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Extensivity and the contracted Schro ¨ dinger equation
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Theoretical Chemistry Institute and Department of Chemistry, University of Wisconsin, Madison,
Wisconsin 53706

~Received 10 June 2002; accepted 30 July 2002!

We provide an extensive formulation of the contracted Schro¨dinger equation and other reduced
eigenvalue equations. Nonextensive~unconnected! terms in these equations cancel exactly, leading
to completely connected one- and two-electron equations that together are equivalent to the
Schrödinger equation. We discuss how these equations can be solved for the one- and two-electron
cumulants. These cumulants yield a two-electron reduced density matrix that is necessarily size
consistent, even for an approximate solution. A diagram technique, introduced to aid the formal
manipulations, clarifies the connection between density matrix reconstruction and solution of the
CSE. © 2002 American Institute of Physics.@DOI: 10.1063/1.1508369#
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I. INTRODUCTION

Recently several groups1–5 have pursued a ‘‘wave
function-less’’ approach to electronic structure via direct
lution of the contracted Schro¨dinger equation~CSE!. Within
the set ofN-representable6 reduced density matrices, the CS
~Refs. 7–9! is an equivalent formulation of the electron
Schrödinger equation that couples the two-, three-, and fo
electron reduced density matrices~2-, 3-, and 4-RDMs! but
does not involve the electronic wave function explicitly. D
rect calculation of the 2-RDM is accomplished using a
proximate reconstruction functionals,2,4,9–13 by means of
which the 3- and 4-RDMs are expressed in terms of
2-RDM, leading to a closed equation for the latter.

Much of the recent literature on RDMs has focused
their cumulant decompositions.14–22 Each RDM can be de
composed into a connected and an unconnected part,
the latter obtained in a known way from the lower-ord
RDMs. The connected part~cumulant! is an extensive~addi-
tively separable! quantity, in contrast to the RDMs
themselves.15,18It is thus desirable that any direct method f
calculating RDMs be couched in terms of the cumulan
without any unconnected~nonextensive! terms.

As formulated originally,2,3,7–9 the CSE does not satisf
this criterion, although formally the unconnected term
present in this equation must cancel exactly, since the CS
equivalent to the ordinary Schro¨dinger equation. As with
other electronic structure methods, however, an approxim
solution will not be extensive so long as the basic work
equations contain unconnected terms. Consequently
CSE, in practical applications, need not yield a siz
consistent 2-RDM. The primary purpose of this paper is
reformulate the CSE by explicitly removing all unconnect
terms. This leads to a pair of coupled equations for the o
and two-electron cumulants. Any solution of these connec
equations—even an approximate one—is necessarily
consistent.

The connected equations that we obtain are form

a!Electronic mail: harriman@chem.wisc.edu
7460021-9606/2002/117(16)/7464/8/$19.00
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equivalent to the ‘‘irreducible’’ CSEs introduced, in
second-quantized setting, by Kutzelnigg and Mukherjee.18–20

In that work, extensive equations were derived in a man
that does not require the original form of the CSE at all.
contrast, we proceed starting from the original~‘‘first-
quantized’’! form of the CSE in terms of position-space ke
nels and Hilbert-space operators, explicitly demonstrat
the cancellation of all unconnected terms. This derivat
does not require the introduction of a basis set, and dem
strates that the final, extensive equations are equivalent to
CSE and the Schro¨dinger equation. Moreover, our derivatio
clarifies several important differences between the unc
nected and the connected equations: The latter areimplicit
rather than explicit equations for the cumulants, and furth
more the electronic energy, which is an explicit paramete
the original CSE, is absent from its extensive analogues

After introducing the CSE in Sec. II as a special case
a more general class ofreduced eigenvalue equations,23 in
Sec. III we develop a diagram technique to facilitate form
manipulation of the terms in this equation. The diagrams a
clarify the relationship between the CSE and older, Gree
function-based methods in many-body theory. This is d
cussed in Sec. IV, where we present the extensive form of
CSE and discuss solution of the connected equations. Se
V constitutes a summary.

II. CUMULANTS AND REDUCED EIGENVALUE
EQUATIONS

Employing the abbreviated notation‘‘1’’ [x1 for the
composite space/spin coordinate of electron 1, let

Ŵ~1, . . . ,N!5(
j 51

N

f̂ ~ j !1(
j ,k

N

ĝ~ j ,k!, ~1!

be a symmetric operator on theN-electron Hilbert space
Note that this impliesĝ( j ,k)5ĝ(k, j ). We wish to consider
RDM analogues of the (N-particle! eigenvalue equation

ŴC5wC. ~2!
4 © 2002 American Institute of Physics
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7465J. Chem. Phys., Vol. 117, No. 16, 22 October 2002 Contracted Schrödinger equation
Let the eigenvaluew be fixed and assume thatC is nonde-
generate and unit normalized. The restriction to nondege
ate eigenstates will be relaxed in Sec. IV, but at present
appropriate to consider only pure-state density matrices.
N-particle density matrix for the pure stateC is

GN~1, . . . ,N;18, . . . ,N8!5C~1, . . . ,N!C* ~18, . . . ,N8!.
~3!

In terms of the reduction operator~partial trace!

trp11, . . . ,q5E dxp11¯dxqE dxp118 ¯dxq8

3d~xp112xp118 !¯d~xq2xq8!, ~4!

where p,q<N, RDMs for the stateC are obtained from
the relationship

Gp5S q! ~N2q!!

p! ~N2p!! D trp11, . . . ,qGq . ~5!

This definition establishes the normalization

trGp5S N
p D . ~6!

From theN-particle Hilbert-space eigenvalue equati
follows a hierarchy of p-particle reduced eigenvalue
equations,7–9,23 for 1<p<N22. The pth equation of this
hierarchy, which couplesGp , Gp11 , andGp12 , can be ex-
pressed as

V~p!~1, . . . ,p;18, . . . ,p8![0, ~7!

in which V (p) is thep-particle kernel3

V~p!~1, . . . ,p;18, . . . ,p8!

5F (
j 51

p

f̂ ~ j !1~12dp,1!(
j ,k

p

ĝ~ j ,k!2wGGp

1~p11!trp11H F f̂ ~p11!1(
j 51

p

ĝ~ j ,p11!GGp11J
1S p12

2 D trp11,p12$ĝ~p11,p12!Gp12%. ~8!

Here,Gn5Gn(1, . . . ,n;18, . . . ,n8).
Following Kutzelnigg and Mukherjee,18–20 we refer to

Eq. ~7! as thepth-order CSE, CSE(p). @Sometimes CSE(p)
is called the (p,p12)-CSE.# Strictly speaking, this terminol-
ogy implies thatŴ is an electronic Hamiltonian, which i
clearly the most important case. We emphasize, howe
that the formal structure of the equations is the same for
Ŵ of the form in Eq.~1!. In particular, the reduced equation
for Ŵ5Ŝ2 may be useful—for spin eigenstates—as bou
ary conditions to enforce while solving CSE(p).24

The remarkable fact, first demonstrated by Nakatsuji,7 is
that for eachp>2, CSE(p) is equivalent~in a necessary and
sufficient sense! to the original Hilbert-space eigenvalu
equation, provided that the former is solved subject to app
priate boundary conditions (N-representability conditions6!
for the RDMs. Stated differently, CSE(p), which represents
a closed equation for the (p12)-RDM, has a unique
Downloaded 05 Nov 2006 to 128.146.173.210. Redistribution subject to A
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N-representable solutionGp12 . Absent N-representability
constraints this equation has many spurious solutions.25,26

Ultimately CSE~2! is the equation that we wish to solve
since it is the most tractable reduced equation that is
equivalent to the original Hilbert space equation. We will s
that there is reason to consider CSE~1! as well, however, for
it plays an instrumental role in removing unconnected ter
from CSE~2!.

Using a generating functional for the RDMs, one obta
a cumulant decomposition of these quantities in the us
way; for details, we refer the reader to Refs. 14, 15, and
Let Dp denote thepth-order RDM cumulant~the connected
or additively separable part ofGp). Then14

G15D1 , ~9a!

G25D21D1`D1 , ~9b!

G35D31D1
`313D2`D1 , ~9c!

and

G45D41D1
`416D2`D1`D114D3`D113D2`D2 .

~9d!

Here, ‘‘`’’ denotes an antisymmetrized~Grassmann!
product,23,27

~Dp`Dq!~1, . . . ,p1q;18, . . . ,~p1q!8!

5~p1q!! 22P̂p1qP̂p1q8 ~Dp~1, . . . ,p;18, . . . ,p8!

3Dq~p11, . . . ,p1q;~p11!8, . . . ,~p1q!8!!, ~10!

where P̂p1q8 and P̂p1q indicate sums over signed permut
tions of the primed and unprimed coordinates, respectiv
‘‘Wedge’’ exponents appearing in Eqs.~9c! and ~9d! are de-
fined by

~11!

Equations~9a!–~9d! define the RDM cumulants and do no
depend upon the validity of perturbative expansions of
RDMs. Insofar as perturbation theory is applicable, howev
Dp is precisely the sum of connected diagrams in the exp
sion of Gp .

As mentioned in the Introduction, the cumulantsDp are
extensive ~additively separable15! quantities, whereas the
RDMs themselves are not. With the normalization chosen
Eq. ~6!, extensive quantities have a trace proportional toN
while nonextensive quantities scale as some higher powe
N; for example, trGp;Np. Note that size consistency, alon
with nonzero correlation energy per particle in the therm
dynamic limit, are consequences of extensivity, not the d
nition of this term.28

As an example of the extensivity of the cumulants, let
evaluate trD2 and trD3 . To this end, define
IP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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7466 J. Chem. Phys., Vol. 117, No. 16, 22 October 2002 J. M. Herbert and J. E. Harriman
hk5N21 tr~D1
k!, ~12!

whereD1
k indicates an ordinary matrix product, as opposed

the wedge productD1
`k . Since the eigenvalues ofD15G1 lie

between 0 and 1, it follows that 1>h2>h3>¯>0. This is
true even for extended systems, whereN→`. From Eq.~9b!
one obtains

tr D25N~h221!/2, ~13!

so clearly trD2;N, even asN→`. In contrast to the
2-RDM, the trace ofD2 depends upon how farG1 deviates
from idempotency, though in any case2N/2<tr D2<0. The
trace ofD3 ,

tr D35N~123h212h3!/3, ~14!

also scales likeN and depends upon the eigenvalues ofG1 .
Traces ofD2 andD3 were examined for some model pro
lems in Ref. 15.

Replacing the RDMs inV (2) with their cumulant decom-
positions elucidates the unconnected terms in CSE~2!. Con-
sider as an example the following term inV (2)(1,2;18,28):

f̂ ~1!G2~1,2;18,28!

5 f̂ ~1!@D2~1,2;18,28!1 1
2 D1~1;18!D1~2;28!

2 1
2 D1~1;28!D1~2;18!#. ~15!

The first term on the right is obviously connected, and
may deduce that the second term is unconnected becau
trace equalsN2^ f̂ &/2. The third term, which constitutes
transvection16,22 of D1 with itself, is actually connected, bu
differs from the second term by a coordinate permutation
the second term is removed from CSE~2! then the third term
ought to be removed as well, for otherwise we destroy
antisymmetry ofV (2).

Unconnected terms and their exchange counterparts
readily identified using a diagram technique, so before
tempting to cancel all unconnected terms in CSE~2! we first
introduce diagrammatic representations ofV (1) and V (2).
The diagrams are not strictly necessary, but are quite co
nient and~in the authors’ opinion! easier to check for mis
takes than lengthy algebraic formulas. In addition, seve
existing reconstruction functionals forG3 andG4

2,3,12,13have
been derived via diagrammatic many-body perturbat
theory, and a diagrammatic representation for CSE~2!
clarifies the role of this equation in improving approxima
reconstruction functionals. Our diagram conventions

FIG. 1. Basic diagram elements used in this paper:~a! G1(1;18), ~b!

ĝ(1,2), ~c! f̂ (1), and~d! Dp(1, . . . ,p;18, . . . ,p8), for p>2.
Downloaded 05 Nov 2006 to 128.146.173.210. Redistribution subject to A
o

e
its

If

e

re
t-

e-

al

n

e

conceived with this purpose in mind, and are basica
unrelated to the CSE diagrams introduced by Mukherjee
Kutzelnigg.19,20

III. DIAGRAMMATIC REPRESENTATIONS

The basic diagram elements representingG15D1 , f̂ , ĝ,
andDp are illustrated in Fig. 1. A representation of each te
in V (p) is constructed by connecting operator diagrams
cumulant diagrams at the coordinates on which the opera
act. For instance

~16!

is obtained by attaching aĝ(2,3) diagram at the lower end
points of aD2(2,3;18,38) diagram, since according to Fig
1~d! these endpoints stand for coordinates 2 and 3. A fac
of D1(1;28) is present, as indicated, but becauseĝ(2,3) op-
erates on neitherx1 nor x28 , this part of the diagram is no
connected to the rest.

A trace over coordinatexn is indicated by connecting the
line labeledn to the line labeledn8. The labelsn andn8 are
then deleted, since these coordinates become a single du
integration variable. Diagrammatically, this creates a loop
the case that bothxn andxn8 are arguments of the same c
mulant. Applying tr3 to Eq. ~16!, one obtains

~17!

If, on the other hand,xn and xn8 are arguments of differen
cumulants, then trn serves to connect two cumulant dia
grams:

~18!

Note carefully the difference between this diagram and
previous one. These two examples illustrate thatinternal op-
erator vertices~those not appearing at the endpoint of a c
mulant line! are each associated with a coordinate integ
tion, whereas a vertex occurring at the endpoint of
cumulant line does not imply an integration.

In close analogy to diagrammatic perturbation theo
~although our diagrams are not perturbative!, we have trans-
formed the problem of generating terms inV (p) into a prob-
lem of generating topologically distinct diagrams. Restricti
to topologically inequivalent diagrams is an easy way to
corporate symmetries such asĝ( j ,k)5ĝ(k, j ) that reduce the
number of terms inV (p). The nontrivial terms inV (1) and
V (2) that involve only the one-electron cumulant are
IP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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These expressions are highly compact compared to br
force expansions of the Grassmann productsD1

`3 andD1
`4.

For example,D1
`4 ostensibly contains 4!25576 terms, as

compared to the 14 terms~including permutations! in Eq.
~22!.

Certain diagrams in the expressions above have no
ordinate dependence. These can be related to the eigen
w if we decomposew into one- and two-electron contribu
tions, w5w11w2 , with w15N^ f̂ & and w25(2

N)^ĝ&. Dia-
grammatically,

~23!

and

~24!
Downloaded 05 Nov 2006 to 128.146.173.210. Redistribution subject to A
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When w is the electronic energy, the three contributions
w2 in the equation above are, respectively, the cumulant c
relation energy, the classical electrostatic~Hartree! energy,
and the exchange energy. This cumulant decomposition
w2 provides a universal, extensive definition for these qu
tities, which does not depend upon any noninteract
~Hartree–Fock or Kohn–Sham! reference system.

For expressions involving higher-order cumulants, o
can utilize the antisymmetry ofDp to reduce the number o
required terms. For example,

~25!

is obtained by exchanging the lines entering the top ofD2 ,
corresponding to a permutation of the primed coordinate
this cumulant. Making use of this and similar relationship
we obtain
~26!

~27!

~28!
IP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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~29!

and

~30!

IV. THE CONNECTED EQUATIONS

A. Cancellation of unconnected terms

Using a generating functional forV (p), Yasuda3 has demonstrated that this kernel can be decomposed into a connecte
Vc

(p) and an unconnected partVu
(p) ; our diagrammatic treatment brings this to the forefront.

Clearly V (1) as defined in Eq.~8! contains unconnected terms, for example

~31!

However, all unconnected terms inV (1) are found to cancel exactly, soVu
(1)50. Of course, an approximate solution of CSE~1!

may not lead to exact cancellation, so instead of solving the equationV (1)[0, one ought to solve instead the manifes
extensive equation

Vc
~1![0. ~32!

The connected part ofV (1) is found to be

~33!
s
e,

si
–

l

in

-

Since the unconnected terms cancel exactly, the exten
equation is equivalent, in a necessary and sufficient sens
CSE~1!. Following Kutzelnigg and Mukherjee,18–20we refer
to Eq. ~32! as the first-orderirreducible CSE, ICSE~1!. To
obtain an equation that is equivalent, within a finite ba
set, to our ICSE(p), one must solve the Kutzelnigg
Mukherjee19 version of ICSE(p) simultaneously with its ad-
joint equation. In contrast, the solution to Eq.~32! is auto-
matically self-adjoint.

Neither CSE~1! nor ICSE~1! is equivalent to the origina
Hilbert-space eigenvalue equation; for that we need CSE~2!.
The unconnected part ofV (2) is3

Vu
~2!5G1`V~1!, ~34!
Downloaded 05 Nov 2006 to 128.146.173.210. Redistribution subject to A
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which implies thatVu
(2)5G1`Vc

(1) sinceVu
(1)50. This re-

lationship can be verified directly using the expressions
the previous section. Thus, insofar as CSE~1! is exactly
satisfied—a necessary condition in order that CSE~2! be
satisfied—all unconnected terms inV (2) cancel and we ob-
tain the extensive equation

Vc
~2![0, ~35!

which we call ICSE~2!. Carrying out the cancellation is rela
tively easy using diagrams, and one obtains
IP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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~36!
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Including permutations, this expression forVc
(2) contains 68

terms, a significant reduction as compared to the unsim
fied Grassmann products.

B. Discussion of the connected equations

Perhaps the most striking feature of ICSE~1! and
ICSE~2! is the absence of the eigenvaluew in these equa-
tions. In hindsight its disappearance should not be surpris
sincew appears inV (p) as wGp . The observablew scales
~asymptotically! as N, as does the connected part ofGp ,
hence no part of the productwGp exhibits correct scaling in
the thermodynamic limit and this entire term must can
with some other part of CSE(p). ~This is analogous to the
fact that the coupled-cluster amplitude equations, which
extensive, contain the cluster amplitudes but not the e
tronic energy, even though these equations derive from
Schrödinger equation.! However,w is specifiedimplicitly in
ICSE~1! and ICSE~2!, insofar as these cumulants determi
G2 and thusw5tr(ŴG2).

The absence ofw in ICSE(p) has important conse
quences, to which we shall return later in this section. Fi
however, we demonstrate that ICSE~1! and ICSE~2! are in-
dependent equations that must be solved in tandem, as
posed to CSE~2!, which implies CSE~1! via a trace over one
electronic coordinate. The difference is thatG2 determines
G15D1 but D2 does not fully specifyD1 and is thus insuf-
ficient to determineG2 or w.

To see this, observe that

tr2~D2!5 1
2 ~D1

22D1!. ~37!

It follows that D1 and tr2(D2) are simultaneously diagona
izable. Let$gk% be the eigenvalues ofD1 , and for eachgk let
dk be the eigenvalue of tr2(D2) associated with the sam
eigenvector. These eigenvalues are related according to

dk5gk~gk21!/2, ~38a!

which yields

gk5 1
2 ~16A118dk!. ~38b!
Downloaded 05 Nov 2006 to 128.146.173.210. Redistribution subject to A
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As a function ofdk , gk is thus double-valued, as shown
Fig. 2, so that strictly speaking the eigenvalues of tr2(D2) do
not determine those ofD1 .

For systems that do not exhibit strong multidetermina
character~‘‘nondynamical correlation’’!, most eigenvalues o
D1 should lie near 0 or 1. GivenD2 ~and thus thedk), it may
be possible in such cases to choose, for eachk, one of the
two solutionsgk in Eq. ~38b!, based upon the nature of th
kth eigenvector~that is, based upon our intuition as t
whether this eigenvector should be strongly or weakly oc
pied!. To see this, supposegk5« or gk512«. Upon calcu-
lating the dk corresponding to each, and substituting th
back into Eq.~38b!, one obtains in either case a choice b
tween the solutionsgk512«1O(«2) and gk5«1O(«2).
So long as«2!«, and assuming that one can ascerta
whether each eigenvector of tr2(D1) is strongly or weakly
occupied, one may obtainD1 from D2 , and from themG2

andw. In this case one need to solve only ICSE~2!.
In deriving ICSE~1! and ICSE~2! from the correspond-

ing CSEs, we have merely identified and removed terms
cancel exactly; as such, these two connected equations, w
solved simultaneously, are entirely equivalent to CSE~2! and
thus equivalent to the original Hilbert-space eigenva
equation~Schrödinger equation!, provided that appropriate
N-representability constraints are enforced in the solving
ICSE(p). Since necessary and sufficientN-representability

FIG. 2. An eigenvaluegk of D1 as a~double-valued! function of the corre-
sponding eigenvaluedk of tr2(D2).
IP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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constraints are not known, one must in practice contend w
an infinite number of spurious solutions to these equatio
Recent calculations2,4,29,30in which CSE~2! is solved starting
from anN-representable~actually, Hartree–Fock! 2-RDM in-
dicate that, for ground states, the solution usually conver
to a 2-RDM that is nearly consistent with the necessaryP, Q,
andG conditions forN representability.6 ~That is, all eigen-
values ofG2 and also the so-calledQ and G matrices are
positive or else very small.!

Even in the presence of necessary and suffic
N-representability constraints, however, the solution
CSE~2! is only unique provided that the eigenvaluew is
specified and fixed. Becausew does not appear in the ICSE
in order to obtain a unique solution ICSE~1! and ICSE~2!
must be solved subject not only toN-representability con-
straints but also subject to the constraint thatw5tr(ŴG2)
remains fixed. For auxiliary constraint equations such as,
example, theŜ2 reduced eigenvalue equation, one wou
know ^Ŝ2& in advance and could constrain^Ŝ2&5tr(Ŝ2G2).
In the basic equations of our theory, however,Ŵ is an elec-
tronic Hamiltonian and such a constraint would require us
know the electronic energy in advance. Foregoing the ene
constraint, ICSE~1! and ICSE~2! possessN-representable so
lutions corresponding to the ground state, the excited sta
and also all superposition states that can be formed f
degenerate eigenfunctions ofŴ. In practice, the same is tru
for CSE~2!, insofar as the energy is unknown and the eig
value appearing in CSE~2! must be updated iteratively dur
ing the course of the solution. Viewed in this way, the fa
that w does not appear in ICSE~1! or ICSE~2! may actually
be advantageous.

We now wish to discuss how ICSE~1! and ICSE~2! can
be solved. First, let us discuss the solution of CSE~2!. For
wÞ0, CSE~2! may be written

G25w21Fw@G2 ,G3 ,G4#, ~39!

where the functionalFw5V (2)1wG2 . Assuming one has
approximate reconstruction functionalsG3@G2# andG4@G2#,
Eq. ~39! can be solved forG2 by one of two means. The firs
option is to substitute the reconstruction functionals direc
into Fw , which effectively makesFw a functional of G2

only. Upon expanding Eq.~39! in a finite basis set, this lead
to a closed set of nonlinear equations for the tensor elem
of G2 , and these can be solved, for example, by a Newto
Raphson procedure.2–4 Alternatively, Eq.~39! can be solved
by self-consistent iteration, employing the reconstruct
functionals at each iteration to generate updated 3-
4-RDMs from the current 2-RDM, and using the curre
2-RDM to estimatew. Several algorithms for carrying ou
this iteration have been described.1,5,31,32

It does not appear that the ICSEs can be solved by s
consistent iteration, however, since these equations spe
the cumulantsD1 and D2 only implicitly. Using cumulant
reconstruction functionalsD3@D1 ,D2# and D4@D1 ,D2#,
however, one can certainly derive closed nonlinear equat
for the elements ofD1 andD2 , which could be solved using
the aforementioned Newton–Raphson procedure. Of
RDM reconstruction functionals derived to dat
Downloaded 05 Nov 2006 to 128.146.173.210. Redistribution subject to A
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several2,3,12,13 utilize the cumulant decompositions in Eq
~9c! and ~9d! to obtain the unconnected portions ofG3 and
G4 , then use many-body perturbation theory to estimate
connected partsD3 andD4 in terms ofD1 andD2 , the latter
essentially serving as a renormalized pair interaction. Rec
struction functionals of this type are equally useful in solvi
ICSE~1! and ICSE~2!, but the reconstruction functionals in
troduced by Valdemoro and coworkers10,11cannot be used to
solve the ICSEs because they contain no connected term
G3 or G4 ~and thus no contributions toD3 or D4).

C. Reconstruction and solution of the reduced
equations

Finally, we present some observations concerning the
terconnection of the reconstruction process and the solu
of either CSE(p) or ICSE(p). The perturbative reconstruc
tion functionals mentioned above each constitute a fin
order ladder-type approximation toD3 and D4 ;13 examples
of the lowest-order corrections of this type are shown in F
3. As discussed in Ref. 13, ladder-type reconstruction
even if extended to infinite order in the effective pa
interaction—necessarily neglect ‘‘true’’~that is, simulta-
neous, in a time-dependent context! three-electron correla
tions. The CSEs~or ICSEs!, however, help to build these
correlations back into the cumulants, which becomes c
upon examination of the diagrammatic representations
these equations, together with diagrammatic representat
of the reconstruction functionals.

In Fig. 4~a! we show a typical diagram in the expansio
of D3 that cannot be incorporated into any ladder-type d
gram because it involves simultaneous correlation betw
three particles.13 As it appears in CSE~2! and ICSE~2!, how-
ever,D3 is always traced over coordinatex3 , and in Fig. 4~b!
we show the effect of tr3 on the diagram in Fig. 4~a!. The
diagram in Fig. 4~b! is included in the partial trace of a
third-order ladder-type diagram, namely, the one shown
Fig. 4~c!. Thus, the presence of tr3 in the two-particle equa-
tions allows us to incorporate three- and higher-body effe
that would not otherwise be present in a ladder approxim
tion for the three- and four-electron cumulants.

Actually, three-particle correlations such as that in F
4~a! are introduced by the CSEs and ICSEs, even withi
second-order ladder approximation. To understand why, c
sider the diagram in Fig. 4~d!, which represents one of th
terms inVc

(2) . Within a second-order ladder approximatio
to D3 , the diagram in Fig. 4~b! is included within Fig. 4~d!.
Thus, three- and higher-body effects are incorporated into

FIG. 3. Lowest-order connected corrections to~a! D3 and~b! D4 , within a
renormalized ladder-type approximation.
IP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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cumulantsD3 and D4 by the CSEs or ICSEs, even whe
these effects are absent from approximate reconstruc
functionals. In effect, solution of these equations correspo
to a partial summation of the perturbation series forG2 @in
the case of CSE~2!# or D1 andD2 @in the case that ICSE~1!
and ICSE~2! are solved simultaneously#. The connection be-
tween reconstruction and solution of coupled Green’s fu
tion equations of motion, which are time-dependent hie
chies analogous to the CSE(p) hierarchy, has been explore
in some detail.33,34A more thorough exploration of this con
nection in the present context would be welcome.

V. SUMMARY

We have introduced extensive formulations of the co
tracted Schro¨dinger equation and other reduced eigenva
equations by explicitly canceling all unconnected terms t
appear in the usual formulations of these equations. The
sulting equations guarantee that size-consistent solutions
obtained for the one- and two-electron cumulants, even
an approximate solution. Moreover, the extensive formu
tion is the only one appropriate for extended systems.
derivation is carried out using position-space kernels
Hilbert-space operators, circumventing the introduction o
finite basis approximation.

Although the cancellation of unconnected terms is f
mally exact, this operation is far from trivial, resulting
simultaneous nonlinear equations for the one- and t
particle cumulants that contain these quantities implic
rather than explicitly. The eigenvaluew, which appeared ex
plicitly in the nonextensive form of the CSEs, is absent fro
the extensive equations~though it can, of course, be recov
ered once the cumulants are known!. Since w is absent,

FIG. 4. Diagrams illustrating the connection between reconstruction
solution of the CSEs or ICSEs. See the text for an explanation.
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within the extensive formulation one avoids an addition
approximation~namely, approximation of the eigenvaluew)
that must be introduced in order to solve the CSEs.

Finally, we have demonstrated an important connect
between cumulant~or density matrix! reconstruction and so
lution of the CSEs or their connected counterparts. Wh
approximate reconstruction functionals based on finite-or
many-body perturbation theory are employed, simultane
many-particle correlations must be neglected beyond a
tain number of particles. The structure of the CSEs, howe
plays an instrumental role in putting these correlations b
into the 2-RDM.
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