Waals complex
and other weakly bound systems that display large amplit
motions can rarely be described by a simple zero-order
ture. In these cases, other approaches need to be tak
order to draw these connections.

In the present study, we focus on the spectroscopy
structure of complexes of one to four neon atoms with
(Ã 2S1). The NeSH system represents the most wea
bound of a family of complexes in which OH or SH in i
first excited bound electronic state interacts with a rare
atom~Kr, Ar or Ne! which has been the subject of numero
experimental and theoretical investigations.3 Unlike the other
members of this family of complexes, NeSH can be mode
as an atom interacting with a hindered rotor, and the ze
point energy~ZPE! is only 4.5 cm21 smaller than the barrie
between the Ne–HS and Ne–SH minima on the potent4

In larger NenSH complexes, the ZPE is expected to exce
the energies of multiple low-lying minima.

Because the NenSH complexes do not present them
selves with obvious zero-order models for the vibratio
motions, the assignment of the associated spectra is

a!Present address: Department of Chemistry, University of Wiscons
Madison, 1101 University Ave., Madison, WI 53706.
9200021-9606/99/111(20)/9203/10/$15.00
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trivial. By contrast, because these systems are held toge
by weak intermolecular interactions, model potential ene
surfaces for these complexes can be approximated by
sum of the one- and two-dimensional potentials that desc
each of the Ne•Ne5 and Ne•SH4 interactions.

While, in principle, this provides us with sufficient in
formation to calculate the rotation-vibration spectra of the
complexes, in practice, the fact that these are weakly bo
systems with many low frequency vibrational modes ma
basis set calculations on the species with more than two n
atoms prohibitively expensive computationally. To addre
this issue, we use a variant of the rigid body diffusion Mon
Carlo ~RBDMC!6,7 that was developed by Buch and is bas
on the DMC algorithm first proposed by Anderson.8,9 This
approach allows us to calculate the ground state energy
tive to the potential minimum of the NenSH complexes with
an error of 1% to 2%. While this is not as accurate as va
tional approaches, the numerical uncertainty in the result
RBDMC calculations is the same size as the uncertainty
the Ne•SH potential surface4 and the errors introduced b
neglecting higher order interactions in the pair-wise addit
approximation to the NenSH potential.10 From the RBDMC
simulations we can also obtain projections of the wave fu
tion onto various coordinates in order to access the struc
and the rigidity of these complexes. We find that as we mo
from NeSH to complexes with two, three or four neon atom
the system becomes more rigid. In fact, like the comple
of argon with HF or HCl,11,12,7we find that the structures ar
best described by a small cluster of neon atoms interac
with SH rather than individual neon atoms interacting se
rately. This is surprising given the relatively low barrier fo
isomerization among the various low-lying minima of the
systems.

The relative simplicity of implementing RBDMC come
at a severe price, that it is a relaxation method and there
can only be applied directly to obtain the energy of the lo
est lying state of a particular symmetry. Recently, we ha
proposed an extension to the DMC approach in which
slowly varying perturbation to the Hamiltonian i
introduced.13 We refer to this procedure as adiabatic DM

–

3 © 1999 American Institute of Physics
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~ADMC! because the distribution of walkers remains
equilibrium throughout the simulation. This procedure
lows us to use an approximate description of the functio
form of the nodal surface to calculate energies of low-lyi
excited states with statistical uncertainties that are com
rable to those obtained for the ground state energies. In
dition, ADMC can be used to calculate rotational consta
and other properties that do not fall out directly from t
RBDMC simulations. We have applied this approach to c
culations of the energies of fundamental vibrational mo
of Ne2SH/D and from this can investigate more closely t
nature of the couplings in this system. We find that t
model of a neon dimer interacting with SH persists in t
excited states, including the one in which one quantum
excitation is put into the neon-neon stretching coordinate

The remainder of this paper is organized as follows.
the next section, we review DMC and describe our imp
mentation of RBDMC and ADMC. In Sec. III, we prese
the results for the complexes of SH with one to four ne
atoms as well as for various excitations of the Ne2SH/D
complex. Finally, we conclude in Sec. IV.

II. THEORETICAL APPROACHES

In this study, we apply diffusion Monte Carlo~DMC!,
first described by Anderson,8,9 to a study of the structure an
spectroscopy of NenSH complexes. This approach is bas
on the parallel between the diffusion equation and the tim
dependent Schro¨dinger equation, written in terms of a
imaginary time variable,t5 i t (\51). In this approach, the
solution to the time-dependent Schro¨dinger equation is ob-
tained by propagating an ensemble of walkers, each of wh
represents a possible configuration of the system. The w
ers are allowed to diffuse through the 3N dimensional con-
figuration space of the system by a random walk proced
Here, the displacement of each atom during each time s
Dt, is taken from a Gaussian random distribution, the wi
of which is given by

s i5ADt

2mi
, ~1!

wheremi is the mass of the atom. A probability for increa
ing the population at a given configuration is given
eVref2V(r ). At long imaginary times, the solution to the time
dependent Schro¨dinger equation approaches

lim
t→`

C5w0e2E0t, ~2!

wherew0 is the lowest energy eigenstate of the system
E0 is the corresponding energy. This is an exponentially
caying function. ChoosingVref so that a constant populatio
of walkers is maintained is equivalent to multiplying bo
sides of Eq.~2! by eVreft, makingVref an approximation to
the ground state energy of the system of interest.14

In the present simulations, we follow Anderson8 and
Suhm and Watts14 and take
Downloaded 05 Nov 2006 to 128.146.173.210. Redistribution subject to A
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Vref5V̄2a
Nt2N0

N0
, ~3!

where V̄ provides the average potential energy of the e
semble,Nt the number of walkers in the ensemble at timet
anda is chosen so that the fluctuations from the Monte Ca
simulation are slightly larger than the fluctuations due to
second term in Eq.~3!.

A. Rigid-body DMC

One difficulty in applying the above approach to stud
of weakly bound systems comes from the fact that typica
the intramolecular vibrational frequencies are two orders
magnitude larger than the intermolecular frequencies. In
case of theÃ2S1 state of NeSH, the zero-point energy of S
is approximately 1000 cm21, whereas the zero-point energ
in intermolecular modes is 63 cm21. As such, a 1% uncer
tainty in the zero-point energy of this system is 15% of t
zero-point energy in the intermolecular degrees of freedo
which is the quantity of interest. As a result, it would b
preferable to propagate the dynamics either on an adiab
potential where the intramolecular problem has already b
solved or for a fixed intramolecular geometry. Several me
ods have beep proposed for achieving this,6,15 and one that is
particularly successful is the rigid body diffusion Mon
Carlo approach proposed by Buch.

In this approach, instead of propagating all of the atom
we propagate the centers of mass of all of the molecule
the system and the rotational motion of all of the molecu
units. While others have employed similar approaches,6,7 we
will describe briefly our implementation of this algorithm
The diffusion of the centers of mass is implemented us
standard techniques, described above. The only differenc
that the total mass of the diffusing unit is used to evaluats
in Eq. ~1! rather than the mass of an individual atom.

The rotational diffusion is implemented by propagati
the rotation matrices that define the orientation of the prin
pal axes of each molecule relative to the space-fixed re
ence frame. In this procedure, at each time step we take
infinitesimal rotation of the space-fixed coordinate syst
about each of the three principal axes of each of the m
ecules that are to remain rigid in the simulation, where
magnitude of the rotational diffusion about each of the pr
cipal axes,d i ,a , is taken from a Gaussian random distrib
tion with

s i ,a5A Dt

2I i ,a
, ~4!

and I i ,a is the moment of inertia of thei th molecule with
respect to thea-axis. By careful choice ofDt, we ensure
that the angular displacements fall in the regime of infinite
mal rotations.16 As such, the matrix that defines the orient
tion of each of the molecular units is propagated as follow

Ri~t1Dt!5Ri,xRi,yRi,zRi~t!, ~5!

where
IP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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Ri ,xRi ,yRi ,z5S 1 d i ,z 2d i ,y

2d i ,z 1 d i ,x

d i ,y 2d i ,x 1
D . ~6!

The rotation matrices are then used to evaluate the orie
tion of the molecular units relative to the Cartesian coor
nate axis system used in the propagation of the center
mass.

Finally, we should note that in the case of linear m
ecules, the propagation will be invariant to rotation about
molecular axis and one can simplify the rotational propa
tion by including only rotations about two axes that are p
pendicular to the molecular axis. In our implementation,
have not taken advantage of this simplification.

B. Adiabatic DMC „ADMC…

One of the largest advantages of DMC, that it provide
general algorithm to evaluate the ground state energy of
system of interest, leads to difficulties if one wants to eva
ate accurate excited state energies or properties of the sy
other than energy, for example,^W& whereW is some gen-
eral operator. We have recently developed a general a
batic extension to DMC, ADMC, which addresses both
these issues. The approach is described elsewhere,13 and we
will provide a brief summary of the key points.

In the case of evaluating expectation values of gen
operators,W, we use ADMC to propagate the Hamiltonia

H85H (0)1lW, ~7!

whereH (0) is the vibrational Hamiltonian for the system o
interest andl5l(t50)1Dl3t. In these simulations, the
system is equilibrated for a particular value ofl(t50).
Once this has been achieved,l is allowed to increase linearly
with t so that at each time stepl is increased by a sma
increment,Dl. In this way, the Hamiltonian is change
adiabatically throughout the simulation. If we plotVref as a
function oft it will no longer be constant. Instead, perturb
tion theory tells us that the lowest energy eigenvalue of
Hamiltonian in Eq.~7! can be approximated by

E085E0
(0)1l^c0

(0)uWuc0
(0)&1O~l2!. ~8!

Therefore, if we fitVref(l) to a low order polynomial inl,
the constant contribution is the lowest eigenvalue of the
perturbed Hamiltonian and the linear term provides^W&. For
each of the reported energies, we run five simulations w
different initial conditions, and obtainE0 by taking an inter-
cept of the fit to Eq.~8!. The reported energies and unce
tainties represent the average of these simulations. Typic
the Monte Carlo simulations lead to uncertainties in the
sults that are approximately 1% of the calculated energy.
example of the raw results of such a simulation is plotted
Fig. 1~a!.

We employ a similar approach to determine the locat
of nodes in the simulations for excited vibrational sta
when their functional form is known. Here we use a fix
node approximation in which any replica that crosses
node will be removed from the simulation.9 In this way, we
calculate the energy based on the wave function on one
Downloaded 05 Nov 2006 to 128.146.173.210. Redistribution subject to A
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of the node. This is relatively easily implemented when t
location of the node is known by symmetry. When this is n
the case, the situation becomes more complicated. A gen
procedure for calculating excited states, proposed by Co
and Watts, imposes the condition that the calculated w
functions are orthogonal.17 Alternatively, Buch and co-
workers have demonstrated that excited state energies ca
calculated using DMC when one requires that the energ
calculated on the two sides of the node, are equal, and
wave function be continuous with a continuous fir
derivative.18 Even within these constraints, it is often diffi
cult to determine the precise location of the nodal surface
statistical fluctuations inVref(t) can be large. In some case
including the NenSH complexes considered in the prese
study, one can generate a set of approximate nodal surf
that are simple functions of the internal coordinates of
system of interest, where the approximate location of
nodal surface depends on the values of a small numbe
parameters$h%. In the present case, we use a single para
eter and define the nodal surface byF(x)5h. Here,x rep-
resents the coordinates that are being propagated in
RBDMC simulation andF(x) is the function of these coor
dinates that defines the shape of the nodal surface. In
ADMC procedure, we perform two simulations in whichh is
varied linearly witht, one on each side of the node. Th
resulting plots of energy as functions ofh are fit to low order
polynomials. The value ofh at which the two curves cros
provides the position of the nodal surface and the co
sponding energy. An example of the raw results of suc
simulation is plotted in Fig. 1~b!.

FIG. 1. The raw results from ADMC runs that are used to calculate~a! the
B rotational constant for Ne2SH and~b! the energy of the wagging vibration
of Ne2SH.
IP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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TABLE I. Energies and rotational constants for low-lying minima of the NenSH potentials.

System
Emin

a

(/cm21)
A

~/MHz!
B

~/MHz!
C

~/MHz!
Description, point group

symmetry

NeSH 2103.7 2815.3 Linear Ne–HS,C`v

287.9 3926.7 Linear HS–Ne,C`v

Ne2SH 2197.7 5556.9 2299.8 1626.6 T-shaped, Ne2–HS, C2v

2191.9 1020.7 Linear Ne–Hs–Ne,C`v

2167.7 5518.5 2927.8 1912.9 T-shaped HS–Ne2, C2v

Ne3SH 2322.7 2734.9 1501.7 1501.7 Tetrahedral Ne3–HS,b C3v

2286.3 5556.3 797.2 697.2 T-shaped Ne2–HS–Ne, C2v

2281.6 2716.5 1757.5 1757.5 Tetrahedral HS–Ne3,
b C2v

Ne4SH 2430.9 1499.2 1434.6 1003.3 Equatorial SH,C2v
c

2417.9 2722.8 898.4 898.4 Axial SH, C3v
c

aEnergies of the minima relative to the dissociated cluster.
bIn these complexes, the neon atoms from an equilateral triangle.
cIn these complexes, the four neon atoms and the SH from a trigonal bipyramidal structure with the SH in
an equatorial or an axial position.
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C. Recrossing correction

In order to improve the accuracy of the excited st
energies, we have incorporated a recrossing correction
this correction, the possibility that a given replica crosses
nodal surface and back in a single time step is evaluate
order to remove these replicas from the ensemble. Follow
Anderson,9 this probability is given by

Pex5expS 22x~t!x~t1dt!

s2 D , ~9!

and is compared to a random number between zero and
If the probability is larger than the random number, the re
lica is removed from the ensemble.

In the case of multidimensional RBDMC simulation, th
correction becomes nontrivial to implement mainly beca
we have to deal with the rotation as well as the translatio
motion. Sandler, Buch and Sadlej have shown that a m
dimensional generalization of Eq.~9! can be achieved by
introducing scaled coordinates,qi5xi /s i .18 This scaling of
the coordinates allows us to treat translation and rotatio
motion equivalently. In these coordinates, the probability
recrossing becomes,

Pex5exp~22s~t!s~t1dt!!, ~10!

wheres represents the distance of a walker from the no
surface in the scaled coordinates, where

s5
iF~q!i

i¹F~q!i . ~11!

HereF(q)5h defines the nodal surface in the scaled co
dinates, and the derivatives in the denominator are take
the scaled coordinates. CalculatingiF(q)i is straightforward
and the gradient in scaled coordinate is obtained using
chain rule,

]F~q!

]qi
5s i

]F~x!

]xi
. ~12!

When the nodal surface depends only on distances
tween the molecular units, evaluation of the derivative in E
~12! is straightforward. However, in the case of bending
 2006 to 128.146.173.210. Redistribution subject to A
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bration of SH, evaluation of the recrossing correction b
comes more complicated because rotational motion of
must be included. In these cases, the derivatives in Eq.~12!
are evaluated using a second order finite difference sche

D. Potential energy surface

In this study, the potential energy surfaces for the NenSH
complexes are approximated by the sum of the Ne•Ne
~HFD-B! potential of Aziz5 and the Ne•SH potential devel-
oped recently by us.4 The HFD-B neon dimer potential rep
resents a fit to a range of experimental data, including
virial coefficients, viscosity, conductivity and scatterin
cross sections. The potential energy surface for NeSH
obtained by fitting ten band origins and rotational consta
of NeSH and NeSD, obtained from the high-resolution las
induced fluorescence spectra.4 The functional form used for
the potential is the same as that used by Hutson to fit
ArHCl potential.19 The band orgins and rotational constan
for NeSH and NeSD, calculated using this potential,
within 1% of the experimental values. The potential has
minimum at2103.7 cm21, in the Ne–H–Sgeometry, and at
287.9 cm21, in the Ne–S–Hgeometry. These minima ar
separated by a 67.1 cm21 barrier, measured relative to th
global minimum, which is peaked atu582.5°.

The global minimum and several local minima of ea
of the NenSH (n<4) systems have been located by t
down-hill simplex minimization scheme,20 with an initial ge-
ometry chosen to be close to one of the expected mini
The energies and corresponding rotational constants of
eral low-lying minima of the NenSH complexes withn<4
are listed in Table I. In all cases, the energy differences
tween these local minima are smaller than the zero-p
energy~ZPE! of NeSH.

The minimum energy structures for each size comp
are depicted in Fig. 2. For the NeSH complex, the ene
difference between the Ne–HS and Ne–SH minima is o
15.8 cm21, whereas the zero-point energy of this system
62.6 cm21, only 4.5 cm21 below the barrier that separate
the two minima. Variational calculations on this comple
have shown that in spite of the large zero-point energy,
IP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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9207J. Chem. Phys., Vol. 111, No. 20, 22 November 1999 NenSH (Ã 2S1) complexes
ground state wave function remains localized in the glo
Ne–HS minimum.4 The global minima for the complexes o
SH with two, three or four neon atoms, all correspond to
SH being aligned along the axis that connects the center
mass of SH and the neon complex,Rcom, with the hydrogen
end of SH pointing toward the neon atoms. In the case of
Ne2SH and Ne3SH complexes, shown in Figs. 2~b! and 2~c!,
the neon atoms form a symmetric complex. When there
two neon atoms, they lie on a line that is perpendicular
Rcom. When three neon atoms are present, they form
equilateral triangle in the plane perpendicular toRcom. An
alternative interpretation of the Ne3SH complex minimum
energy geometry is to consider the system as a distorted
rahedron with the SH forming one vertex and the three n
atoms, the remaining three. In the case of Ne4SH, the mini-
mum energy geometries can be interpreted as a substi
distorted trigonal bipyramidal structure. The lowest ene
configuration corresponds to neon atoms at both of the a
positions and two of the three equatorial positions. The str
ture in which SH is in an axial position is 13 cm21 higher in
energy. These structures are plotted in Figs. 2~d! and 2~e!. As
was the case for NeSH, we expect all of the potential mini
given in Table I to be lower in energy than the zero-po
energy of the complex. The relative importance of the va
ous minima will be determined by the rigid body ADM
simulations.

Before we discuss these results, we need to define
eral coordinates that will facilitate descriptions of the moti
of NenSH in the complexes. In addition toRcom, we useRi

to represent the distance of a Ne atom from the cente
mass of SH andr j to represent a Ne–Ne distance. The m
important angle is the angle betweenRi and the SH axis,u i ,
whereu50 corresponds to linear Nei –HS geometry. In the
case of Ne2SH, the angle betweenr andRcom is useful and is
represented byx. Another important angle in Ne2SH and
Ne3SH is Q, the angle between two of theRi . In planar
geometry,Q5u11u2 , but in general,Q,u11u2 .

III. RESULT AND DISCUSSION

A. Ground state properties of Ne nSH „n 51 – 4…

Ground state energies and rotational constants
NenSH (n51 – 4) clusters have been calculated us
ADMC, as detailed in the previous section. In the calcu
tions of the rotational constants, a 100 a.u. time step is u
After the system is equilibrated for the initial value ofl, the
simulations are run for 8000 time steps. For all of the sim
lations, the linear term in Eq.~8! is obtained by a linear fit of
the raw data which is similar to the data plotted in Fig. 1~a!.
The reported values for the rotational constants represen
average of five simulations, and the uncertainties, the s
dard deviation of these runs.

A question that has been of recent interest involves
appropriate embedding of the body-fixed axis system
definition of the vibrationally averaged rotational consta
for floppy systems.18,21 Optimally, one would like to use the
definition for which the rotational and vibrational motion
are most nearly separable in order to provide a close appr
Downloaded 05 Nov 2006 to 128.146.173.210. Redistribution subject to A
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mation to the experimentally derived rotational constants
practice, the calculated vibrationally averaged rotational c
stants for the ground state are often insensitive to the ch
of embedding, at least within the accuracy that can
achieved by ADMC simulations.

In the present simulations, we employ two approache
calculate the rotational constants. In the first, we defin
body-fixed principal axis system in which thez-axis is cho-
sen to lie alongRcom. They-axis is chosen so that the neo
cluster is symmetric with respect to reflection in th
yz-plane. For the Ne2SH complex, this axis corresponds tor ,
for Ne3SH the axis connects one neon atom to the cente
mass of the other two, while in Ne4SH the axis connects th
two axial neon atoms in Fig. 2~d!. The moment of inertia
tensor is calculated using the above choice of embedding
the rotational constants are obtained from the diagonal
ments of the inverse of the moment of inertia tensor. In
case of Ne2SH, analytical expressions for the rotational co
stants can be obtained,22 while for larger complexes, the ro
tational constants are calculated numerically. In the sec
approach, we diagonalize moment of inertia tensor for e
walker configuration at a given time and use the reciproca
the eigenvalues to determine the rotational constants at
configuration.18 In Table II, we report the rotational con
stants, calculated using an embedded axis system
Ne2SH/D and Ne3SH and using the instantaneous inert
axes to determine the rotational constants for Ne2SH and
Ne4SH. Comparing the rotational constants for Ne2SH, cal-
culated by the two methods, we find that the differences
less than 50 MHz and that, in all cases, the error bars for
rotational constants calculated by the two approaches o
lap.

The apparent insensitivity of the calculated rotation
constants to the choice of embedding of the principal a
system will break down if the ground state has significa
probability amplitude in regions of the potential of whe
two or more of the rotational constants are approximat

FIG. 2. Minimum energy geometries of the NenSH complexes forn5(a) 1,
~b! 2, ~c! 3 and~d! 4. A second low-lying minimum of the Ne4SH complex
is shown in panel~e!.
IP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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TABLE II. Energies, rotational constants and zero-point energies for NenSH/D complexes.

Systema
D0

b

(/cm21) %c
^A&b

~/MHz!
^B&b

~/MHz!
^C&b

~/MHz!

NeSHd 241.11~0.08! 60.0 2653~17!
Ne2SHd 2102.36~0.05! 48.2 4853~48! 2211~19! 1502~10!
Ne2SHe 2102.38~0.11! 48.2 4896~21! 2164~25! 1493~23!
Ne2SDd 2112.70~0.04! 43.0 4989~40! 2146~10! 1477~10!
Ne3SHd 2182.27~0.12! 43.5 2369~20! 1384~14! 1375~8!
Ne4SHe 2257.20~0.20! 40.3 1427~21! 1212~21! 963~21!

a7000 walkers were used in the simulation of NeSH while 10 000 walkers were used in the simulations
larger complexes. In the calculations of the rotational constants, the simulations were run for 8000 tim
over whichl in Eq. ~7! was varied from2200 to 200, except in simulations of the^A& for Ne2SH, wherel
ranged from250 to 50,^A& for Ne3SH, wherel ranged from2120 to 120.

bThe number in parentheses is one standard deviation.
cThe percent difference betweenD0 andDe given in Table I.
dThe rotational constants are calculated using analytical expressions, described in the text.
eThe rotational constants are calculated by diagonalizing the moment of inertia tensor for each walker c
ration.
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equal. In these cases, the inertial axes become ill-defi
and calculations of the rotational constants using the ins
taneous inertial axes will lead to unphysical results. This
the case for the Ne3SH complex where the minimum energ
configuration hasC3v symmetry. In this case, using insta
taneous moments of inertia to calculate the rotational c
stants results in different values for theB and C rotational
constants.

The calculated rotational constants are reported in Ta
II as well as the ground state energies of each of the clus
As the form of Eq.~8! indicates, the ground state energy
the unperturbed system,E0

(0) , is given by the constant term
in the fits of the ADMC simulations of the rotational con
stants. Therefore, the energies, reported in Table II, repre
the average of 15 intercepts obtained from the rotational c
stant simulations and the uncertainties represent the stan
deviation of these runs.

Comparing the rotational constants calculated for va
ous minimum energy configurations, given in Table I, to t
zero-point averaged rotational constants in Table II, allo
us to begin to investigate the structures that dominate
ground state wave function. In the case of the complexe
two or three neon atoms, the relative sizes of the zero-p
averaged constants are consistent with structures in whic
of the neon atoms are at one end of the complex. In b
cases, the zero-point averaged values for the constant
closer in value to those calculated for the minimum ene
structure in which the hydrogen end of SH is pointing towa
the neon complex. In the case of Ne4SH, the zero-point av-
eraged rotational constants are consistent with the w
function being localized in the global minimum of the pote
tial in which the complex has, on average, aC2v point group
symmetry.

In addition to energies and rotational constants, Tabl
contains the percent difference betweenD0 andDe for these
complexes. These numbers can be better thought of as
percent of the dissociation energy of the system that g
into zero-point energy. It is apparent from these results
the ZPE represents a considerable fraction of well depth,De .
In most cases it is about 45% of well depth, with an exc
tion of the NeSH system, where it is 60%. In fact, compa
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son of theD0 in Table II to the corresponding energies
local minima on the surface shows that the ground stat
located at an energy that is higher than at least two min
on the potentials for NenSH for n<4. A similar, but less
dramatic, decrease in the fraction of the well-depth tha
taken up by the ZPE has been reported previously for o
rare gas XH complexes, for example ArnHF.7

The normalized distributions of walkers along vario
geometric parameters that describe the ground states o
NenSH complexes are plotted in Fig. 3. In the present c
text, these distributions can be considered as o
dimensional projections of the total wave function onto t
particular coordinate of interest.

Focusing on Figs. 3~a! and 3~b!, we find that the struc-
ture of the Ne•SH moiety persists as the complex increas
in size. This is most clearly illustrated in the distributions
walkers that correspond to the distances between each o

FIG. 3. The total wave functions for the ground state of NeSH~dot-dashed
line!, Ne2SH ~dotted line!, Ne3SH ~dashed line! and Ne4SH ~solid line! are
projected onto~a! R, ~b! u, ~c! r , ~d! Q, ~e! RCOM . Here,R represents the
Ne–SH distances,r the Ne–Ne distances andRCOM the distance between
the centers of mass of SH and the neon cluster. The angles betweenR
and the SH bond are given byu, andQ represents the Ne–SH–Ne angles.
panel~f!, we plot the projections of the wave function for Ne2SH onto the
angle betweenr andRcom with a dotted line, and the angle between the tw
r vectors in Ne3SH is plotted with a dashed line.
IP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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neon atoms in the complex and the center of mass of
plotted in panel~a!. Here, the distributions are essentia
identical for all four cluster sizes. Differences are more a
parent in the distributions of the Ne–S–Hangles,u, plotted
in Fig. 3~b!, but even here the distributions are qualitative
insensitive to the number of neon atoms present. The m
striking change in these distributions can be seen at la
angles where the projection of the wave function decrea
with increasing complex size. This indicates that the
bending vibration becomes more localized in the Ne–H–S
geometry as the number of neon atoms increases, a r
that is consistent with the complexes mainly sampling
minimum energy structures shown in Fig. 2.

Similar trends are observed for the Ne–Ne distributio
plotted in Figs. 3~c! and 3~d!. Here the distributions do no
change dramatically between the Ne2SH and the Ne3SH
complexes. The peaks in these distributions also corresp
well with the larger peak in the Ne4SH distribution. In addi-
tion, the peaks at 3.25 Å in Fig. 3~c! exactly overlap the
ground state wave function for neon dimer. As with t
Ne•SH moieties, the structure of the neon dimer persists
larger complexes. This result is somewhat surprising beca
it implies that the neon dimer retains its identity in the co
plex with the SH radical even though the Ne•SH interaction
is much stronger than the Ne•Ne interaction. This behavio
is further supported by the similarity of the distributions
the Ne–SH–Ne angle,Q, plotted in Fig. 3~d!, to those plot-
ted in Fig. 3~c! for r . These results clearly indicate that th
neon atoms are not moving independently. Instead they
have like a unit within the complex.

In Ne4SH, the picture is a bit more complicated, as
indicated by the second peak in Figs. 3~c! and 3~d!. The
areas under these peaks are one-fifth those of the larger p
in the plots and this 1:5 ratio is consistent with the Ne4SH
structure plotted in Fig. 2~d!. Here there are six Ne–Ne dis
tances, five of which are the same, while the distance
tween the two neon atoms in axial positions should b
factor of) times longer than the others. This is appro
mately the ratio of the positions of the centers of the t
peaks in Figs. 3~c! and 3~d!. If the SH had substituted at a
axial position in the Ne4SH complex, as is depicted by Fig
2~e!, we would have expected all of the Ne Ne distances
be the same, and if the ground state of the Ne4SH complex
sampled both minima, the ratio between the two peaks
Figs. 3~c! and 3~d! would be smaller than 1:5. As with th
smaller complexes, these results are consistent with the
interacting with a neon complex.

The structures of the Ne2SH and Ne3SH complexes are
further supported by the distributions plotted in Fig. 3~f!. For
Ne3SH, we have plotted the distribution of walkers for th
Ne–Ne–Ne angle with a dashed line. Since this distribut
has the maximum at approximately 60° and the distribut
in the Ne–Ne distances in Fig. 3~c! contains only one peak
we conclude that the ground state wave function sam
only the minimum depicted in Fig. 2~c!. In the case of the
Ne2SH complex, the distribution inx, the inclination angle
of the Ne2 unit, is plotted with a dotted line. Here the distr
bution is peaked around 90°, indicating a T-shaped struc
Downloaded 05 Nov 2006 to 128.146.173.210. Redistribution subject to A
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of this complex, consistent with the minimum energy co
figuration, plotted in Fig. 2~b!.

Finally, in Fig. 3~e!, we plot the distributions of walkers
for the distance between the centers of mass of SH and
neon complexRcom. In the case of NeSH, this distribution i
identical to that plotted in panel~a!. As the complex size
increases, the distribution shifts to shorter distances
broadens. This is a reflection of the neon complex becom
more opened as the second and third neon atoms are ad
and in the case of Ne3SH the SH molecule can penetrate in
the neon complex. When the fourth neon atom is added,
complex becomes more compact and while the peak in
distribution in Rcom continues to shift to smaller distance
the distribution narrows.

B. Excited vibrational states of Ne 2SH/D

In addition to investigating the size dependence of
NenSH complexes, we have made a more thorough inve
gation of the structure and spectroscopy of the Ne2SH/D
complex. The ground state energies and rotational const
for both of theses complexes are reported in Table II. T
ground state motion of the Ne2SD complex is similar to that
of Ne2SH. The largest differences between the wave fu
tions for the ground state of Ne2SD and those plotted in Fig
3 for Ne2SH are found in the distribution of Ne–S–Hangles,
plotted in Fig. 3~b!. In the case of the Ne2SD system, this
distribution is much narrower. This is a reflection of th
smaller rotational constant for SD, compared to SH, and
smaller zero-point energy of this isotopomer.

While a lot can be learned by studying the ground st
properties of these species, it is interesting to see what h
pens when one quantum of excitation is put into each of
five intermolecular vibrational modes of these systems.

The transition frequencies for the five fundamental
brational states of Ne2SH/D are evaluated using the algo
rithm described in Sec. II B. The time step,Dt, used in these
simulations is 20 a.u. In the discussion that follows, we w
refer to the vibrational states by the names given by Coo
and Hutson22 in their study of Ar2HCl. The names, the cor
responding symmetry in theC2v point group, and a descrip
tion of the nodal surface are given in the first two columns
Table III. The two totally symmetric modes correspond
the Ne–Ne wagging stretch and the symmetric breathing
the Ne2SH/D complex. Thex-bend state corresponds to ro
tation of the neon dimer in the plane of the complex wh
the in-plane and out-of-plane bends correspond to rotatio
motion of SH.

In the calculations of the energies of those states
haveB1 or B2 symmetry, the position of the nodal surface
determined by the symmetry, assuming that the nodal sur
can be defined as a function of a single parameter. For
ample, in the case of thex-bend mode, we put the node a
x5p/2. In the case of totally symmetric states, the locat
of the nodal surfaces and corresponding energies are d
mined by ADMC. In these simulations,h is varied over
10 000 time steps withDh50.000 024 a.u. for the calcula
tion of the energy of the breathing stretch fundamental a
Dh50.0004° for the calculation of the fundamental in th
IP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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wagging stretch. In order to check the accuracy of our
proaches, we calculate the fundamental frequencies
Ar2HCl, where accurate energies have been reported22. The
simulated excited state energies for Ar2HCl are in excellent
agreement with the reported values. When the recros
correction is included, the maximum error in the ADM
results is 0.2 cm21 for absolute energies and 0.7 cm21 for the
transition frequencies. This corresponds to a 2% maxim
error which is comparable to the accuracy we are able
achieve in our fits of the Ne•SH empirical potential to ex-
perimental transition frequencies and rotational constant

The energies of the five fundamental vibrational lev
for Ne2SH/D are reported in Table III. The pattern of ener
levels for Ne2SH is similar to that of Ar2HCl22 even though
the strength of the van der Waals interactions is quite dif
ent. In Ne2SH/D, the three lowest frequency modes cor

TABLE III. Energies of the fundamental excitations of Ne2SH/D.

Statea

~symmetry!b F(x)c

ENe2SH
d

(/cm21)

ENe2SD
d

(/cm21)

Ground state (A1) 2102.36~0.05! 2112.70~0.04!
Wagging stretch (A1) Q550.02° 17.27~0.05! 18.55~0.01!
x-bend (B2) x5p/2 19.30~0.08! 20.10~0.14!
Breathing stretch (A1) R11R257.94 Å 25.29~0.12! 26.47~0.05!
In-plane bend (B2) u12u250 33.41~0.06! 27.89~0.16!
Out-of-plane bend (B1) Molecular plane 40.83~0.05! 37.55~0.01!

aIn naming the states we follow the notation of Cooper and Hutson~Ref.
22!.

bThe symmetries are given assuming aC2v equilibrium energy configura-
tion.

cThe coordinates used to define the nodes are the two Ne–SH distanceRi ,
the angles betweenRi and the SH bond,u i and the Ne–SH–Ne angleQ.

dThe absolute energy of the ground state,E0 , and relative energies of ex
cited states,En2E0 , are reported. The numbers in parentheses provide
standard deviation in the absolute energy of each state.
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spond to motions of the neon atoms while the two high
frequency modes correspond to rotation of SH/D. This se
ration of frequencies is a result of the large rotational co
stant for SH or SD compared to the reduced mass assoc
with the neon vibrations. In replacing SH with SD, the fr
quencies of the three lowest frequency modes each incr
by approximately 1 cm21. A similar increase in frequency
upon deuteration has been seen in all of the M•XH van der
Waals complexes with M5Ne, Ar, Kr and X5O, S.23 This
inverse isotope effect is a reflection of the fact that beca
the D0 increases upon deuteration, the anharmonicity in
van der Waals stretch decreases slightly. In contrast, the
quency of the two high frequency modes both decrease u
deuteration. This decrease is simply a result of the sma
rotational constant of SD compared to SH, as these two
citations correlate to the doubly degenerateP-bend,
(0,11,0), state of Ne•SH/D.

In addition to the five fundamental excitations
Ne2SH/D that have transition energies below 50 cm21, we
expect that energy of the state of Ne2SH that correlates to the
(0,10,0) S-bend state of Ne•SH/D will also have an energy
in this range. In Ar2HCl, this state lies between the breathin
stretch and the in-plane bend fundamentals and corresp
to the first overtone in the wagging stretch. Because this s
is an overtone, the calculation of its energy is more com
cated than that of a fundamental, since the positions of
nodes must be considered simultaneously, but we would
pect that this state would lie at around 30 cm21 for both
isotopomers.

The distributions of walkers for the five states of Ne2SH
that correspond to fundamental excitations are plotted in F
4. In all cases, we use thick solid lines to plot the distrib
tions for the walkers withF(x),h and thick dashed lines
for the distributions whenF(x).h. By analogy to the one-

e

e
tal
s.
rison,
FIG. 4. The projections of the wave functions for the five fundamental excitations of Ne2SH. In panels~a!–~e!, the wave function that corresponds to th
fundamental in the wagging stretch vibration is projected onto~a! R, ~b! r , ~c! u, ~d! x and~e! Q, defined in Fig. 3. In the other four columns, the fundamen
in the breathing stretch@~f!–~j!#, thex-bend@~k!–~o!#, the in-plane bend@~p!–~t!# and the out-of-plane bend@~u!–~y!# are projected onto these five coordinate
In this plot, thick solid and dashed lines represent the parts of the wave function on the left and right side of the node, respectively. For compathe
corresponding distributions for ground state Ne2SH are plotted with thin solid lines.
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9211J. Chem. Phys., Vol. 111, No. 20, 22 November 1999 NenSH (Ã 2S1) complexes
dimensional situation, we will refer to the two distribution
as the left and right side of the node, respectively. In ad
tion, we have plotted the ground state distribution with a t
solid line, for comparison. In the case of the three states
are not totally symmetric, a single set of simulations is p
formed. Since excitation in these modes removes the equ
lence of the two neon atoms, the solid and dashed lines
reflect the distributions for each of the neon atoms. The w
ging and breathing stretch states haveA1 symmetry and the
nodal surfaces are determined by ADMC.

To begin, consider the distributions for the waggi
stretch fundamental, plotted in Figs. 4~a!–4~e!. In this case,
the node is inQ and the two distributions inQ, plotted in
Fig. 4~e!, go to zero at the same point. In addition, these t
distributions sample a larger range of angles than the gro
state distribution. Further, since the Ne–Ne distance, plo
in Fig. 4~b!, is closely related toQ, the distributions for the
left and right side of the nodal surface overlap over a re
tively small range ofr . The effects of excitation inQ on the
distributions in the other coordinates, particularlyx plotted
in Fig. 4~d!, are more interesting. In the case of the distrib
tion in x, we find that whenQ,50.02° it is very broad, bu
for larger values ofQ the distribution is only slightly nar-
rower than the ground state distribution. The observed bro
ening of the distribution at smallx is purely a reflection of
the correlations amongQ, r andx. WhenQ decreases, eithe
r must decrease or the Ne–Ne vector must rotate out of
T-shaped geometry. Since the Ne–Ne potential is stron
repulsive at smallr , the system relaxes by rotating out of th
T-shaped geometry. This in turn leads to a shift of t
Ne–SH distribution, plotted in Fig. 4~a!, to slightly larger
distances than in the ground state.

The situation for the breathing stretch, plotted in pan
~f!–~j!, is similar to that for the wagging stretch fundament
Here the coordinate of interest is the Ne–SH distance, p
ted in Fig. 4~f!. As before, this mode is coupled toQ, while
the coupling tor and u is relatively small. The coupling
betweenR and x is similar to that seen in the waggin
stretch. Here the source of the coupling is due to a decre
in the anisotropy inx as the neon atoms move farther aw
from SH.

The distributions for thex-bend state are plotted in pan
els ~k!–~o!. Since the distributions for the two neon atom
are not, in general, equivalent, we have plotted the distri
tions for only one of the neon atoms. One interesting feat
of the distributions inr , Q andu comes in the similarity to
the corresponding ground state distribution. In particular,
distribution in r , plotted in Fig. 4~l!, is indistinguishable
from the ground state distribution. This indicates that N2

retains its identity as a dimer when one quantum of exc
tion is put into thex-bend coordinate, and the motion that
sampled by this vibrational state corresponds to rotation
Ne2 rather than the Ne–SH antisymmetric stretch.

The distributions of walkers for the in-plane and out-o
plane SH bending states are plotted in panels~p!–~t! and
~u!–~y! of Fig. 4, respectively. As was the case for t
x-bend, the two neon atoms are not equivalent in the in-pl
bend and the distributions for only one of the neon atoms
plotted here. In the case of the out-of-plane bend, the
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neon atoms are equivalent. In addition, plots of the ne
atom distributions on the left and the right side of the no
are identical and therefore only one distribution is plotted
each coordinate. Because these states correspond to ro
of SH, only the distributions inu, plotted in panels~r! and
~w!, are dramatically different from the correspondin
ground state distribution. In the case of in-plane bending,
u distributions for the left and right side of the node are n
equivalent. This is a reflection of the fact that as SH rota
in the plane of the complex, one of the Ne–S–Hangles will
increase while the other decreases. The fact that the distr
tion, plotted with a dashed line, is peaked near 90° indica
that this motion is quite large amplitude. By contrast, t
distribution inr , plotted in Fig. 4~q!, is essentially unaffected
by this excitation, indicating that the neon dimer structu
persists in this excited state. Similar behavior is found
out-of-plane bending motion of SH. As is shown in Fi
4~w!, the distribution inu is extremely delocalized, and i
similar to the distribution that is obtained from theP-bend
state of NeSH. In summary, the motions associated w
bending motion of SH are inherently floppy and extreme
large amplitude vibrational motion, but are not, in gener
strongly coupled to the other intermolecular vibrational d
grees of freedom.

The distributions of walkers for the Ne2SD fundamental
vibration states are essentially the same as those for Ne2SH,
described above, with the exception of the distributions inu.
This is because the motion in this coordinate correlates w
SH or SD rotation in the complex and the decrease in
rotational constant upon deuteration from 8.289
4.306 cm21 leads to a significant decrease in the amplitu
of the motion in this coordinate in Ne2SD compared to tha
observed in Ne2SH. For the three lowest frequency modes
Ne2SD, the distributions inu vanish whenu>120° rather
than remaining finite for all angles, as was the case
Ne2SH. In the case of the in-plane and out-of-plane bend
states that correlate to theP-bend in NeSD, more dramati
changes are observed in theu distributions. In the case of the
in-plane bending state, the distributions are shifted to
smaller angles and have very little amplitude whenu
.120°. In the case of the out-of-plane bending mode,
distribution in u is also shifted to smaller angles. Althoug
these changes are dramatic, like the Ne2SH complex, the
distributions inu for the Ne2SD system correlate quite we
with the corresponding distributions in NeSD.

IV. SUMMARY AND CONCLUSIONS

In this paper we have presented our approach for imp
menting adiabatic RBDMC and applied it to a systema
study of the structure and spectroscopy of small comple
of neon atoms with SH (Ã2S1). Although the Ne–Ne inter-
action is significantly weaker than the Ne•SH interaction, we
find that the configurations that are sampled by complexe
up to four neon atoms with SH are localized near the glo
minimum. In other words, these complexes can be though
as arising from a SH molecule interacting with a small co
plex of neon atoms. This is analogous to the findings
IP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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Nesbitt and co-workers24 in their studies of the spectroscop
of ArnHF complexes. In addition, in the case of complex
of Ne2SH/D, we find that the model of a neon dimer inte
acting with SH or SD persists for all five fundamental vibr
tions. Since the Nen– SH complexes appear to become mo
rigid with increasingn, we expect that this behavior is gen
eral and would apply to the larger complexes as well.

In addition to the specific results for the complexes
neon with SH and SD, we have demonstrated a general t
nique for determining the structural and spectroscopic pr
erties of weakly bound systems for which the potential
ergy surface can be obtained from a pair-wise sum of
and three body interactions, but where the size of the sys
and the fact that it can undergo large amplitude vibratio
makes converged variational calculations of the rotati
vibration energy levels intractable for all but the smalle
complexes. We believe that this will provide a general, s
tematic approach for analyzing the spectra of larger co
plexes of rare gas atoms with small molecules.
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