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N-representability and variational stability in natural orbital
functional theory
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~Received 19 February 2003; accepted 25 March 2003!

Several ‘‘reconstructive’’ proposals for density matrix functional theory are investigated, each of
which expresses the two-electron density matrix, and therefore the electronic energy, as a functional
of the natural orbitals and their occupation numbers. It is shown that for each of these functionals,
half of the parallel-spin eigenvalues of the reconstructed two-electron density matrix are necessarily
negative. Illustrative all-electron calculations for Be and LiH, in a variety of Gaussian basis sets,
demonstrate that these spurious negative eigenvalues lower the electronic energy substantially. In
spite of this, there is no indication that the variationally optimized energy diverges as the basis set
approaches completeness, as has been suggested based on calculations with a small number of
active orbitals. The apparent variational instability reported previously is attributed to qualitative
differences between the minimal-basis and extended-basis potential curves, for certain functionals.
However, we identify one functional that yields accurate LiH potential curves—comparable to full
configuration interaction results—in both minimal and extended basis sets. Explicitly antisymmetric
reconstructions are recommended as a remedy for the positivity problem. ©2003 American
Institute of Physics.@DOI: 10.1063/1.1574787#
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I. INTRODUCTION

Following a flurry of activity that produced many forma
results1 but no actual calculations, one-electron density m
trix functional theory~DMFT! languished for many years
but now interest in this topic has been rekindled by a num
of explicit proposals2–9 for calculating electronic energies a
functionals of the natural orbitals and their occupation nu
bers, that is, as functionals of the one-electron reduced
sity matrix ~1-matrix!. DMFT does not rely upon any nonin
teracting reference state and therefore incorporates fracti
occupation numbers in a natural way, which may provide
necessary infrastructure for an even-handed descriptio
both dynamical and nondynamical correlation. Moreover,
eliminating the rigid distinction between occupied and v
tual orbitals, DMFT provides a means to generate localiz
weakly occupied pseudonatural orbitals10–12 to replace
Hartree–Fock~HF! or Kohn–Sham virtual orbitals in com
pact expansions of correlated wave functions.

Several recent proposals for DMFT4–7,13–15constitute, at
least implicitly, a sort of generalized HF theory in which th
two-electron reduced density matrix~2-matrix! D̂ is ex-
pressed as a functionalD̂@ ĝ# of the 1-matrixĝ. Given such
a reconstruction functional, the electronic energy is dete
mined by variational minimization of the functionalE@ ĝ#

5tr(ĤD̂@ ĝ#). This brand of ‘‘reconstructive’’ DMFT
amounts to a variational 2-matrix theory where—in an eff
to reduce the exorbitant computational expense16 inherent to
such calculations—the 2-matrix is parametrized in terms
the 1-matrix. EnsembleN-representability constraints17 for
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acceptable 1-matrices are easy to implement, but are ins
cient to guarantee that the reconstructed 2-matrix
N-representable. Hence the burden of 2-mat
N-representability falls on the reconstruction functional.

This perspective on DMFT has interesting parallels
density functional theory~DFT!, where parametrizations o
the exchange–correlation hole, as a functional of the elec
density, figure prominently in the development of new e
ergy functionals.18–23Only for an exact reconstruction of th
hole is one assured thatE<E@r trial#, whereasE<E@ ĝ trial#
would be guaranteed in DMFT only if the exact reconstru

tion D̂@ ĝ# could be employed. For practical approximatio
there is no lower bound, at the theorem level, on eit
E@r trial# or E@ ĝ trial#. DFT survives as a viable methodolog
because, empirically, the energy does converge with res
to enlargement of the variational space.24–26Thus, while the
variationally optimized energy in approximate DFT may
higher or lower than the exact energy, the model exchan
correlation hole is at least associated with a finite energy
the complete-basis limit. Whether the model 2-matrices c

responding to proposed functionalsD̂@ ĝ# exhibit this
property—dubbedvariational stability—was questioned in a
recent study,27 where it was determined that optimize
DMFT energies for diatomic molecules decrease prec
tously as the number of active orbitals is increased.

The aforementioned result is intriguing but not conc
sive, because no more than six active orbitals were used
any molecule other than H2. For H2 , extrapolation to the
limit of a complete basis ofs and p functions yields a rea-
sonable result,14 but there has been no systematic study
the basis-set dependence of reconstructive DMFT for m
ecules that contain heavy atoms. The effect of higher ang

o-
5 © 2003 American Institute of Physics
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momentum basis functions also has not been scrutinized
serious way. In addition, because existing reconstruc
functionals fail to preserve antisymmetry of the 2-matr
there are serious questions about their behavior for same
electrons,28 which cannot be answered by examining H2. In
the present work we study Be and LiH, which incorpora
heavy atoms and same-spin electrons but are small en
so that large basis sets impart a great deal of variatio
flexibility.

Two questions are addressed in this work. First, does
variationally optimized electronic energy ultimately co
verge with respect to enlargement of the variational spa
Our results indicate that is does. In fact, the decrease
DMFT energy with respect to basis-set enlargement
roughly comparable to that of full configuration interactio
~FCI!, although polarization functions in DMFT prove to b
more effective in lowering the energy than they are in F
What appeared to be an instability in the small active-sp
calculations is instead the manifestation of a pronounc
qualitative discrepancy between the potential curves
tained using a minimal basis set and those calculated
extended basis sets. All of the functionals examined h
yield qualitatively correct LiH potential curves in a minim
basis set, but in several cases these potentials become
alistically shallow when extended basis sets are employe

Second, we examine in detail theN-representability vio-
lations manifested by the variationally optimized 2-matric
We give a general proof that half of the eigenvalues ofD̂aa

~the parallel-spin component ofD̂) are necessarily negativ
for each functional examined here. In certain applicatio
the magnitude of the most negative eigenvalue approa
30% of the largest positive eigenvalue, and in all cases
negative eigenvalues contribute substantially to the e
tronic energy. This behavior is inherent to the ansatz, but
shall argue that explicitly antisymmetric reconstruction fun
tionals are likely to assuage this positivity problem.

II. RECONSTRUCTION FUNCTIONALS

We considerŜz eigenstates of a spin-compensated~non-
spin-polarized! N-electron system, wherein the natural spin
orbitals are direct productsuwk& ^ us& and the 1-matrix has
spin blocksĝa5ĝb, with

ĝa5(
k

nkuwk&^wku. ~1!

~Throughout this work, Greek indices are used for spin wh
Latin indices denote spatial orbitals.! Spin blocks

D̂sm5(
i jkl

Di j ,kl
sm uw iw j&^wkw l u ~2!

of the 2-matrix will be reconstructed in the natural orbi
direct product basis,uw iw j&5uw i& ^ uw j&. In this basis the
matrix elements ofD̂aa are antisymmetric,

Di j ,kl
aa 52D ji ,kl

aa 52Di j ,lk
aa 5D ji ,lk

aa . ~3!

The elements ofD̂ab possess no special symmetry becau
this matrix is only one component of theab part of D̂. The
Downloaded 05 Nov 2006 to 128.146.173.210. Redistribution subject to A
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complete opposite-spin part ofD̂ consists of spin blocks
D̂ab[D̂abab, D̂abba, D̂baab, and D̂baba, only one of
which is permutationally independent.29,30 Generally, then,
the 2-matrix contains three independent spin blocks:D̂ab

[D̂abab, D̂aa[D̂aaaa, and D̂bb[D̂bbbb. The latter two
are identical for spin-compensated systems, so in this w
we deal only withD̂aa and D̂ab.

The 1- and 2-matrices are normalized such that 0<nk

<1, tr ĝa5N/2, trD̂aa5N(N22)/8, and trD̂ab5N2/8.
The 1-matrix derives from the 2-matrix according to the su
rule

g i , j
a 52~N21!21(

k
~Dik, jk

aa 1Dik, jk
ab !. ~4!

Existing reconstruction functionals for DMFT expre
the matrix elementsDi j ,kl

sm as functions of the natural occu
pation numbers, neglecting any explicit dependence ofDi j ,kl

sm

on the natural orbitals themselves. This is driven partly
convenience, but also because HF theory leads to one
reconstruction, and because the energy functional alread
herits a strong dependence on the natural orbitals, via
one- and two-electron integrals. This assumption may li
the present methods to spin-compensated states, becau
a spin-polarized state thea-spin natural orbitals differ from
the b-spin ones. In any case, a spin-restricted formalism
adopted here.

The reconstructions examined here each utilize
simple Hartree product

Di j ,kl
ab 5

ninj

2
d ikd j l ~5!

for the opposite-spin component of the 2-matrix. For t
parallel-spin component, the functionals of interest have
form

Di j ,kl
aa 5 1

2@ninjd ikd j l 2 f ~ni ,nj !d i l d jk#. ~6!

This implies an energy functional

E@$nk%,$uwk&%] 52(
i

ni hii 1(
i j

~2 ni nj^ i j u i j &

2 f ~ni ,nj ! ^ i j u j i &!, ~7!

wherehi j and^ i j ukl& denote one- and two-electron integra
in the uwk& basis.

Listed in Table I are the functionsf that define the cor-
rected Hartree~CH!,2,5–7 corrected Hartree–Fock~CHF!,5,6

and modified CHF~MCHF!6 functionals. The quantities

D i j 5ni~12nj !, L i j 5ni~22nj ! ~8!

TABLE I. Specification of reconstruction functionals, according to Eq.~6!.

Functional Refs. f (ni ,nj )

HF ninj

CH~z! 2, 5–7 (ninj )
z/2

SIC–CH~z! 4, 13, 15 (ninj )
z/21(ni

22ni
z)d i j

CHF~z! 5, 6, 32 ninj1zAD i i D j j

MCHF 6 (ninj1AL i i L j j )/2
IP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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have been introduced for succinctness. As advertised, the
functional adds an exchange correction to (ĝ ^ ĝ)/2, the Har-
tree 2-matrix, albeit one that does not fully annihilate se
interaction in the Hartree potential. The CHF functional ad
a correction to the HF 2-matrix28 ĝ`ĝ, in order to account
for the two-electron cumulant.31 This cumulant vanishes fo
an idempotent 1-matrix.

The functionals introduced in Table I appear in the
erature under a litany of pseudonyms, and the names in
duced here are an attempt to unify this nomenclature.
functional CH~z! generalizes CH~1!, which was derived in-
dependently by several authors,2,5,7 based on different crite
ria. The functional CHF~z! includes the scaling parameterz
suggested by Staroverov and Scuseria32 ~with an opposite
sign convention!, and recovers the original CHF functiona5

when z51. SIC–CH~z! is a partially self-interaction-
corrected version of CH~z!, introduced13,14,33as a generaliza
tion of the functional SIC–CH~1! proposed by Goedecke
and Umrigar.4,15 @In previous work,28 we referred to SIC–
CH~z! as CP~z!, and CH~z! was called SICP~z!.#

SIC–CH~z! is obtained from CH~z! by deleting all ‘‘or-
bital’’ self-interactions4 ~that is, all Dii ,i i

aa matrix elements!.
SIC–CH~z! retains some residualelectron self-interaction,
however, insofar as this functional is not antisymmetric. T
only antisymmetric reconstruction consistent with Eq.~6! is
the HF one,f (ni ,nj )5ninj , which is equivalent to both
CH~2! and SIC–CH~2!.

A few values of the adjustable parameterz are chosen
for the calculations in Sec. V. For CH~z! and SIC–CH~z!, we
choosez51 andz54/3. The latter value is an upper boun
on the range of acceptablez for these functionals, as dete
mined based upon electron-gas considerations,14,33 and pro-
duces more realistic electron-pair densities than those
tained using smaller values ofz.28 For CHF~z!, we consider
z50.7, z51, andz51.12. Whenz'0.7, CHF~z! yields di-
atomic potential curves with correct shape, while CHF~1.12!
produces accurate energies for the Be isoelectro
sequence.32

III. N-REPRESENTABILITY

Since the HF functional is the only antisymmetric reco
struction consistent with the ansatz in Eq.~6!, none of the
other functionals affords anN-representable 2-matrix. To
gain a more incisive understanding of theN-representability
violations, we analyze the so-calledD, Q, and G
conditions34–36 for the reconstructed 2-matrices. These co
straints specify that the two-electron density matrix (D̂), the
two-hole density matrix (Q̂), and the particle-hole densit
matrix (Ĝ) must be positive~semidefinite!. BecauseQ̂ and
Ĝ can be expressed in terms ofD̂, each constitutes a nece
sary requirement for anN-representable 2-matrix. Physicall
theQ- andG-conditions place bounds on the occupancies
two-electron states that do not follow from the Paul
Coleman bounds on the orbital occupancies.34 Although
these conditions are insufficient to guarantee thatD̂ is
N-representable, when taken together they are neverthe
quite strong, as indicated by the high quality of variation
Downloaded 05 Nov 2006 to 128.146.173.210. Redistribution subject to A
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2-matrix calculations constrained only byD̂, Q̂, and Ĝ
positivity.16,37–39SansG, the D and Q conditions are con-
siderably less restrictive.37

To specify these conditions, define an operatorP̂sm with
elements

Pi j ,kl
sm 5 1

2^CuÂis, j mÂks,lm
† uC&, ~9!

in which Âis, j m is a product of two creation and/or annihila
tion operators for the natural spin–orbital basis.P̂sm is the
metric matrix for the statesÂks,lm

† uC&, and must therefore be
positive. The choiceÂis, j m5âis

† â j m
† defines matrix elements

of D̂sm, while Âis, j m5âis â j m and Âis, j m5âis
† â j m , respec-

tively, define matrix elements ofQ̂sm and Ĝsm. ~This is a
slightly different G-matrix than the one introduced by Ga
rod and Percus.34! The selectionÂis, j m5âis â j m

† does not
generate an independent positivity condition, as the co
sponding metric matrix is positive if and only ifĜsm is
positive.38

For spin-compensated states,D̂, Q̂, and Ĝ are com-
pletely determined by theiraa and ab spin blocks. Upon
rearranging some creation and annihilation operators,
obtains

Qi j ,kl
aa 5Dkl,i j

aa 1 1
2@d l j ~dki2gk,i

a !2d l i ~dk j2gk, j
a !

1dk jg l ,i
a 2dkig l , j

a #, ~10!

Qi j ,kl
ab 5Dkl,i j

ab 1 1
2~d ikd j l 2gk,i

a d j l 2g l , j
b d ik!, ~11!

Gi j ,kl
aa 52Dil ,k j

aa 1 1
2g i ,k

a d j l , ~12!

and

Gi j ,kl
ab 52Dil ,k j

ab 1 1
2g i ,k

a d j l . ~13!

These expressions are valid in an arbitrary basis of ortho
mal orbitals.

Assuming a Hartree-product form forD̂ab, and intro-
ducing the abbreviations

Hi j 5ninj , V i j 512ni2nj , ~14!

one obtains

Qi j ,kl
ab 5 1

2d ikd j l ~Hi j 1V i j ! ~15!

and

Gi j ,kl
ab 5 1

2d ikd j l D i j . ~16!

These matrices are diagonal, with eigenvaluesQi j ,i j
ab and

Gi j ,i j
ab that are non-negative for 0<ni ,nj<1. Thus the

Hartree-product reconstruction ofD̂ab satisfies each of the
D, Q, andG conditions.

With D̂aa reconstructed according to Eq.~6!, one ob-
tains

Qi j ,kl
aa 5 1

2d ikd j l ~Hi j 1V i j !2 1
2d i l d jk@ f ~ni ,nj !1V i j # ~17!

and

Gi j ,kl
aa 5 1

2d ikd j l @ni2 f ~ni ,nj !#1 1
2Hikd i j dkl . ~18!
IP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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TABLE II. Eigenvalues ofD̂aa, Q̂aa, andĜaa.

Functional di5qi di j
2 di j

15qi j
1 qi j

2 gi j

CH~z! (ni
22ni

z)/2 (Hi j 1Hi j
z/2)/2 (Hi j 2Hi j

z/2)/2 V i j 1(Hi j 1Hi j
z/2)/2 (ni2Hi j

z/2)/2
SIC–CH~z! 0 (Hi j 1Hi j

z/2)/2 (Hi j 2Hi j
z/2)/2 V i j 1(Hi j 1Hi j

z/2)/2 (ni2Hi j
z/2)/2

CHF~z! 2zD i i /2 Hi j 1zAD i i D j j /2 2zAD i i D j j /2 V i j 1Hi j 1zAD i i D j j /2 (D i j 2zAD i i D j j )/2
MCHF 2D i i /2 (3Hi j 1AL i i L j j )/4 (Hi j 2AL i i L j j )/4 V i j 1(3Hi j 1AL i i L j j )/4 (2ni2Hi j 2AL i i L j j )/4
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These matrices, along withD̂aa, exhibit a simple block
structure that allows us to obtain most of their eigenval
analytically.

ConsiderD̂aa first. Its only nonzero elements have th
form Di j ,i j

aa and Di j , j i
aa , thus D̂aa consists entirely of 131

blocks (Dii ,i i
aa ) and 232 blocks

Bi j 5S Di j ,i j
aa Di j , j i

aa

D ji ,i j
aa D ji , j i

aa D . ~19!

The 131 blocks contribute eigenvalues

di[Dii ,i i
aa 5 1

2@ni
22 f ~ni ,ni !#, ~20!

while Bi j has eigenvalues

di j
65 1

2@ninj7 f ~ni ,nj !#. ~21!

The complete set ofD̂aa eigenvalues is$di%ø$di j
6u i , j %.

The eigenvaluedi is associated with the eigenvectoruw iw i&,
while di j

6 is associated with the eigenvector (uw iw j&
6uw jw i&)/&.

Q̂aa has the same block structure asD̂aa. Eigenvalues
arising from the 131 blocks are the same as forD̂aa, qi

5di , while the 232 blocks yield eigenvaluesqi j
15di j

1 and

qi j
25V i j 1

1
2@ninj1 f ~ni ,nj !#. ~22!

Last, Ĝaa consists of 131 blocks, along with a single
R3R block, whereR is the number of orbitals. The latter ha
elements

Gii , j j
aa 5 1

2$ninj1d i j @ni2 f ~ni ,ni !#%. ~23!

The 131 blocks have elementsGi j ,i j
aa , for iÞ j , and thus

yield eigenvalues

gi j 5
1
2@ni2 f ~ni ,nj !#. ~24!

In summary, we have analytic expressions for all eig
values ofD̂, Q̂, and Ĝ except those arising from a sing
R3R block of Ĝaa. Functional-specific expressions fordi ,
di j

6 , qi j
2 , and gi j are compiled in Table II. It follows tha

di j
2>0 for each functional, sincef , D i j , and L i j are each

non-negative on the domain of allowed occupation numb
BecauseV i j 1Hi j /2>0, it also follows thatqi j

2>0 for each
functional. Consequently, these functionals satisfy theQ
condition if and only if they satisfy theD condition.

Unfortunately, all of the functionals listed in Table I vio
late theD condition. For anyz.0, both CHF~z! and MCHF
have di<0 and di j

1<0 for all values ofni and nj . These
inequalities are strict except in the case of integer occup
cies. For CH~z!, di<0 anddi j

1<0 for anyz<2, again with
strict inequalities for fractional occupancies. Finally, SIC
Downloaded 05 Nov 2006 to 128.146.173.210. Redistribution subject to A
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CH~z! has the same eigenvalues as CH~z!, except thatdi

[0 in the former~by construction!. Thus for each of these
functionals,half of the eigenvalues ofD̂aa will always be
negative. Though the analytic formulas in Table II can
used to place rigorous bounds on the magnitudes of
negative eigenvalues, for spin-compensated systems t
theoretical lower bounds are unlikely to be approached
practice, given that the reconstructedD, Q, andG matrices
are each positive in the limit of an idempotent 1-matr
Negative eigenvalues arising in applications are examine
Sec. V.

IV. VARIATIONAL PROCEDURE

In contrast to HF theory, minimization of a more gene
density matrix functional with fractional occupation numbe
cannot be cast as a self-consistent eigenvalue problem
stead, direct minimization ofE@$ni%,$uw i&%] is required, sub-
ject to the constraints 0<ni<1, ( ini5N/2, and ^w i uw j&
5d i j . This section describes our algorithm for carrying o
this optimization, which differs from previous
procedures27,40–42in several important respects. These diffe
ences are pointed out in the description that follows.

Bounds on the occupation numbers are enforced by
ting ni5(cosvi)

2 and varying thev i without constraint. The
trace constraint is implemented by optimizing the penaliz
energy function

Ẽ5E1KS N22(
i

ni D 2

, ~25!

in which K is a large, positive constant. Having optimizedẼ
for a particular value ofK, the energy can be reoptimize
rapidly using a larger value ofK, in order to improve the
trace, since very little rate-limiting orbital reoptimization
required.

An alternative to a penalty function is to parametrize t
vector of occupation numbers in a manner that automatic
preserves the trace.40 In our experience, however, freedom
violate the trace constraint accelerates convergence by
abling relatively large changes in the occupation number
early stages in the optimization. Furthermore, relaxation
the trace constraint can be crucial as a means to extricate
optimization from a local minimum that is not the glob
minimum.

Analytic derivatives

]E

]v i
52~sin 2v i !

]E

]ni
~26!
IP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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are easily computed, but we find them unnecessary and
cost effective. Note that]E/]v i50 if ni is an integer. As
such, we typically initiate the optimization using HF orbita
but using occupation numbers that are perturbed slig
from their HF values.

Orbital optimization, subject to orthonormality con
straints, is carried out in a manner similar to that used
perform diagonalization-free self-consistent-field calc
lations.43–49The natural orbitalsuw i& are represented in term
of some fixed, orthonormal basis set,

uw i&5(
j

Ci j uc j&, ~27!

with initial guess coefficients that form an orthogonal mat
C. Any variation C̃5C1dC that preserves orthonormalit
can be parametrized as

C̃5exp~A!C'~ I1A1 1
2A

2!C, ~28!

where A52AÁ is a skew-symmetric matrix of auxiliary
variational parameters. We vary theAi j , for fixed C and
fixed occupation numbers, so as to minimizeẼ, which is
evaluated at each optimization step using the orbital coe
cientsC̃i j . Only wheni , j doesAi j constitute an indepen
dent variational parameter, which we denote byai j . Then
using the fact that]Amn /]akl5dmk dnl2dml dnk , one ob-
tains orbital gradients

]Ẽ

]ai j

5(
mn

]Ẽ

]C̃mn

S ]C̃mn

]Ai j

2
]C̃mn

]Aji
D , ~29!

where i , j is assumed but the summation indices are un
stricted. As indicated in Eq.~28!, we truncate exp(A) at sec-
ond order, which allows us to evaluate the derivativ
]C̃mn /]Ai j in closed form. This approximation notwith
standing, C̃ is orthogonal and therefore the derivativ
]Ẽ/]C̃mn can be evaluated directly from the energy fun
tional, whereas the derivatives]Ẽ/]Cmn cannot.

Let us digress briefly to compare this method to an
ternative technique15,27,50in which the expansion coefficient
Ci j are varied directly. As a resultC is not orthogonal during
the course of the optimization, but for sufficiently sma
variations an orthogonal matrixC̃ is obtained by first-order
symmetric orthogonalization,

C̃5C~CÁC!21/2' 3
2C2 1

2CCÁC. ~30!

This relationship is then used to encode the orthogona
constraints into the gradient, via the chain rule

]Ẽ

]Ci j

5(
mn

]Ẽ

]C̃mn

]C̃mn

]Ci j

. ~31!

As before, the derivatives]Ẽ/]C̃mn are obtained directly
from the energy functional, while]C̃mn /]Ci j is gleaned
from Eq. ~30!.

For R orbitals, the symmetric orthogonalization schem
employsR2 variational parameters for the orbital optimiz
tion ~which is the rate-limiting step!, compared toR(R
Downloaded 05 Nov 2006 to 128.146.173.210. Redistribution subject to A
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21)/2 for the exponential parametrization. Both metho
preserve orthogonality only in the limit of infinitesimal step
though we find this restriction to be much less severe in
case of the exponential parametrization, presumably bec
we use a second-order approximation to exp(A) as compared
to the first-order approximation to (CÁC)21/2 in Eq. ~30!. As
corroborated by Cohen and Baerends,27 when the first-order
symmetric orthogonalization scheme is used, we find that
orbital coefficient matrix must be reorthogonalized, via ite
tive application of Eq.~30!, each time theCi j are updated.
Using the exponential parametrization, 10–30 updates tA
can be made, at early stages in the optimization, before

matrix C̃5(I1A1A2/2)C deviates from orthogonality by
more than 1026, as judged by the matrix elements o

uC̃ÁC̃2I u. In the vicinity of the minimum,A can be updated
100–200 times before this threshold is breached. It is onl
this point that we reorthogonalize, using a few iterations
Eq. ~30!. These intermediate orthogonalizations are delet
ous to the orbital optimization, as they degrade the quality
the iteratively constructed inverse Hessian and thus
versely affect the selection of a line search direction. It
therefore significant that the second-order exponential
rametrization can maintain orthogonality over a large nu
ber of optimization steps. This robustness explains why
find this parametrization to be more stable than first-or
methods based on either symmetric orthogonalization or
exponential parametrization.

The choice of orthogonalization method is also impo
tant. Arguably, the most widely disseminated numerical
thogonalization technique is singular value decompositio51

which in most implementations utilizes row and column p
mutations for greater numerical stability. This kind of pivo
ing, however, produces an orthogonal matrix that frequen
bears little resemblance to the original matrix, even if t
latter was nearly orthogonal. This has devastating con
quences within an optimization algorithm. In contrast, t
first-order scheme in Eq.~30! is more benign and does no
alter the coefficient matrix too much, provided that this m
trix is almost orthogonal.

For definiteness, we list our complete optimization alg
rithm for E@ ĝ#.

~1! Minimize Ẽ(v1 ,...,vR) for a fixed set of orbitals, using
Powell’s quadratically convergent algorithm,51 typically
without analytic first derivatives.

~2! For fixed occupation numbers~including any residual
trace error!, optimize the orbitals using the Broyden
Fletcher–Goldfarb–Shanno~BFGS! variable metric
algorithm.51

~a! PassA50 and an orthogonal matrixC to the BFGS
subroutine.C is not changed within this routine.

~b! Update the parametersai j by a single BFGS step
using the derivatives in Eq.~29!, and thereby update

the matrixC̃ according to Eq.~28!.
~c! If the BFGS procedure has converged, or if any e

ment of uC̃ÁC̃2I u exceeds a specified toleranc
proceed to step 3. Otherwise repeat step 2b.

~3! Set C5C̃ and A50, then return to the main program
IP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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OrthogonalizeC by iterative application of Eq.~30!,
then return to step 2. Repeat this cycle until the orbit
are converged.

~4! If either the orbital or the occupancy optimization r
sulted in a significant energy change, then transform
integrals to the current natural orbital basis, setC5I ,
and return to step 1.

~5! OnceẼ is converged with respect to all variational p
rameters, check the value of the penalty function. If
absolute value is greater than or comparable to the
ergy convergence criterion, increase the value ofK ~typi-
cally by a factor of 100! and return to step 1.

The sole purpose of the integral transformation in ste
is to accelerate optimization of theni . By virtue of this
transformation,C is always equal to an identity matri
within the occupancy-optimization subroutine. Formally, t
integral transformation increases the method’s scaling
O(R5), though at present~with HF orbitals as the initial
guess!, this transformation is facile relative to the orbit
optimization and provides a compelling incentive to d
couple the orbital- and occupancy-optimization steps, wh
more than compensates for the fact that these two optim
tions must be iterated when performed separately. In fac
is sometimes advantageous to abort the orbital optimiza
~at step 3! prior to convergence, then transform the integra
reoptimize the occupation numbers, and finally begin the
bital optimization anew. In our implementation, this is do
whenever the orbitals have been reorthogonalized 5

TABLE III. FCI energies for basis sets used in this study.

Basis set

E/hartree

Be LiH

STO-6G 214.541 904 27.972 331
6-31G 214.613 545
6-31G* 214.616 635 28.003 126
6-311G** 28.009 185
6-311G 214.632 864 28.019 522
6-311G(•,3p)a 28.035 533
6-311G(d,2p) 28.035 875
6-311G1(d,3p) 28.036 749
6-311G(2d) 214.633 952
6-311G(2d f ) 214.640 254

aContains polarization functions on the H atom only.
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times~typically corresponding to several hundred BFGS u
dates! without locating a minimum. There is no mention o
an intermediate integral transformation in the existi
literature4,27,32,40–42on orbital optimization in DMFT, prob-
ably because previous studies have focused on smaller b
sets than the ones employed here.

In the special case of the HF functional, one may se
zero all of theai j except those that couple occupied a
virtual orbitals. This reduces the number of orbital para
eters fromR(R21)/2 to N(R2N) and makes HF calcula
tions facile relative to DMFT. The optimizations performe
here bear more similarity, at the algorithm level, to multico
figurational self-consistent-field~MCSCF! calculations.48

V. NUMERICAL RESULTS AND DISCUSSION

In this section we present calculations for Be and LiH
a variety of basis sets, and compare DMFT to FCI corre
tion energies (Ec5E2EHF). The FCI calculations were car
ried out with theGAMESSprogram,52 and we utilize standard
Pople-type basis sets53 of contracted Gaussian orbitals, ava
able by keyword inGAMESS. These are listed in Table II
along with the FCI energy corresponding to each. For b
systems, the largest basis set consists of 35 orbitals. In
trast to several previous studies,4,27,42 we do not freeze any
orbitals or occupation numbers.

A. Variational stability

Optimized correlation energies for Be, and for LiH at i
experimental54 bond length, are listed in Table IV, while
Figs. 1–4 compare the DMFT energies to the FCI ones. C
sistent with other results,42 the CHF~0.7! functional con-
verges to the HF solution in each case.~This is not true for
LiH at stretched bond lengths, as discussed below.! The
CH~4/3! and SIC–CH~4/3! functionals recover very little
correlation energy~Figs. 3 and 4!, yield near-integer occu-
pancies, and are generally quite similar to HF, except at v
large Li–H distance.

Figures 1 and 2 present a bit of good news. There,
solute energies obtained from DMFT are plotted against
corresponding FCI energies, which provide a measure
basis-set completeness. The CH~4/3! and SIC–CH~4/3! data
nearly overlap on the scales in these figures, so the latte
omitted. The DMFT energy for both CH~4/3! and SIC–
CH~4/3! exhibits a torpid, HF-like decrease relative to th
14 548
54 237
04 209
02 834
30 360
60 957
81 224
50 702
TABLE IV. Correlation energies in selected basis sets.

Method

Be Ec /hartree LiH(R51.5953 Å) Ec /hartree

6-31G 6-31G* 6-311G
6-311G
(2d)

6-311G
(2d f ) 6-31G* 6-311G** 6-311G

6-311G
(•,3p)

6-3111G
(d,3p)

CH~1! 0.103 988 0.131 558 0.137 328 0.165 444 0.183 728 0.061 616 0.070 708 0.085 927 0.107 866 0.1
SIC–CH~1! 0.032 810 0.046 609 0.059 237 0.069 721 0.081 952 0.019 090 0.025 401 0.038 625 0.052 288 0.0
CH~4/3! 0.005 442 0.006 006 0.006 592 0.006 929 0.007 375 0.001 996 0.002 215 0.003 211 0.004 092 0.0
SIC–CH~4/3! 0.002 800 0.003 275 0.003 909 0.004 181 0.004 585 0.001 197 0.001 283 0.002 161 0.002 758 0.0
CHF~1! 0.039 193 0.051 409 0.038 192 0.057 593 0.063 643 0.022 741 0.025 049 0.020 113 0.026 407 0.0
CHF~1.12! 0.077 148 0.096 050 0.076 215 0.105 416 0.114 623 0.047 076 0.051 187 0.042 781 0.053 970 0.0
MCHF 0.083 740 0.104 986 0.102 355 0.127 157 0.139 585 0.047 556 0.053 536 0.060 306 0.075 435 0.0
FCI 0.046 781 0.049 690 0.060 990 0.061 999 0.068 301 0.022 460 0.027 849 0.034 880 0.049 735 0.0
IP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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FCI energy. Remarkably, for the remaining functionals
DMFT energy decreases at a rate that is not greatly diffe
from that of FCI. There is no reason to expect thisa priori,
and in view of our results concerningN-representability, the
mere absence of any precipitous drops in the DMFT ene
with respect to increasing completeness is reassuring.

Figure 1 also highlights the fact that certain density m
trix functionals are quite sensitive to the presence of po
ization functions in the basis set, which has been no
previously.42 For both LiH and Be, the FCI energy is~coin-
cidentally! 0.016 a.u. lower in the 6-311G basis than in t
6-31G* basis. In contrast, within DMFT the 6-31G* basis
set frequently yields a lower energy, and if not then the d
ference is small. Figure 3, which depicts the quantity 1
3(EDMFT2EHF)/(EFCI2EHF), emphasizes the same poin
At the boundary between the double-zeta and triple-zeta
quences of basis sets, the functionals CH~1!, CHF~1!,
CHF~1.12!, and MCHF each exhibit a steep drop in the fra
tion of the FCI correlation energy that is recovered. SIC
CH~1!, in contrast, is far less sensitive to the presence
polarization functions.

FIG. 1. DMFT vs FCI energies for Be. Dashed guide lines are drawn
allel to the lineE(DMFT)5E(FCI).

FIG. 2. DMFT vs FCI energies for LiH~at R51.5953 Å). Dashed guide
lines are drawn parallel to the lineE(DMFT)5E(FCI).
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Optimized occupation numbers for Be are listed in Ta
V. Atomic Be is an interesting test case on account o
near-degeneracy between the 2s and 2p manifolds, which
leads to an anomalously large FCI occupation num
(;0.03) in the virtual space. SIC–CH~1!, CH~4/3!, and
SIC–CH~4/3! each reproduce this phenomena at a qualita
level, but the CHF~z! and MCHF functionals shift far too
much occupancy into the virtual orbitals. In LiH, the CHF~z!
and MCHF occupation numbers also deviate significan
from integer values, as shown in Fig. 5.

The plots of DMFT versus FCI energy for LiH~Fig. 2!
are smoother than the corresponding plots for Be~Fig. 1!,
and the three LiH data points representing polarized, trip
zeta basis sets are nearly coincident. However, full poten
energy curves reveal important differences among basis
Figures 6 and 7 compare LiH potential curves obtained w
the STO-6G, 6-31G* , and 6-311G(•,3p) basis sets. In the
minimal basis set, each functional produces a reasonable
tential curve, though certain differences are evident at la
internuclear distances, as detailed below. For larger b
sets, however, the CH~1!, CHF~z!, and MCHF potentials are
far too shallow.@CHF~0.7! and CHF~1.12! results are not
shown, but are similar to CHF~1! in this respect.#

r-FIG. 3. Be correlation energies, as fractions of the FCI correlation ene

FIG. 4. LiH correlation energies~at R51.5953 Å), as fractions of the FC
correlation energy.
IP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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TABLE V. Largest occupations numbers for Be, up to degeneracy and excluding a unit-occupied core

Method STO-6G 6-31G* 6-311G
6-311G
(2d)

6-311G
(2d f )

CH~1! 0.793 0.704 0.728 0.673 0.658
0.103 0.088 0.080 0.090 0.093

SIC–CH~1! 0.982 0.961 0.963 0.952 0.948
0.009 0.010 0.009 0.011 0.011

CH~4/3! 0.987 0.984 0.984 0.983 0.983
0.006 0.005 0.005 0.005 0.005

SIC–CH~4/3! 0.996 0.995 0.994 0.994 0.994
0.002 0.002 0.002 0.002 0.002

CHF~1! 0.762 0.631 0.667 0.605 0.590
0.119 0.117 0.107 0.119 0.121

CHF~1.12! 0.672 0.551 0.582 0.526 0.512
0.164 0.141 0.133 0.140 0.141

MCHF 0.772 0.669 0.697 0.637 0.621
0.114 0.101 0.092 0.104 0.106

FCI 0.912 0.903 0.905 0.908 0.909
0.044 0.032 0.031 0.030 0.030
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With the beneficial hindsight of these all-electron calc
lations, the same defect is just barely perceptible in
active-space LiH/CHF~1! potential curves calculated by Co
hen and Baerends.27 These authors observe that the CHF~1!
potential becomes more shallow as the number of active
bitals is increased from three to five, which they interpret
possible evidence of variational instability. However, we o
serve no further qualitative change upon incorporating ad
tional polarization or diffuse functions@e.g., enlarging the
basis to 6-3111G(d,3p)], and thus we conclude that th
changes observed by Cohen and Baerends are artifacts
minimal basis~or minimal active space!. The shallow poten-
tial curves illustrated in Figs. 6 and 7 for extended basis s
are similar to those obtained for other diatomic molecu
using the same functionals,32,42and we believe that this is th
true nature of diatomic potentials for these functionals.

In contrast to the ill behavior of CH~1!, CHF~z!, and
MCHF, the functionals SIC–CH~1!, CH~4/3!, and SIC–
CH~4/3! produce reasonable potential curves in each b
set. The latter two functionals yield near-HF potentials,
cept at large internuclear separation, while the SIC–CH~1!
potentials~Fig. 6! are actually quite close to the FCI ones
moderate Li–H distance. The dissociative asymptote

FIG. 5. Largest LiH/6-311G(d,2p) occupation numbers, up to degenera
and excluding a unit-occupied core orbital. Also shown are potential cu
for the SIC–CH~1! ~solid line! and CHF~1! ~broken line! functionals, each
scaled by the same factor.
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SIC–CH~1! is much too high in the minimal basis but
significantly improved in the other basis sets.

LiH/6-311G(•,3p) potential curves for SIC–CH~1!,
CHF~0.7!, and CHF~1! are compared in Fig. 8. The behavio
of the CHF functionals here is especially interesting. ForR
&1.5Re , CHF~0.7! converges to the HF energy, but at larg
bond lengths the CHF~0.7! potential curve is vastly superio
to the HF one. Not only is the asymptotic energy lower th
HF, but the inflection point in the potential occurs at a shor
bond length, leading to a more realistic shape. CHF~0.7! is
also superior to SIC–CH~1! in this respect; although the
SIC–CH~1! potential is quite close to FCI forR&2Re ,
SIC–CH~1! turns over too slowly in the asymptotic region
There is nothing special aboutz50.7 in this regard;z
50.65 andz50.75, for example, yield similar diatomic po
tential curves.32 Although it is probably a coincidence, for
sufficiently large basis CHF~1! produces a potential curv
that is almost purely repulsive, but whose asymptote yie
an essentially exact55,56 dissociation energy.

Confronted with these facts, it is natural to inqui
whether there is some hybrid of SIC–CH~1! and CHF~z! that
looks mostly like the former at modest bond lengths, y
incorporates the early turnover of the latter in the dissoc

s
FIG. 6. LiH potential curves obtained with~a! the STO-6G basis,~b! the
6-31G* basis, and~c! the 6-311G(•,3p) basis.
IP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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tive regime. No such hybrid has been examined to d
though a hybrid functional

Ehybrid5lECH~1!1~12l!ECHF~1! , ~32!

with parameterl optimized for He atom, has been tested42

We have demonstrated, however, that for a sufficiently la
basis neither of these two constituent functionals generat
proper potential energy curve, so it is not surprising that
above hybrid also yields qualitatively incorrect diatomic p
tentials.

B. N-representability

The spectra ofD̂aa, Q̂aa, andĜaa, reconstructed from
variationally optimized 1-matrices, have also been obtain
For all of the functionals except CHF~1.12!, we find that the
R3R block (Gii , j j

aa ) of Ĝaa is positive. For all remaining
eigenvalues we possess analytic formulas~Table II!. Of
these,di and di j

1 are necessarily negative~or zero! and gi j

can also be negative.
Table VI summarizes the spectra ofD̂aa and Ĝaa ob-

tained for Be in the best basis set utilized he
6-311G(2d f ). This basis consists of 35 orbitals, so there
595 di j

1 and 1190gi j eigenvalues. As indicated in the tabl
most of thedi j

1 are more negative than21024, except in the

FIG. 7. LiH potential curves obtained with~a! the STO-6G basis,~b! the
6-31G* basis, and~c! the 6-311G(•,3p) basis.
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case of the CH~4/3! and SIC–CH~4/3! functionals. Results
for the LiH/6-311G(d,2p) 2-matrix ~Table VII! are similar.
In this case there are 28 orbitals, hence 378di j

1 eigenvalues.
For the functionals considered in this work, we ha

shown that each 232 block Bi j is associated with exactly
one negative and one positive eigenvalue. More gener
we suggest that such is likely to be the case in practice~that
is, for variationally optimized density matrices! for any an-
satz exhibiting this simple block structure, unless negat
eigenvalues are somehow excluded by design. To unders
why, consider the natural expansion ofD̂aa, which has the
form

D̂aa5(
i

di uw iw i&^w iw i u

1(
i , j

(
1,2

di j
6~ uw iw j&^w iw j u6uw iw j&^w jw i u! ~33!

for any reconstruction exhibiting theBi j block structure.D̂aa

contributes 2E2
aa to the electron repulsion energy, whe

E2
sm5tr(r 12

21 D̂sm), which can be decomposed into a sum
natural geminal pair energies. The pair energies for the n
ral geminals associated withdi , di j

1 , and di j
2 are ^ i i u i i &,

^ i j u i j &1^ i j u j i &, and^ i j u i j &2^ i j u j i &, respectively. Whereas

FIG. 8. LiH/6-311G(•,3p) potential curves.
TABLE VI. Spectrum ofD̂aa ~first line for each functional! andĜaa ~second line!, for Be/6-311G(2d f ).

Functional
Largest

eigenvalue
Most neg.
eigenvalue

No. ,2102n

n56 n54 n52

CH~1! 0.7344 20.1126 629 602 65
0.7294 20.1059 544 433 49

SIC–CH~1! 0.9608 20.0473 595 438 27
0.9614 20.0473 542 291 27

CH~4/3! 0.9860 20.0121 190 45 6
0.9848 20.0121 100 35 6

SIC–CH~4/3! 0.9950 20.0062 130 33 0
0.9955 20.0062 67 33 0

CHF~1! 0.5908 20.1210 629 492 37
0.6960 20.0554 528 312 15

CHF~1.12! 0.5137 20.1399 630 504 46
0.6577 20.0630 672 371 39

MCHF 0.6973 20.1178 629 602 63
0.7101 20.0856 547 390 32
IP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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TABLE VII. Spectrum ofD̂aa for LiH/6-311G(d,2p) at Re ~first line for each functional!, 1.5Re ~second line!,
and 3Re ~third line!.

Functional
Largest

eigenvalue
Most neg.
eigenvalue

No. ,2102n

n56 n54 n52

CH~1! 0.8411 20.1075 405 364 46
0.7854 20.1176 405 369 52
0.6748 20.1249 405 378 57

SIC–CH~1! 0.9820 20.0396 378 189 16
0.9753 20.0530 378 230 18
0.9271 20.0939 378 307 27

CH~4/3! 0.9950 20.0093 116 27 0
0.9878 20.0201 136 33 2
0.7673 20.0738 178 51 5

SIC–CH~4/3! 0.9981 20.0047 83 25 0
0.9969 20.0082 90 25 0
0.9811 20.0275 134 34 2

CHF~1! 0.7771 20.0869 406 283 14
0.6939 20.1064 406 295 21
0.5768 20.1222 406 335 22

CHF~1.12! 0.7048 20.1169 406 337 25
0.6348 20.1301 406 345 29
0.5489 20.1388 406 352 43

MCHF 0.8292 20.0911 405 356 42
0.7683 20.1038 405 369 50
0.6613 20.1219 405 378 56
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^ i j u i j &2^ i j u j i & can be positive or negative, the other tw
pair energies are non-negative; consequently the energ
always lowered by admitting negative eigenvalues forD̂aa.
Moreover, this unphysical energy lowering occurs by a ‘‘d
rect’’ mechanism, that is, simply by changingdi or di j

1 , with-
out modifying the orbitals.

To quantify the energy lowering attributable to negati
eigenvalues ofD̂aa, we have decomposed each optimiz
electronic energy into a one-electron part, 2E1

a

52 tr(ĥ ĝa), and a two-electron part, 2(E2
aa1E2

ab). E2
aa is

further decomposed into natural geminal pair energies
described above. The resulting energy decompositions
 2006 to 128.146.173.210. Redistribution subject to A
is

as
re

given in Table VIII. Also tabulated isuRu, whereR is the
ratio of negative- to positive-eigenvalue contributions
E2

aa . Except for the near-HF functionals CH~4/3! and SIC–
CH~4/3!, this ratio ranges from 0.4–0.8, meaning that ne
tive eigenvalues of the 2-matrix annihilate 40%–80% of t
parallel-spin electron repulsion energy arising from the po
tive eigenvalues. In absolute terms, this anomalous ene
lowering is huge—frequently a hartree or more. Clearly,

negative eigenvalues ofD̂aa are crucial to determining the
optimized electronic energy.

As we have indicated, numerous negative 2-matrix
genvalues are probably to be expected in reconstruc
TABLE VIII. Decomposition of DMFT electronic energies for Be/6-311G(2d f ) ~upper data set! and LiH(R51.5953 Å)/6-3111G(d,3p) ~lower data set!.
All values are in hartrees.

Functional 2E1
a

Contributions to 2E2
aa

2E2
ab E uRuFrom $di% From $di j

1% From $di j
2%

HF 219.061 601 0.000 000 0.000 000 0.911 416 3.578 232 214.571 953 0.00
CH~1! 218.668 248 20.157 949 21.755 649 2.481 845 3.429 023 214.670 978 0.77
SIC–CH~1! 218.997 737 0.000 000 20.784 286 1.606 510 3.559 236 214.616 277 0.49
CH~4/3! 219.043 014 20.004 414 20.076 264 0.905 666 3.571 371 214.573 330 0.09
SIC–CH~4/3! 219.054 487 0.000 000 20.044 568 0.950 235 3.576 077 214.572 744 0.05
CHF~1! 218.611 223 20.174 828 20.724 415 1.532 446 3.393 895 214.584 124 0.59
CHF~1.12! 218.518 993 20.216 928 21.007 801 1.767 850 3.361 121 214.614 750 0.69
MCHF 218.633 732 20.168 191 21.476 371 2.228 729 3.411 587 214.637 979 0.74

HF 212.465 925 0.000 000 0.000 000 0.669 819 2.814 929 28.981 177 0.00
CH~1! 212.122 610 20.118 276 21.025 775 1.601 107 2.657 043 29.008 510 0.71
SIC–CH~1! 212.416 512 0.000 000 20.509 962 1.114 852 2.811 963 28.999 659 0.46
CH~4/3! 212.455 077 20.002 228 20.046 952 0.712 088 2.813 598 28.978 571 0.07
SIC–CH~4/3! 212.460 630 0.000 000 20.029 530 0.695 060 2.814 948 28.980 153 0.04
CHF~1! 212.069 959 20.115 591 20.248 405 0.869 255 2.605 495 28.959 206 0.42
CHF~1.12! 211.941 571 20.159 687 20.405 064 1.000 109 2.548 057 28.958 156 0.56
MCHF 212.308 129 20.157 320 21.051 491 1.680 444 2.774 178 29.062 319 0.72
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DMFT, unless specific steps are taken to avoid them.
SIC variant of CH~z! takes a step in this direction by remo
ing the Dii ,i i

aa matrix elements in the natural orbital dire
product basis. This annihilates most~though not all! of the
self-interaction associated with CH~z!.4 What is more, the
remaining negative eigenvaluesdi j

1 , which have the same
analytic form for both CH~z! and SIC–CH~z!, tend to be
closer to zero for the latter functional, and their contributi
to the energy is also much reduced in the case of S
CH~z!. Unfortunately, the aforementioned self-interacti
correction is basis-set-specific, and consequently the S
CH~z! energy functional is not invariant to unitary transfo
mations among orbitals with degenerate occupancies.40 Thus
the energy will generally change if, for example, real line
combinations are substituted for primitive spherical harm
ics in any orbitals with nonzero angular momentum.

In contrast to thisad hocprocedure for removing self
interaction, any approximate reconstruction function
D̂aa@ĝ# that preserves the full antisymmetry of the 2-mat
~not just the symmetryDi j ,kl

aa 5D ji ,lk
aa , which is satisfied by

all of the functionals considered here! is completely free of
self-interaction, by construction, and does not suffer
aforementioned anomaly in the case of degenerate occu
cies. Consider an antisymmetric ansatz forD̂aa@ĝ# that con-
sists of the sameBi j block structure as the functionals stu
ied here. There are no 131 blocks for such a functional, an
each 232 block Bi j contains only one independent eleme
and has eigenvalues 2Di j ,i j

aa and zero. Hence antisymmetr
cures the positivity problem, provided that the geminal po
lations 2Di j ,i j

aa are themselves positive.
Antisymmetry implies positivity only for extremely

sparse 2-matrices with theBi j block structure. More gener
ally, antisymmetric reconstruction functionals need n
eliminate negative eigenvalues ofD̂aa altogether, but may
avoid large ones, for two reasons. First, elements of theBi j

blocks, which represent geminal populations, should be
larger in magnitude than off-diagonal 2-matrix elemen
which represent coherences between geminals. The Sch
inequality dictates that

uDi j ,kl
aa u2<Di j ,i j

aa Dkl,kl
aa , ~34!

though in most cases the coherencesDi j ,kl
aa are significantly

smaller than this theoretical upper bound. As such, these
ements represent small perturbations to the spectrum d
mined by theBi j blocks. Second, one finds from Eq.~4! that
matrix elements ofD̂aa lying outside theBi j blocks contrib-
ute only to off-diagonal elements of the 1-matrix. IfD̂aa is
reconstructed in the natural orbital product basis, these
diagonal contributions must sum to zero. Although the o
diagonal elements ofD̂aa can be positive or negative, on
hopes that this sum rule leads them to be small, in the nat
orbital product basis.~The off-diagonal elements ofD̂aa will
be equal to zero in this basis, if the natural geminals ar
32 determinants of natural orbitals.!

In view of these remarks, the development of antisy
metric reconstruction functionals should be a priority. Oth
wise, it is difficult to see how the negative spectrum ofD̂aa

can be eliminated or mitigated, within an ansatz bearing
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similarity to the ones examined here.~We mention in this
regard that an iterative procedure57 for removing negative
eigenvalues ofD̂, Q̂, andĜ, by adjustingD̂ while preserv-
ing the underlying 1-matrix, is ineffective in the present ca
as there are too few nonzero 2-matrix elements.! In the con-
siderations leading to the CH~1! and CHF~1! functionals,5

antisymmetry was abandoned in order to obtain an alte
tive to the HF functional that still satisfies the contracti
relation in Eq.~4!, which is thought to be an extremely im
portantN-representability requirement, based on experie
with sum rules in DFT. To recover antisymmetry in DMF
yet still maintain this partial trace relation, it is probab
necessary to move beyond one-term tensor product app
mations for D̂. For more complicated reconstructions, t
contraction relation is not so easy to enforce, though
speculate that perhaps some variant of Perdew’s real-s
cutoff procedure18–20might be used in this capacity, much a
it is used in DFT to enforce sum rules on the exchang
correlation hole.

VI. CONCLUDING REMARKS

We have documented extensiveN-representability viola-
tions for proposed reconstructive density matrix functiona
In particular, half of the eigenvalues ofD̂aa are necessarily
negative for each of the functionals examined in this wo
In applications to Be and LiH, we find that the negati
eigenvalues significantly lower the electron repulsion ene
often by as much as 1–2 hartrees. While this is certainly
undesirable state of affairs, it is perhaps inappropriate to
mand that reconstruction functionals for DMFT exactly co
ply with all known N-representability requirements for th
2-matrix. Even if this were feasible, it would likely result i
a method whose computational cost rivals that of pro
variational 2-matrix methods. Instead, we suggest that
more appropriate niche for DMFT is to find models that pr
duce good results~preferably, for identifiable reasons! and
arelargely free ofegregious N-representability violations. To
this end, we suggest that explicitly antisymmetric reconstr
tion functionals should help to correct the positivity proble
Any antisymmetric reconstruction is also rigorously free
self-interaction error. Furthermore, only by employing an a
tisymmetric ansatz for the 2-matrix can one hope to obtai
correct description of the pair density for parallel-spin ele
trons, which is poorly described by all of the functiona
examined here.28

Despite the pervasiveN-representability violations
manifested by the current generation of density matrix fu
tionals, we have found no evidence that the electronic ene
diverges as the variational space is enlarged, as prev
active-space calculations27 have suggested. Rather, this a
parent instability appears to be an artifact of a pronoun
difference between the shape of diatomic potential cur
calculated in a minimal basis set, and those calculated u
extended basis sets. Consistent with previous results,32,42our
extended-basis calculations demonstrate that the corre
Hartree–Fock-type functionals5,6 CHF~z! and MCHF are in-
appropriate for molecular applications. On the other ha
the functional SIC–CH~1! introduced by Goedecker an
IP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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Umrigar4,15 yields LiH potential curves that are qualitative
correct in all basis sets. As compared to FCI, the SIC–CH~1!
potentials are also quite accurate.

Last, let us comment on the practical efficacy of reco
structive DMFT. Computationally speaking, this method
ogy in its present form is highly evocative of MCSCF theo
Though this analogy will no doubt be useful in developi
improved optimization algorithms, in the immediate future
is likely that—like MCSCF methods—this form of DMFT i
limited to a few tens of orbitals. Exploratory calculations f
Be in a 48-orbital basis required a few days of computer ti
to optimize fully, starting from HF orbitals. This illustrate
the pressing need for starting orbitals that are closer to
optimized ones than are the HF orbitals, which~in the virtual
space at least! are exceedingly poor initial guesses and le
to lengthy orbital optimizations. Augmenting the BFGS a
gorithm with analytic formulas for the diagonal of the He
sian may accelerate the orbital optimization,49,58 but even so
it seems likely that the future of reconstructive DMFT lies
active-space implementations. Our results indicate, howe
that caution must be exercised when appraising density
trix functionals based on active-space results.
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