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We provide an extensive formulation of the contracted Stginger equation and other reduced
eigenvalue equations. Nonextensiumconnectedterms in these equations cancel exactly, leading

to completely connected one- and two-electron equations that together are equivalent to the
Schralinger equation. We discuss how these equations can be solved for the one- and two-electron
cumulants. These cumulants yield a two-electron reduced density matrix that is necessarily size
consistent, even for an approximate solution. A diagram technique, introduced to aid the formal
manipulations, clarifies the connection between density matrix reconstruction and solution of the
CSE. © 2002 American Institute of Physic§DOI: 10.1063/1.1508369

I. INTRODUCTION equivalent to the “irreducible” CSEs introduced, in a
second-quantized setting, by Kutzelnigg and Mukhetje&®

Recently several groubs have pursued a “wave In that work, extensive equations were derived in a manner

function-less” approach to electronic structure via direct sothat does not require the original form of the CSE at all. In

lution of the contracted Schdinger equatiofCSBE. Within  contrast, we proceed starting from the originfirst-

the set oN-representabfereduced density matrices, the CSE guantized?) form of the CSE in terms of position-space ker-

(Refs. 7-9 is an equivalent formulation of the electronic nels and Hilbert-space operators, explicitly demonstrating

Schralinger equation that couples the two-, three-, and fourthe cancellation of all unconnected terms. This derivation

electron reduced density matricé, 3-, and 4-RDMsbut  does not require the introduction of a basis set, and demon-

does not involve the electronic wave function explicitly. Di- strates that the final, extensive equations are equivalent to the

rect calculation of the 2-RDM is accomplished using ap-CSE and the Schdinger equation. Moreover, our derivation

proximate reconstruction functional$*°* by means of clarifies several important differences between the uncon-

which the 3- and 4-RDMs are expressed in terms of thenected and the connected equations: The latterinapdicit

2-RDM, leading to a closed equation for the latter. rather than explicit equations for the cumulants, and further-
Much of the recent literature on RDMs has focused onmore the electronic energy, which is an explicit parameter in

their cumulant decompositiod$-? Each RDM can be de- the original CSE, is absent from its extensive analogues.

composed into a connected and an unconnected part, with After introducing the CSE in Sec. Il as a special case of

the latter obtained in a known way from the lower-ordera more general class eéduced eigenvalue equatigfisin

RDMs. The connected paftumulanj is an extensivéaddi-  Sec. Ill we develop a diagram technique to facilitate formal

tively separable quantity, in contrast to the RDMs manipulation of the terms in this equation. The diagrams also

themselves® 81t is thus desirable that any direct method for clarify the relationship between the CSE and older, Green’s

calculating RDMs be couched in terms of the cumulantsfunction-based methods in many-body theory. This is dis-

without any unconnectethonextensivieterms. cussed in Sec. IV, where we present the extensive form of the
As formulated originally;®>’~°the CSE does not satisfy CSE and discuss solution of the connected equations. Section

this criterion, although formally the unconnected termsy constitutes a summary.

present in this equation must cancel exactly, since the CSE is

equivalent to the ordinary Schimger equation. As with

other_ eIect_ronlc structure methods, however, an qpproxmat& CUMULANTS AND REDUCED EIGENVALUE

solution will not be extensive so long as the basic workmgEQUATIONS

equations contain unconnected terms. Consequently the

CSE, in practical applications, need not yield a size- Employing the abbreviated notatidhl’’ =x, for the

consistent 2-RDM. The primary purpose of this paper is tocomposite space/spin coordinate of electron 1, let

reformulate the CSE by explicitly removing all unconnected N N

terms. This leads to a pair of coupled equations for the one- 4 _ 2 e

and two-electron cumulants. Any solution of these connected WL, - 'N)_le f(J)+jZk 9(i.k), @)

equations—even an approximate one—is necessarily size . .
cgnsistent PP Y 5155 a symmetric operator on thé-electron Hilbert space.

The connected equations that we obtain are formallyNote that this impliesg(j,k)=g(k,j). We wish to consider
RDM analogues of theN-particle eigenvalue equation

dElectronic mail: harriman@chem.wisc.edu W& =w, (2
0021-9606/2002/117(16)/7464/8/$19.00 7464 © 2002 American Institute of Physics

Downloaded 05 Nov 2006 to 128.146.173.210. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



J. Chem. Phys., Vol. 117, No. 16, 22 October 2002 Contracted Schrodinger equation 7465

Let the eigenvaluev be fixed and assume thdt is nonde-  N-representable solutiol’,,,. Absent N-representability
generate and unit normalized. The restriction to nondegeneconstraints this equation has many spurious solufiofs.
ate eigenstates will be relaxed in Sec. IV, but at present it if)Itimately CSE2) is the equation that we wish to solve,
appropriate to consider only pure-state density matrices. Theince it is the most tractable reduced equation that is still
N-particle density matrix for the pure stafe is equivalent to the original Hilbert space equation. We will see
that there is reason to consider G$Eas well, however, for

. ! ry — * ! !
In(L - N N =W, - NN )('3) it plays an instrumental role in removing unconnected terms
. _ from CSH2).
In terms of the reduction operat@partial trace Using a generating functional for the RDMs, one obtains
a cumulant decomposition of these quantities in the usual
i1, q:J dxpﬂ---dqu’ dxp g - dXg way; for details, we refer the reader to Refs. 14, 15, and 17.
Let A, denote thepth-order RDM cumulantthe connected
X 8(Xpp 1~ Xpi 1) 6(Xg—Xg), (4  or additively separable part ¢f,). Thert*
where p<g=<N, RDMs for the stateV are obtained from I —A 9a)
the relationship 1—=n
q'(N—q)! Ty=A,+ A AA (9b)
":(p!(N—p)! fp+1..ala- ® S
This definition establishes the normalization I3=A5+ Af3+ 3A,NA, (90
N
ter:( o) (6) and
From the N-particle Hilbert-space eigenvalue equation )= A, + AL+ 6A,AA AN +4A3AA +3A,A\A,.
follows a hierarchy of p-particle reduced eigenvalue (9d)

equations, %2 for 1<p<N-2. The pth equation of this
hierarchy, which couple¥,, I'p,1, andI'y. 5, can be ex-  ere “A” denotes an antisymmetrizedGrassmann

pressed as product?®27
QP ... p:1', ... p)=0, 7
in which Q(P) is the p-particle kernel (ApNAQ(L, - pHaL’, . (p+))
QP ..ol p) =(P+a)! 2PpiqPpig(Ap(L, ... P17, ...p")
P P XAg(p+1,... p+ai(p+1), ... (p+a))), (10
=[Zlf<j>+<1—5p,l>§k g(Lk)—w}rp ) )
= . where P;’Hq and P, indicate sums over signed permuta-
~ P tions of the primed and unprimed coordinates, respectively.
+(p+Dtrpqj | f(p+1)+ 21 g(j,p+1)|Tpia “Wedge” exponents appearing in Eq€c) and (9d) are de-
= fined by
p+2 .
o tprip+2dd(pH1p+2)Tpy o). ®) AM=A, NN NN\, (11)
Here,I' .= (1,...n;1',....n"). n factors

Following Kutzelnigg and Mukherje®2° we refer to
Eq. (7) as thepth-order CSE, CSHY{). [Sometimes CSHK)
is called the p,p+2)-CSE] Strictly speaking, this terminol-

Equations(9a)—(9d) define the RDM cumulants and do not
depend upon the validity of perturbative expansions of the
RDMs. Insofar as perturbation theory is applicable, however,

ogy implies thatW is an electronic Hamiltonian, which is A, is precisely the sum of connected diagrams in the expan-
clearly the most important case. We emphasize, howevegiq, of . .

that the formal structure of the equations is the same for any  aq mentioned in the Introduction. the cumuladts are

W of the form in Eq.(1). In particular, the reduced equations extensive (additively separablg) quantities, whereas the
for W=8&? may be useful—for spin eigenstates—as bound-RDMs themselves are not. With the normalization chosen in
ary conditions to enforce while solving CSB(%* Eqg. (6), extensive quantities have a trace proportionaNto
The remarkable fact, first demonstrated by Nakafsisji, while nonextensive quantities scale as some higher power of
that for eaclp=2, CSEQ) is equivalentin a necessary and N; for example, tr" ;~NP. Note that size consistency, along
sufficient senseto the original Hilbert-space eigenvalue with nonzero correlation energy per particle in the thermo-
equation, provided that the former is solved subject to approdynamic limit, are consequences of extensivity, not the defi-
priate boundary conditionsNi-representability conditiofs  nition of this term?®
for the RDMs. Stated differently, CSR), which represents As an example of the extensivity of the cumulants, let us
a closed equation for thep(-2)-RDM, has a unique evaluate trA, and trA;. To this end, define
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conceived with this purpose in mind, and are basically

unrelated to the CSE diagrams introduced by Mukherjee and
YV, e Kutzelnigg®?°
1
(@) (b) © @ lIl. DIAGRAMMATIC REPRESENTATIONS

FIG. 1. Basic diagram elements used in this pager:I"1(1;1’), (b) ) . A
8(12), © F(1), and(d) Ay(L, ... pi1’, ..., p'), for p=2. The basic diagram elements represeniing=A,, f, g,
andA, are illustrated in Fig. 1. A representation of each term
in Q® is constructed by connecting operator diagrams to
cumulant diagrams at the coordinates on which the operators
m=N"1tr(Ak), (120 act. For instance

20
o3

% = §(23) A1012) Ag(231,3) (16)

2 3

WhereA‘i indicates an ordinary matrix product, as opposed to
the wedge produczifk. Since the eigenvalues af;=1"; lie
between 0 and 1, it follows that17,= n;=---=0. This is
true even for extended systems, whisresco. From Eq.(9b)

one obtains

is obtained by attaching §(2,3) diagram at the lower end-
tr A,=N(7,—1)/2, (13 points of aA,(2,3;1',3") diagram, since according to Fig.
1(d) these endpoints stand for coordinates 2 and 3. A factor
of A,(1;2) is present, as indicated, but becag$g,3) op-
erates on neithex; nor x5, this part of the diagram is not
connected to the rest.
Atrace over coordinatg, is indicated by connecting the
line labeledn to the line labeledh’. The labelsh andn’ are
tr 83=N(1=37,% 2733, a4 then deleted, since these coordinates become a single dummy
also scales likeN and depends upon the eigenvalued gf integration variable. Diagrammatically, this creates a loop in
Traces ofA, and A; were examined for some model prob- the case that botk, andx; are arguments of the same cu-
lems in Ref. 15. mulant. Applying tg to Eq. (16), one obtains
Replacing the RDMs i) (?) with their cumulant decom-
positions elucidates the unconnected terms in @SEon-
sider as an example the following term@H?)(1,2;1',2"): ‘ % = A;a2) tr3{§(2,3) A2(2,3;1',3’)} ) (17)

so clearly trA,~N, even asN—®. In contrast to the
2-RDM, the trace ofA, depends upon how fdr, deviates
from idempotency, though in any caseN/2<tr A,=<0. The
trace ofAj,

2

2

f(ury12;1,2) '
_% Y 1 Lq7 Y
=T(DA(1,2:1.2) + 7 A4(1;17)A4(2;27) If, on the other handx, andx;, are arguments of different
cumulants, then fr serves to connect two cumulant dia-

~ 384(1;2)84(2;1)] as e

The first term on the right is obviously connected, and we

may deduce that the second term is unconnected because #~

trace qualg\l2<f)/2. The .third term, which constitutes a = A1) tr34{g(3,4) A1(2;3’)A2(3,4;1’,4’)} ]

transvection®?? of A, with itself, is actually connected, but ’

differs from the second term by a coordinate permutation. If' * (18

the second term is removed from G8Ethen the third term

ought to be removed as well, for otherwise we destroy théNote carefully the difference between this diagram and the

antisymmetry ofQ(2). previous one. These two examples illustrate thegrnal op-
Unconnected terms and their exchange counterparts agfator verticegthose not appearing at the endpoint of a cu-

readily identified using a diagram technique, so before atmulant ling are each associated with a coordinate integra-

tempting to cancel all unconnected terms in ¢(BBve first ~ tion, whereas a vertex occurring at the endpoint of a

introduce diagrammatic representations @fY) and (2.  cumulant line does not imply an integration.

The diagrams are not strictly necessary, but are quite conve- In close analogy to diagrammatic perturbation theory

nient and(in the authors’ opinioneasier to check for mis- (although our diagrams are not perturbatjuee have trans-

takes than lengthy algebraic formulas. In addition, severaformed the problem of generating terms@{” into a prob-

existing reconstruction functionals fbr, andTl",>>?%have  lem of generating topologically distinct diagrams. Restriction

been derived via diagrammatic many-body perturbatiorfo topologically inequivalent diagrams is an easy way to in-

theory, and a diagrammatic representation for (2BE corporate symmetries such@§,k) =g(k,j) that reduce the

clarifies the role of this equation in improving approximate number of terms if2(P). The nontrivial terms i) and

reconstruction functionals. Our diagram conventions are)(? that involve only the one-electron cumulant are
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~

2’ 12
-P,

| M} , (19
6 trg{ [g(1,3) + @(2,3)] NP2z, 3' =P, Aé{ l LO— ‘ Ly H } (20)

1

6 tr23{9(23)A1 (1,2,3;1',2",3") } =2{Lﬁ —Irwo} +(o-«o—@)’ , (21
and j 1 I
e[|} .

Gtrs{f(?»)Al (1231'2'3)}=}52’{ ‘

v

1 2 1
24 tr3,4{g(3,4) A/{4(1,2,3,4;1',2',3',4')} = 152 {2 H + (o~0—©) l
1

1 2 2

These expressions are highly compact compared to brut&¥henw is the electronic energy, the three contributions to
force expansmns of the Grassmann prodwxﬁ%3 and AA“ w, in the equation above are, respectively, the cumulant cor-
For example, A} A ostensibly contains #=576 terms, as relation energy, the classical electrostatitartree energy,
compared to the 14 term@ncluding permutationsin Eq.  and the exchange energy. This cumulant decomposition of
(22). w, provides a universal, extensive definition for these quan-

Certain diagrams in the expressions above have no cd#ies, which does not depend upon any noninteracting
ordinate dependence. These can be related to the eigenval(idartree—Fock or Kohn—Shameference system.

w if we decomposev into one- and two-electron contribu- For expressions involving higher-order cumulants, one
tions, w=w, +Ww,, with W1=N<f> and w2=(§)<é>- Dia- can utilize the antisymmetry af, to reduce the number of
grammatically, required terms. For example,
o [
wy = tr{f(l) A1<1;1'>} = O® (23 @ == {@ (29
and 2 'o2

is obtained by exchanging the lines entering the toph of
Wy = tr{ﬁ(lﬂ) F2(1,2;1’,2’)} = % + % (o~0—-09). corresponding to a permutation of the primed coordinates in
this cumulant. Making use of this and similar relationships,

(24 we obtain

~

9 tr3{f(3) (Al AN AQ)(11213;1/,2/’3/)} — |52 2,

9 trg{ (1,3) (A1 A Ag)(l 2,3:1/,2 3’)}

2 r P [ v ' o
-t () - (o - B -
2 [ L) 12 ! 2
72 tr3‘4{§(3,4) (A’l\2 A Az)(1,2,3,4;1',2',3',4’)}

:(OWO—@)% +P; % +2%—2%—0 +P, % +2%—2%@+%r

o] ) - |
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16 tr3,4{g(3,4) (A1 A A3)(1,2,3,4;1’,2’,3’,4’)}

o 2 o

o)+ ) o) [ 0.

12 1 2 2

[N

>

—_p pr
=P, P,

and

18 tr3,4{§(3,4) A§2(1,2,3,4;1’,2',3',4’)}
v o [
r r v 2 oo
= 2P, M—m - —2PR + o+ (E0D - (30
1 2 1 2 1 2
1 2 1 2 1 2

IV. THE CONNECTED EQUATIONS
A. Cancellation of unconnected terms

Using a generating functional f62(P), Yasudd has demonstrated that this kernel can be decomposed into a connected part
QP and an unconnected padP ; our diagrammatic treatment brings this to the forefront.
Clearly Q™) as defined in Eq(8) contains unconnected terms, for example

1

. (31)

whan) = [Ow®+% + % (OwO—@)]

1

However, all unconnected terms Y are found to cancel exactly, ${)=0. Of course, an approximate solution of G$E
may not lead to exact cancellation, so instead of solving the equétiéh=0, one ought to solve instead the manifestly
extensive equation

aV=o. (32)

The connected part d@(*) is found to be
I 1 ‘ 1 v
P I8 1 '
oL -Fe-For D
1
r r Iy It 1 1
+2 W+W—%+%—%~% : (33
1 1 1 ! 1 1

Since the unconnected terms cancel exactly, the extensiwghich implies thatQ®=T;AQ sinceQ(V=0. This re-

equation is equivalent, in a necessary and sufficient sense, kationship can be verified directly using the expressions in

CSH1). Following Kutzelnigg and Mukherje®2°we refer  the previous section. Thus, insofar as CBEis exactly

to Eq. (32) as the first-ordeirreducible CSE, ICSKE1). To  satisfied—a necessary condition in order that (bbe

obtain an equation that is equivalent, within a finite basissatisfied—all unconnected terms §1®) cancel and we ob-

set, to our ICSHf), one must solve the Kutzelnigg— tain the extensive equation

Mukherje€® version of ICSEp) simultaneously with its ad-

joint equation. In contrast, the solution to E§2) is auto-

matically self-adjoint. 0@=g (35)
Neither CSE1) nor ICSH]1) is equivalent to the original ¢ '

Hilbert-space eigenvalue equation; for that we need @BE

The unconnected part ¢ is® _ _ o
which we call ICSE2). Carrying out the cancellation is rela-

QP =rANQW, (34 tively easy using diagrams, and one obtains
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Q@ @21 2) :W:%:# %ﬁ; % + % +3P, (% + %) +3P} %
3%@+3%—3%}+6%@ + P %U 2%+
- - B ) o
BB B B ] ol

+

BN\

o
%

%ZN

(36)

Including permutations, this expression m;g?) contains 68 As a function ofd,, 7y is thus double-valued, as shown in
terms, a significant reduction as compared to the unsimpliFig. 2, so that strictly speaking the eigenvalues gfAp) do
fied Grassmann products. not determine those af; .

For systems that do not exhibit strong multideterminant
characte“nondynamical correlation), most eigenvalues of
A, should lie near 0 or 1. Givefd, (and thus thal,), it may
be possible in such cases to choose, for dgabne of the

Perhaps the most striking feature of IQ3E and two solutionsy, in Eq. (38b), based upon the nature of the
ICSE(2) is the absence of the eigenvaluein these equa- kth eigenvector(that is, based upon our intuition as to
tions. In hindsight its disappearance should not be surprisingyhether this eigenvector should be strongly or weakly occu-
sincew appears inQQ(" aswl’,. The observablev scales pied). To see this, supposg=e or y,=1—¢. Upon calcu-
(asymptotically as N, as does the connected part Bf, lating the d, corresponding to each, and substituting this
hence no part of the produetl’, exhibits correct scaling in  back into Eq.(38b), one obtains in either case a choice be-
the thermodynamic limit and this entire term must cancekween the solutions,=1—¢e+0(e?) and y,=¢+0(&?).
with some other part of CSj. (This is analogous to the So long ase®<e, and assuming that one can ascertain
fact that the coupled-cluster amplitude equations, which arevhether each eigenvector of{f,) is strongly or weakly
extensive, contain the cluster amplitudes but not the elecaccupied, one may obtai; from A,, and from themI,
tronic energy, even though these equations derive from thandw. In this case one need to solve only IGSE

B. Discussion of the connected equations

Schralinger equation.However,w is specifiedimplicitly in In deriving ICSE1) and ICSE2) from the correspond-
ICSK1) and ICSKE2), insofar as these cumulants determineing CSEs, we have merely identified and removed terms that
I', and thUSN=tr(\7VF2). cancel exactly; as such, these two connected equations, when

The absence ofv in ICSE(p) has important conse- solved simultaneously, are entirely equivalent to C(B3&and
quences, to which we shall return later in this section. Firstthus equivalent to the original Hilbert-space eigenvalue
however, we demonstrate that IC@Eand ICSK2) are in-  equation(Schralinger equatiop provided that appropriate
dependent equations that must be solved in tandem, as op-representability constraints are enforced in the solving the
posed to CSR), which implies CSF1) via a trace over one ICSE(p). Since necessary and sufficieNtrepresentability
electronic coordinate. The difference is tHat determines
I''=A; but A, does not fully specifyA; and is thus insuf-

ficient to determind’, or w. 10

To see this, observe that 08l |

try(Ay) = 2(A2—A,). (37) 06l l
It follows that A; and tp(A,) are simultaneously diagonal- = 0 |
izable. Let{ y,} be the eigenvalues df,, and for eachy, let ]
dy be the eigenvalue of 4fA,) associated with the same 02+t 8
eigenvector. These eigenvalues are related according to 00 1

de= 7 y—1)/2, (383 -0.125 -0.100 -0.075 0&-0.050 -0.025  -0.000
which yields

FIG. 2. An eigenvaluey, of A, as a(double-valuegifunction of the corre-
Y=3(1++1+8d,). (38b)  sponding eigenvalud of try(A,).

Downloaded 05 Nov 2006 to 128.146.173.210. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



7470 J. Chem. Phys., Vol. 117, No. 16, 22 October 2002 J. M. Herbert and J. E. Harriman

constraints are not known, one must in practice contend with

o2 3 o2 3
an infinite number of spurious solutions to these equations.
Recent calculatiorf$-?°*%in which CSH2) is solved starting
from anN-representabléctually, Hartree—Fogk2-RDM in-
dicate that, for ground states, the solution usually converges
1 2 3 1 2 3 4
@) (b)

to a 2-RDM that is nearly consistent with the neces$arQ,

and G conditions forN representability. (That is, all eigen-

values ofl", and also the so-calle® and G matrices are

positive Or_else very small. .. FIG. 3. Lowest-order connected correctiong@pA; and(b) A4, within a
Even in the presence of necessary and sufficienfenormalized ladder-type approximation.

N-representability constraints, however, the solution of

CSH?2) is only unique provided that the eigenvalueis

specified and fixed. Becausedoes not appear in the ICSEs, severat®'**° utilize the cumulant decompositions in Egs.

in order to obtain a unique solution ICSE and ICSE2)  (9¢) and(9d) to obtain the unconnected portions I6f and

must be solved subject not only té-representability con- I'4, then use many-body perturbation theory to estimate the

straints but also subject to the constraint that tr(WI',) ~ connected partd; andA, in terms ofA, andA,, the latter

remains fixed. For auxiliary constraint equations such as, fofSSentially serving as a renormalized pair interaction. Recon-

example, the&? reduced eigenvalue equation, one Wouldstructlon functionals of this type are equally useful in solving

o - > o ICSE1) and ICSKE2), but the reconstruction functionals in-
know (S°) in advance and could constrafs”) =tr(S°T'2).  rqquced by Valdemoro and cowork&4! cannot be used to

In the basic equations of our theory, howewsts an elec-  solve the ICSEs because they contain no connected terms in
tronic Hamiltonian and such a constraint would require us to, or I', (and thus no contributions thz or A,).

know the electronic energy in advance. Foregoing the energy

constraint, ICSEL) and ICSE2) possesi-representable so- C. Reconstruction and solution of the reduced
lutions corresponding to the ground state, the excited Stateéquations

and also all superposition states that can be formed from

degenerate eigenfunctions‘ﬁt In practice, the same is true
for CSH?2), insofar as the energy is unknown and the eigen
value appearing in CSB) must be updated iteratively dur-
ing the course of the solution. Viewed in this way, the fact S 13
thatw does not appear in ICSE or ICSHE?2) may actually order ladder-type approximation m% and Ay examp!es )
be advantageous. of the onvest—order corrections of this type are shown in Fig.
We now wish to discuss how IC$E and ICSE2) can 3. As discussed in Ref. 13, ladder-type reconstructions—

be solved. First, let us discuss the solution of CBEFor even if extended to infinite order in the effective pair
W+0, CSH2) me,ly be written interaction—necessarily neglect “truefthat is, simulta-

neous, in a time-dependent conjeiiree-electron correla-
Lo=w F,[T,,I3,T,], (39) tions. The CSEdor ICSES, however, help to build these
correlations back into the cumulants, which becomes clear
where the functionaF,,=Q)+wI',. Assuming one has upon examination of the diagrammatic representations of
approximate reconstruction functiondlg[T",] andT",[T'5], these equations, together with diagrammatic representations
Eq. (39) can be solved foF', by one of two means. The first of the reconstruction functionals.
option is to substitute the reconstruction functionals directly  In Fig. 4@ we show a typical diagram in the expansion
into F,,, which effectively makes,, a functional ofI', of A5 that cannot be incorporated into any ladder-type dia-
only. Upon expanding Eq39) in a finite basis set, this leads gram because it involves simultaneous correlation between
to a closed set of nonlinear equations for the tensor elementbree particles® As it appears in CSR) and ICSE2), how-
of I',, and these can be solved, for example, by a Newton-ever,A; is always traced over coordinatg, and in Fig. 4b)
Raphson procedure? Alternatively, Eq.(39) can be solved we show the effect of §ron the diagram in Fig. @). The
by self-consistent iteration, employing the reconstructiondiagram in Fig. 4b) is included in the partial trace of a
functionals at each iteration to generate updated 3- anthird-order ladder-type diagram, namely, the one shown in
4-RDMs from the current 2-RDM, and using the currentFig. 4(c). Thus, the presence of;tin the two-particle equa-
2-RDM to estimatew. Several algorithms for carrying out tions allows us to incorporate three- and higher-body effects
this iteration have been describkd>!:3? that would not otherwise be present in a ladder approxima-
It does not appear that the ICSEs can be solved by seltion for the three- and four-electron cumulants.
consistent iteration, however, since these equations specify Actually, three-particle correlations such as that in Fig.
the cumulantsA; and A, only implicitly. Using cumulant 4(a) are introduced by the CSEs and ICSEs, even within a
reconstruction functionalsAs[A;,A5] and A [A4,A5], second-order ladder approximation. To understand why, con-
however, one can certainly derive closed nonlinear equationsider the diagram in Fig.(d), which represents one of the
for the elements oA ; andA,, which could be solved using terms inQ!? . Within a second-order ladder approximation
the aforementioned Newton—Raphson procedure. Of th& Aj, the diagram in Fig. @) is included within Fig. 4d).
RDM reconstruction functionals derived to date, Thus, three- and higher-body effects are incorporated into the

a

Finally, we present some observations concerning the in-
terconnection of the reconstruction process and the solution
of either CSEfp) or ICSE(p). The perturbative reconstruc-
tion functionals mentioned above each constitute a finite-
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within the extensive formulation one avoids an additional
approximation(namely, approximation of the eigenvalug
that must be introduced in order to solve the CSEs.

Finally, we have demonstrated an important connection
between cumulantor density matrix reconstruction and so-
lution of the CSEs or their connected counterparts. When
approximate reconstruction functionals based on finite-order
many-body perturbation theory are employed, simultaneous
many-particle correlations must be neglected beyond a cer-
tain number of particles. The structure of the CSEs, however,
plays an instrumental role in putting these correlations back

into the 2-RDM.
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