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Several “reconstructive” proposals for density matrix functional theory are investigated, each of
which expresses the two-electron density matrix, and therefore the electronic energy, as a functional
of the natural orbitals and their occupation numbers. It is shown that for each of these functionals,
half of the parallel-spin eigenvalues of the reconstructed two-electron density matrix are necessarily
negative. lllustrative all-electron calculations for Be and LiH, in a variety of Gaussian basis sets,
demonstrate that these spurious negative eigenvalues lower the electronic energy substantially. In
spite of this, there is no indication that the variationally optimized energy diverges as the basis set
approaches completeness, as has been suggested based on calculations with a small number of
active orbitals. The apparent variational instability reported previously is attributed to qualitative
differences between the minimal-basis and extended-basis potential curves, for certain functionals.
However, we identify one functional that yields accurate LiH potential curves—comparable to full
configuration interaction results—in both minimal and extended basis sets. Explicitly antisymmetric
reconstructions are recommended as a remedy for the positivity proble@00® American
Institute of Physics.[DOI: 10.1063/1.1574787

I. INTRODUCTION acceptable 1-matrices are easy to implement, but are insuffi-
cient to guarantee that the reconstructed 2-matrix is

Following a flurry of activity that produced many formal .
g ¢ Y P y N-representable. Hence the burden of 2-matrix

results but no actual calculations, one-electron density ma: o ] )
trix functional theory(DMFT) languished for many years, N-repr_esentablllty_falls on the recons_tructlon_ functional. _
but now interest in this topic has been rekindled by a number ~ ThiS perspective on DMFT has interesting parallels in
of explicit proposalé® for calculating electronic energies as density functional theoryDFT), where parametrizations of
functionals of the natural orbitals and their occupation numihe exchange—correlation hole, as a functional of the electron
bers, that is, as functionals of the one-electron reduced demilensity, figure prominently in the development of new en-
sity matrix (1-matrix. DMFT does not rely upon any nonin- ergy functionals®~?3Only for an exact reconstruction of the
teracting reference state and therefore incorporates fractionhble is one assured th&=E[ pyia], WhereasE<E[ yyall
occupation numbers in a natural way, which may provide thavould be guaranteed in DMFT only if the exact reconstruc-
necessary infrastructure for an even-handed description @fon D[] could be employed. For practical approximations
both dynamical and nondynamical correlation. Moreover, biynere is no lower bound, at the theorem level, on either
ellmlnat_lng the rigid dlst_lnctlon between occupied and VIF B pyia] OF E[ 34ia]. DFT survives as a viable methodology
tal lt()lrbltals, DMET provgjes a mtlaansb%%%nerate Iolcal'zedbecause, empirically, the energy does converge with respect
weakly -occupied  pseudonatural - orbi fo replace ., anjargement of the variational sp#¢a? Thus, while the
Hartree—FockHF) or Kohn—Sham virtual orbitals in com- L o ) .
; . variationally optimized energy in approximate DFT may be
pact expansions of correlated wave functions. .
13-15 . higher or lower than the exact energy, the model exchange—
Several recent proposals for DMET constitute, at . : . . - .
correlation hole is at least associated with a finite energy in

least implicitly, a sort of generalized HF theory in which the > O .
. . N the complete-basis limit. Whether the model 2-matrices cor-
two-electron reduced density matri2-matriY D is ex- : ) . o )
responding to proposed functional®[¥] exhibit this

pressed as a functionBI[ %] of the 1-matrixy. Given such dubbedariational stabilit toned i
a reconstruction functionalthe electronic energy is deter- property— u7 cdariational stabliity—was questioned in a
recent study/ where it was determined that optimized

mined by variational minimization of the function& %] DMET s for di _ lecules d .
=tr(HD[%]). This brand of “reconstructive” DMFT energies for diatomic molecules decrease precipi-
tously as the number of active orbitals is increased.

amounts to a variational 2-matrix theory where—in an effort , o
The aforementioned result is intriguing but not conclu-

to reduce the exorbitant computational expéﬁﬂmerent to ) ; ) -
such calculations—the 2-matrix is parametrized in terms of V€ Pecause no more than six active orbitals were used for

the 1-matrix. Ensembld-representability constrairfsfor ~ @ny molecule other than H For H,, extrapolation to the
limit of a complete basis 0§ and p functions yields a rea-

sonable resuft? but there has been no systematic study of

dpresent address: Department of Chemistry, The Ohio State University, C%he basis-set dependence of reconstructive DMET for mol
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YElectronic mail: harriman@chem.wisc.edu ecules that contain heavy atoms. The effect of higher angular
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momentum basis functions also has not been scrutinized in BBLE |. Specification of reconstruction functionals, according to €.
serious way. In addition, because existing reconstructior'; :
unctional

. . . . Refs. f(n;.ny)
functionals fail to preserve antisymmetry of the 2-matrix,
there are serious questions about their behavior for same-spfir nin;

28 Whi P CH(® 2,5-7 in))¢?
electrons;® which cannot be answered by examining.Hn SIC_CHY) 4 13 15 (n-nj-)g’2+(n-2—n§)§~
the present work we study Be and LiH, which incorporateCHF(O 5 6 32 n-r|1-J+§\/A--_AI-- o
heavy atoms and same-spin electrons but are small enougftur 6 (rllirjl,-+ AiIiIAjj)lz

so that large basis sets impart a great deal of variationat
flexibility.
Two questions are addressed in this work. First, does the .

variationally optimized electronic energy ultimately con- complete opposite-spin part @ consists of spin blocks
verge with respect to enlargement of the variational spaceR@*#=D*h*E DeBbx pheeB and DF*F« only one of
Our results indicate that is does. In fact, the decrease iwhich is permutationally independefit®® Generally, then,
DMFT energy with respect to basis-set enlargement ishe 2-matrix contains three independent spin blodk&?
roughly comparable to that of full configuration interaction —paBaB Pea—pacaa a0 DAB=DABBB The latter two

(FCI), although polarization functions in DMFT prove to be 4re identical for spin-compensated systems, so in this work
more effective in lowering the energy than they are in FCI. -y 2 ap
we deal only withD** andD “*.

What appeared to be an instability in the small active-space The 1- and 2-matrices are normalized such thetnQ
calculations is instead the manifestation of a pronounced, o N B N2
qualitative discrepancy between the potential curves ob=1 ry _,N/Z’ _trD —N(N—2)/8,. and "D_ =N8.
tained using a minimal basis set and those calculated witﬂ_he 1-matrix derives from the 2-matrix according to the sum
extended basis sets. All of the functionals examined her&'€

yield qualitatively correct LiH potential curves in a minimal

. . . a _ -1 aa a
basis set, but in several cases these potentials become unre- %i,j=2(N—1) Ek (DSt D) 4
alistically shallow when extended basis sets are employed.

Second, we examine in detail thbrepresentab”ity vio- EXiSting reconstruction functionals for DMFT express

lations manifested by the variationally optimized 2-matricesthe matrix element®{’ as functions of the natural occu-
We give a general proof that half of the eigenvalue®6f  Pation numbers, neglecting any explicit dependend® i

. - . . on the natural orbitals themselves. This is driven partly by
(the parallel-spin component &) are necessarily negative .

. . . = .. —_convenience, but also because HF theory leads to one such
for each functional examined here. In certain applications

the magnitude of the most negative eigenvalue approach fgconstructlon, and because the energy functional already in-

30% of the largest positive eigenvalue, and in all cases thgﬁzfsai dsi\r/(\?g-gelgitpr grr:dii?:er;g Tr?isn:;iruar;otri?) Irgaﬁév'ﬁr;ne
negative eigenvalues contribute substantially to the eIect—he resent methods to s i?w-cor.n ensated str;tes becyause for
tronic energy. This behavior is inherent to the ansatz, but we b ) pin- P . o

. . . . a spin-polarized state the-spin natural orbitals differ from
shall argue that explicitly antisymmetric reconstruction func- . . . o
. . . L the B-spin ones. In any case, a spin-restricted formalism is
tionals are likely to assuage this positivity problem.

adopted here.
The reconstructions examined here each utilize the

II. RECONSTRUCTION FUNCTIONALS simple Hartree product
We considelS, eigenstates of a spin-compensatadn- « n;n;
1S, eig P pensat DA =2 8,5 (5)

2

for the opposite-spin component of the 2-matrix. For the
parallel-spin component, the functionals of interest have the
form

5% = 2lnin; 6185 — £(ni ,n)) 81 Sy (6)

(Throughout this work, Greek indices are used for spin whilerhjs implies an energy functional
Latin indices denote spatial orbital$Spin blocks

spin-polarizedl N-electron system, wherein the natural spin—
orbitals are direct productsp,)®|c) and the 1-matrix has
spin blocksy®=%#, with

3’“22k Nl @) @il D

X E[{n, 1=22 nihi+ > (2 ngijli]
D‘”‘ﬁ% Dl eiei){ewel 2 ind-{led} i ] ALY

of the 2-matrix will be reconstructed in the natural orbital N _
direct product basis|ei¢;)=|¢;))®|e;). In this basis the whereh;; and(ij|kl) denote one- and two-electron integrals

matrix elements oD“* are antisymmetric, in the_|‘Pk> basis. _ _
Listed in Table | are the functions that define the cor-

ij=—Dji%=—DiW=Dji%. (3)  rected HartregCH),>>~" corrected Hartree—FoctCHF),>®

~ ifi 6 i it
The elements 0B possess no special symmetry becauseand modified CHRMCHF)® functionals. The quantities

this matrix is only one component of the3 part of D. The Ajj=ni(1-nj), Ajj=ni(2—-ny) (8)
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have been introduced for succinctness. As advertised, the Chlmatrix calculations constrained only Hy, O, and G

functional adds an exchange correction3®(y)/2, the Har-  positivity.*63"-3°SansG, the D and Q conditions are con-

tree 2-matrix, albeit one that does not fully annihilate self-siderably less restrictiv¥.

interaction in the Hartree potential. The CHF functional adds

a correction to the HF 2-matf% 3/\ ¥, in order to account

for the two-electron cumularit. This cumulant vanishes for

an idempotent 1-matrix. (9)
The functionals introduced in Table | appear in the lit-

erature under a litany of pseudonyms, and the names intrd which A;, ; , is a product of two creation and/or annihila-

duced here are an attempt to unify this nomenclature. Théon operators for the natural spin—orbital ba$¥§* is the

To specify these conditions, define an oper&ﬁfr‘ with
elements

ioj.lukl 2<\I,|A|a'],u k(rl,u.|q,>

functional CH¢) generalizes CH), which was derived in-
dependently by several authdrs! based on different crite-
ria. The functional CHE) includes the scaling parametér
suggested by Staroverov and Scusgriavith an opposite
sign conventiol and recovers the original CHF functional
when /=1. SIC-CH{) is a partially self-interaction-
corrected version of CH), introduced®!*33as a generaliza-
tion of the functional SIC-CH.) proposed by Goedecker
and Umrigaf*® [In previous work® we referred to SIC—
CH(¢) as CR?), and CHY?) was called SICR).]

SIC-CH{) is obtained from CK{) by deleting all “or-
bital” self-interaction (that is, all D matrix elements
SIC-CH{) retains some residualectron self-interaction,

metric matrix for the stateAkU | M|\If> and must therefore be
positive. The ch0|ce?!\i(r = a,t, aj, defines matrix elements
of D7*, while Amm T T andAmm afgam, respec-
tively, define matrix elements d?# and G’#. (This is a
slightly different G-matrix than the one introduced by Gar-
rod and Percu¥) The selectionA;, ;,=4&,a/, does not
generate an independent positivity Condltlon as the corre-
sponding metric matrix is positive if and only B is
positive8

For spin-compensated statd3, Q, and G are com-
pletely determined by theia and o8 spin blocks. Upon
rearranging some creation and annihilation operators, one

however, insofar as this functional is not antisymmetric. Thepbtains

only antisymmetric reconstruction consistent with Eg). is
the HF one,f(n;,n;)=n;n;, which is equivalent to both
CH(2) and SIC-CH2).

A few values of the adjustable parameteare chosen
for the calculations in Sec. V. For G and SIC-CHK(¢), we

choose/=1 and{=4/3. The latter value is an upper bound
on the range of acceptablefor these functionals, as deter-

mined based upon electron-gas considerattdfidand pro-

duces more realistic electron-pair densities than those ol

tained using smaller values ¢2® For CHR¢), we consider
{=0.7,(=1, and{=1.12. When/~0.7, CHK{¢) yields di-
atomic potential curves with correct shape, while CHE2

produces accurate energies for the Be
sequencé?

IIl. N-REPRESENTABILITY

Qi %U=Di%i + 3L 6 (8= vier) — 8 (S~ 7k )
+ 0V Skl (10
Qu W=Dl i %(5ik5jl_7|{<y,i5jl_7|€j ik)» (11
k= ﬁj*‘%?’ﬁkén ; (12
ioj't/,gm:_DilTﬁ(ij%)’iofktsn- (13

These expressions are valid in an arbitrary basis of orthonor-

isoelectronimal orbitals.

Assuming a Hartree-product form f@“#, and intro-
ducing the abbreviations

Since the HF functional is the only antisymmetric recon-One obtains

struction consistent with the ansatz in E), none of the

other functionals affords am-representable 2-matrix. To
gain a more incisive understanding of tNerepresentability

violations, we analyze the so-calle®, Q, and G

condition$* 8 for the reconstructed 2-matrices. These con-

straints specify that the two-electron density matﬁx)( the
two-hole density matrix (Q) and the particle-hole density
matrix (G) must be positivgsemidefinit¢. BecauseQ and

Hij=nin;, Q;=1-ni—n;, (14)

Qﬁ€k|:%5ik5j|(Hij+Qij) (15)
and

GU W= 200054 - (16)

These matrices are diagonal, with agenvalt(@%gJ and
GIl i that are non-negative for €n;,n;<1. Thus the
Hartree-product reconstruction 8f*# satisfies each of the

G can be expressed in termsf each constitutes a neces- D, Q, andG conditions.

sary requirement for aN-representable 2-matrix. Physically,

With D** reconstructed according to E¢f), one ob-

the Q- andG-conditions place bounds on the occupancies ofains

two-electron states that do not follow from the Pauli—

Coleman bounds on the orbital occupancfesilthough
these conditions are insufficient to guarantee tDatis

Q%= 2618y (Hij + Qi) — 38 S f(ni ,n) + Q5] (17)

and

N-representable, when taken together they are nevertheless

quite strong, as indicated by the high quality of variational

G =38 ou[ni—f(ni,nj) 1+ 3Hik 5 S - (18)
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TABLE Il. Eigenvalues od**, §“*, andG*.

Functional di=q; d;; dii =a; aij Jij

CH(0) (n2—nf)/2 (Hy+HE?) /2 (Hj—H{A)12 Qi+ (H; +HEA)2 (ni—H{A 12
SIC-CH{) 0 (Hj+H)2 (Hjj—H)12 Qi+ (Hy+H{) 12 (ni—H{)/2
CHF()) — A2 Hyj+ {VAGA /2 — VAN 12 Qi +Hy+ VAGA 12 (A= ¢VAA)/2
MCHF — A2 (3H;+ VA A}))/4 (Hij— VA A )4 Qi+ (3H;+ VA A} 14 (2n—H;;— VA Aj)/4

These matrices, along witD*®, exhibit a simple block CH({) has the same eigenvalues as (QHexcept thatd,
structure that allows us to obtain most of their eigenvalues=0 in the former(by constructioh Thus for each of these
analytically. functionals,half of the eigenvalues ob“* will always be

ConsiderD*® first. Its only nonzero elements have the negative. Though the analytic formulas in Table II can be

form D% and D&%, , thus D* consists entirely of ¥ 1 used to place rigorous bounds on the magnitudes of any
blocks (ijjaa) and 22 blocks negative eigenvalues, for spin-compensated systems these

i theoretical lower bounds are unlikely to be approached in

_ idi Diji practice, given that the reconstructed Q, andG matrices
Bij= De% D& 19 are each positive in the limit of an idempotent 1-matrix.
s I . . Negative eigenvalues arising in applications are examined in

The 1X1 blocks contribute eigenvalues Sec. V.

di=D{%=3n?—f(n;,n)], (20
while B;; has eigenvalues

., IV. VARIATIONAL PROCEDURE
dﬁzi[ninj:f(ni,nj)]. (21)

N . . L In contrast to HF theory, minimization of a more general
The complete set oD““ eigenvalues is{di}U{d;j|i<j}.  gensity matrix functional with fractional occupation numbers
Thg elge+nvc_':1lue1i is a§SOC|atepI with the _elgenvect@fi @) cannot be cast as a self-consistent eigenvalue problem. In-
while djj is associated with the eigenvectole(e;)  stead, direct minimization E[{n;}.{|¢;)}] is required, sub-
i|¢;‘Pi>)/‘/i- R ject to the constraints €n;<1, ¥;n;=N/2, and (¢i|¢;)

Q** has the same block structure @S“. Eigenvalues =g, . This section describes our algorithm for carrying out
arising from the 1 blocks are the same as fx*®, g;  this  optimization, ~which differs from  previous
=d;, while the 2x2 blocks yield eigenvalueqﬁ zdﬁ and  procedure€ *°~*%in several important respects. These differ-

_ 1 ences are pointed out in the description that follows.

Gy = iy 2L miny - F(niny) ]. (22 Bounds on the occupation numbers are enforced by set-

Last, 3% consists of 21 blocks, along with a single ting ny=(cosw)” and varying thew; without constraint. The
R R block, whereR is the number of orbitals. The latter has trace constraint is implemented by optimizing the penalized

elements energy function
aa 2
G4 =z{nin;+ &[ni—f(n; N1} (23 E—E+k[N-23 ni) (25
The 1X1 blocks have element§9;, for i#j, and thus !
yield eigenvalues in which K is a large, positive constant. Having optimizZed
gij:%[ni—f(ni )l (24) for a particular value oK, the energy can be reoptimized

rapidly using a larger value d, in order to improve the

In summary, we have analytic expressions for all €198N%race, since very little rate-limiting orbital reoptimization is

values ofD, Q, andG except those arising from a single required.
RXR block of G*®. Functional-specific expressions foy, An alternative to a penalty function is to parametrize the
d;j, a;;, andg;; are compiled in Table Il. It follows that vector of occupation numbers in a manner that automatically
d;; =0 for each functional, sincé, A;;, and A;; are each preserves the trad8.In our experience, however, freedom to
non-negative on the domain of allowed occupation numbersyiolate the trace constraint accelerates convergence by en-
Because();; +H;;/2=0, it also follows thatg;; =0 for each  abling relatively large changes in the occupation numbers at
functional. Consequently, these functionals satisfy @e early stages in the optimization. Furthermore, relaxation of
condition if and only if they satisfy th® condition. the trace constraint can be crucial as a means to extricate the
Unfortunately, all of the functionals listed in Table | vio- optimization from a local minimum that is not the global
late theD condition. For any>0, both CHF{) and MCHF  minimum.

haved;<0 and dfj'so for all values ofn; andn;. These Analytic derivatives

inequalities are strict except in the case of integer occupan-

cies. For CHY), d;<0 anddﬁso for any {<2, again with EZ —(sin 2w, E (26)
strict inequalities for fractional occupancies. Finally, SIC— Jwi v on;
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are easily computed, but we find them unnecessary and netl)/2 for the exponential parametrization. Both methods
cost effective. Note tha#E/dw;=0 if n; is an integer. As preserve orthogonality only in the limit of infinitesimal steps,
such, we typically initiate the optimization using HF orbitals though we find this restriction to be much less severe in the
but using occupation numbers that are perturbed slightlase of the exponential parametrization, presumably because
from their HF values. we use a second-order approximation to @Ypés compared
Orbital optimization, subject to orthonormality con- to the first-order approximation t&(' C) ~*?in Eq. (30). As
straints, is carried out in a manner similar to that used taorroborated by Cohen and BaereAfisihen the first-order
perform diagonalization-free  self-consistent-field calcu-symmetric orthogonalization scheme is used, we find that the
lations**~**The natural orbital$e;) are represented in terms  orbital coefficient matrix must be reorthogonalized, via itera-

of some fixed, orthonormal basis set, tive application of Eq(30), each time theC;; are updated.
Using the exponential parametrization, 10—30 updateA to
|<pi>=2_ Cij|z/;j>, (27) can be made, at early stages in the optimization, before the
j

matrix C=(I+A+A?/2)C deviates from orthogonality by

with initial guess coefficients that form an orthogonal matrixmore than 10°%, as judged by the matrix elements of
C. Any variation C=C+ 6C that preserves orthonormality |C™C—1|. In the vicinity of the minimumA can be updated
can be parametrized as 100-200 times before this threshold is breached. It is only at
~ 1h2 this point that we reorthogonalize, using a few iterations of

C=exp(A)C~(1+A+3A%C, (28) Eq. (30). These intermediate orthogonalizations are deleteri-
where A=—A" is a skew-symmetric matrix of auxiliary ous to the orbital optimization, as they degrade the quality of
variational parameters. We vary thg;, for fixed C and the iteratively constructed inverse Hessian and thus ad-
fixed occupation numbers, so as to minimie which is  Versely affect the selection of a line search direction. It is
evaluated at each optimization step using the orbital coeffitherefore significant that the second-order exponential pa-
cientsaij . Only wheni <j doesA,; constitute an indepen- rametrization can maintain orthogonality over a large num-

dent variational parameter, which we denote &y. Then ber of optimization steps. This robustness explains why we
using the fact thatiA,,,/day = S Sni— S Snxs ONE Ob- find this parametrization to be more stable than first-order
mn m n m nKs

tains orbital gradients methods _based on eiFher_ symmetric orthogonalization or the
exponential parametrization.
JE JE 5“(‘;mn gémn The choice of orthogonalization method is also impor-
a—_ R A - A ] (29 tant. Arguably, the most widely disseminated numerical or-
aj ICrmn ij ji thogonalization technique is singular value decompostton,

wherei<j is assumed but the summation indices are unrewhich in most implementations utilizes row and column per-

stricted. As indicated in Eq28), we truncate expg) at sec- mutations for greater numerical stability. This kind of pivot-

ond order, which allows us to evaluate the derivativednd, however, produces an orthogonal matrix that frequently

dCnldA; in closed form. This approximation notwith- bears little resemblance to the original matrix, even if the
mn ij .

standing,é is orthogonal and therefore the derivatives latter was .ne.arly orthgggna!. This h‘.”‘s devastating conse-
- ) guences within an optimization algorithm. In contrast, the
JE/3Cpmp can be evaluated directly from the energy func-g ¢ orger scheme in Eq30) is more benign and does not

tional, whereas the derivatives/dCp,, cannot. alter the coefficient matrix too much, provided that this ma-
Let us digress briefly to compare this method to an alyix js aimost orthogonal.

ternative techniqug?"*%n which the expansion coefficients For definiteness, we list our complete optimization algo-
Ci; are varied directly. As a resull is not orthogonal during  yithm for E[%]. ’

the course of the optimization, but for sufficiently small
variations an orthogonal matr& is obtained by first-order
symmetric orthogonalization,

(1) Minimize E(w,...,wg) for a fixed set of orbitals, using
Powell's quadratically convergent algoriththtypically
without analytic first derivatives.

C=c(Cc'c) ¥?=~3ic-iccTc. (30)  (2) For fixed occupation numberéncluding any residual

trace erroy, optimize the orbitals using the Broyden—

Fletcher—Goldfarb—ShannaBFGS variable metric

algorithm®!

This relationship is then used to encode the orthogonality
constraints into the gradient, via the chain rule

JE JE 9Cmn (8) PassA=0 and an orthogonal matri€ to the BFGS
e I% = o (31 subroutine.C is not changed within this routine.

g ICmn 7ij (b) Update the parametews; by a single BFGS step,
using the derivatives in Eq29), and thereby update
the matrixC according to Eq(28).

As before, the derivative9E/JC,,, are obtained directly
from the energy functional, Whilefémn/acij is gleaned

from Eq. (30). (c) If the BFGS procedure has converged, or if any ele-
For R orbitals, the symmetric orthogonalization scheme ment of [CTC—I| exceeds a specified tolerance,
employsR? variational parameters for the orbital optimiza- proceed to step 3. Otherwise repeat step 2b.

tion (which is the rate-limiting step compared toR(R  (3) SetC=C and A=0, then return to the main program.
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TABLE lll. FCI energies for basis sets used in this study.

J. M. Herbert and J. E. Harriman

times (typically corresponding to several hundred BFGS up-

dates without locating a minimum. There is no mention of

E/hartree . . . . . ..
an intermediate integral transformation in the existing
Basis set Be LiH literaturé 273249429 orbital optimization in DMFT, prob-
STO-6G —14.541 904 7972331 ably because previous studies have focused on smaller basis
6-31G —14.613545 sets than the ones employed here.
6-31G° —14.616 635 —8.003 126 In the special case of the HF functional, one may set to
g‘gllirGG** 4632 864 :3828 ;—)22 zero all of thea;; except those that couple occupied and
6-311G( 3p)° ' 8035533 virtual orbitals. This reduces the number of orbital param-
6-311G(,2p) —8.035875 eters fromR(R—1)/2 to N(R—N) and makes HF calcula-
6-311G+ (d,3p) —8.036 749 tions facile relative to DMFT. The optimizations performed
6-311G(2l) —14.633 952 here bear more similarity, at the algorithm level, to multicon-
6-311G(Af) —14.640 254 figurational self-consistent-fielMCSCH calculations'®

&Contains polarization functions on the H atom only.
V. NUMERICAL RESULTS AND DISCUSSION

OrthogonalizeC by iterative application of Eq(30) In this section we present calculations for Be and LiH in
then return to step 2. Repeat this cycle until the orbital$ variety qf basis sets, and compare DMFT to FCI correla-
are converged. tion energies E.=E—Ey). The FCI calculations were car-

. . 52 .y
If either the orbital or the occupancy optimization re- ried out with theGAMESS progrant;© and we utilize standard

sulted in a significant energy change, then transform thg glpbt;tyrlie basi S_étQSOf contritr:]ted Gausr‘_m;n dor_b't_?lskslavﬁ;l'

integrals to the current natural orbital basis, €eatl, avle by keyword INGAMESS These are listed in 1able

and return to step 1. along with the FCI energy corresponding to each. For both
~ . . systems, the largest basis set consists of 35 orbitals. In con-

OnceE is converged with respect to all variational pa-

) *" trast to several previous studi®¥*?>we do not freeze any
rameters, check the value of the penalty function. If its

) orbitals or occupation numbers.
absolute value is greater than or comparable to the en-

ergy convergence criterion, increase the valuk ¢fypi- ~ A. Variational stability
cally by a factor of 10Dand return to step 1.

(4)

©)

Optimized correlation energies for Be, and for LiH at its
The sole purpose of the integral transformation in step 4xperimental’ bond length, are listed in Table IV, while
is to accelerate optimization of the . By virtue of this  Figs. 1-4 compare the DMFT energies to the FCI ones. Con-
transformation,C is always equal to an identity matrix sistent with other result§, the CHRO0.7) functional con-
within the occupancy-optimization subroutine. Formally, theverges to the HF solution in each cag€his is not true for
integral transformation increases the method’s scaling tdiH at stretched bond lengths, as discussed beldve
O(R®), though at presentwith HF orbitals as the initial CH(4/3) and SIC—CHA4/3) functionals recover very little
gues$, this transformation is facile relative to the orbital correlation energyFigs. 3 and 4 yield near-integer occu-
optimization and provides a compelling incentive to de-pancies, and are generally quite similar to HF, except at very
couple the orbital- and occupancy-optimization steps, whicharge Li—H distance.
more than compensates for the fact that these two optimiza- Figures 1 and 2 present a bit of good news. There, ab-
tions must be iterated when performed separately. In fact, isolute energies obtained from DMFT are plotted against the
is sometimes advantageous to abort the orbital optimizationorresponding FCI energies, which provide a measure of
(at step 3 prior to convergence, then transform the integrals basis-set completeness. The @F) and SIC—CHA4/3) data
reoptimize the occupation numbers, and finally begin the ornearly overlap on the scales in these figures, so the latter are
bital optimization anew. In our implementation, this is doneomitted. The DMFT energy for both GH/3) and SIC-
whenever the orbitals have been reorthogonalized 5-1CH(4/3) exhibits a torpid, HF-like decrease relative to the

TABLE IV. Correlation energies in selected basis sets.

Be E./hartree LIHR=1.5953 A) E, /hartree

6-311G  6-311G 6-311G  6-311+G
Method 6-31G 6-31G 6-311G (2d) (2df) 6-31G°  6-31+G** 6-311G (-,3p) (d,3p)
CH(1) 0.103988 0.131558 0.137328 0.165444 0183728 0.061616  0.070708  0.085927 0.107866  0.114 548
SIC—CH1) 0.032810 0.046609 0.059237 0.069721 0081952 0.019090  0.025401  0.038625 0.052288  0.054 237
CH(4/3) 0.005442 0.006006 0.006592 0.006929 0.007375 0.001996  0.002215  0.003211 0.004092  0.004 209
SIC-CH4/3) 0.002800 0.003275 0.003909 0.004181 0.004585 0.001197  0.001283  0.002161 0.002758  0.002 834
CHF(1) 0.039193 0.051409 0.038192 0.057593 0.063643 0.022741  0.025049  0.020113 0.026407  0.030 360
CHF(1.12 0.077148 0.096050 0076215 0.105416 0.114623 0.047076  0.051187  0.042781 0.053970  0.060 957
MCHF 0.083740 0.104986 0.102355 0.127157 0.139585 0.047556  0.053536  0.060306 0.075435  0.081224
FCl 0.046781 0.049690 0.060990 0.061999 0.068301 0.022460  0.027849  0.034880 0.049735  0.050 702
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FIG. 1. DMFT vs FCI energies for Be. Dashed guide lines are drawn par_FIG. 3. Be correlation energies, as fractions of the FCI correlation energy.

allel to the lineE(DMFT)=E(FCI).

Optimized occupation numbers for Be are listed in Table

FCI energy. Remarkably, for the remaining functionals theV. Atomic Be is an interesting test case on account of a
DMFT energy decreases at a rate that is not greatly differeriiear-degeneracy between the @nd 2 manifolds, which
from that of FCI. There is no reason to expect thipriori, leads to an anomalously large FCI occupation number
and in view of our results concernirgrrepresentability, the (~0.03) in the virtual space. SIC-GH, CH(4/3), and
mere absence of any precipitous drops in the DMFT energplC—CH4/3) each reproduce this phenomena at a qualitative
with respect to increasing completeness is reassuring.  level, but the CHE) and MCHF functionals shift far too
Figure 1 also highlights the fact that certain density ma-nuch occupancy into the virtual orbitals. In LiH, the CHF
trix functionals are quite sensitive to the presence of polarand MCHF occupation numbers also deviate significantly
ization functions in the basis set, which has been notedrom integer values, as shown in Fig. 5.
previously*? For both LiH and Be, the FCI energy {soin- The plots of DMFT versus FCI energy for LikFig. 2)
cidentally) 0.016 a.u. lower in the 6-311G basis than in theare smoother than the corresponding plots for (Big. 1),
6-31G basis. In contrast, within DMFT the 6-3%¥Chasis and the three LiH data points representing polarized, triple-
set frequently yields a lower energy, and if not then the dif-zeta basis sets are nearly coincident. However, full potential
ference is small. Figure 3, which depicts the quantity 100energy curves reveal important differences among basis sets.
X (Epmer— Enp)/ (Erc— Eyp), emphasizes the same point. Figures 6 and 7 compare LiH potential curves obtained with
At the boundary between the double-zeta and triple-zeta séhe STO-6G, 6-318, and 6-311G(,3p) basis sets. In the
quences of basis sets, the functionals (DH CHR1),  minimal basis set, each functional produces a reasonable po-
CHF1.12, and MCHF each exhibit a steep drop in the frac-tential curve, though certain differences are evident at large
tion of the FCI correlation energy that is recovered. SIC—internuclear distances, as detailed below. For larger basis
CH(1), in contrast, is far less sensitive to the presence osets, however, the QHf), CHF), and MCHF potentials are
polarization functions. far too shallow.[CHF0.7) and CHF1.12 results are not
shown, but are similar to CHE) in this respeci.
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FIG. 2. DMFT vs FCI energies for LiHat R=1.5953 A). Dashed guide FIG. 4. LiH correlation energie@t R=1.5953 A), as fractions of the FCI
lines are drawn parallel to the life(DMFT) = E(FCI). correlation energy.
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TABLE V. Largest occupations numbers for Be, up to degeneracy and excluding a unit-occupied core orbital.

6-311G 6-311G
Method STO-6G 6-316 6-311G (2d) (2df)
CH(1) 0.793 0.704 0.728 0.673 0.658
0.103 0.088 0.080 0.090 0.093
SIC-CH1) 0.982 0.961 0.963 0.952 0.948
0.009 0.010 0.009 0.011 0.011
CH(4/3) 0.987 0.984 0.984 0.983 0.983
0.006 0.005 0.005 0.005 0.005
SIC-CH4/3) 0.996 0.995 0.994 0.994 0.994
0.002 0.002 0.002 0.002 0.002
CHF() 0.762 0.631 0.667 0.605 0.590
0.119 0.117 0.107 0.119 0.121
CHF(1.12 0.672 0.551 0.582 0.526 0.512
0.164 0.141 0.133 0.140 0.141
MCHF 0.772 0.669 0.697 0.637 0.621
0.114 0.101 0.092 0.104 0.106
FCl 0.912 0.903 0.905 0.908 0.909
0.044 0.032 0.031 0.030 0.030

With the beneficial hindsight of these all-electron calcu-SIC—CHZ1) is much too high in the minimal basis but is
lations, the same defect is just barely perceptible in thesignificantly improved in the other basis sets.
active-space LiH/CHA) potential curves calculated by Co- LiH/6-311G(-,3p) potential curves for SIC-CH),
hen and Baerend€.These authors observe that the GHF CHF0.7), and CHF1) are compared in Fig. 8. The behavior
potential becomes more shallow as the number of active omlf the CHF functionals here is especially interesting. Ror
bitals is increased from three to five, which they interpret ass 1.5R., CHHO0.7) converges to the HF energy, but at large
possible evidence of variational instability. However, we ob-bond lengths the CHB.7) potential curve is vastly superior
serve no further qualitative change upon incorporating addito the HF one. Not only is the asymptotic energy lower than
tional polarization or diffuse functionge.g., enlarging the HF, but the inflection point in the potential occurs at a shorter
basis to 6-31% G(d,3p)], and thus we conclude that the bond length, leading to a more realistic shape. CHFB is
changes observed by Cohen and Baerends are artifacts ofatso superior to SIC-CH) in this respect; although the
minimal basisior minimal active spageThe shallow poten- SIC—-CHZ1) potential is quite close to FCl foR=2R.,
tial curves illustrated in Figs. 6 and 7 for extended basis setSIC—CH1) turns over too slowly in the asymptotic region.
are similar to those obtained for other diatomic moleculesThere is nothing special about=0.7 in this regard;
using the same functionalé*?and we believe that this is the =0.65 and;=0.75, for example, yield similar diatomic po-
true nature of diatomic potentials for these functionals. tential curves? Although it is probably a coincidence, for a

In contrast to the ill behavior of CH), CHF{), and  sufficiently large basis CHE) produces a potential curve
MCHF, the functionals SIC-CH), CH(4/3), and SIC- that is almost purely repulsive, but whose asymptote yields
CH(4/3) produce reasonable potential curves in each basian essentially exatt*® dissociation energy.
set. The latter two functionals yield near-HF potentials, ex-  Confronted with these facts, it is natural to inquire
cept at large internuclear separation, while the SIC&EH whether there is some hybrid of SIC—Chland CHF{) that
potentials(Fig. 6) are actually quite close to the FCI ones atlooks mostly like the former at modest bond lengths, yet
moderate Li—H distance. The dissociative asymptote foincorporates the early turnover of the latter in the dissocia-
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10 .
FIG. 5. Largest LiH/6-311G{,2p) occupation numbers, up to degeneracy R/ bohr

and excluding a unit-occupied core orbital. Also shown are potential curves
for the SIC—CH1) (solid line) and CHK1) (broken ling functionals, each  FIG. 6. LiH potential curves obtained witf®) the STO-6G basis(b) the
scaled by the same factor. 6-31G basis, andc) the 6-311G(,3p) basis.
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FIG. 7. LiH potential curves obtained witfa) the STO-6G basisb) the FIG. 8. LiH/6-311G( 3p) potential curves.

6-31G" basis, andc) the 6-311G(,3p) basis.

tive regime. No such hybrid has been examined to Olate(:ase of the CKH/3) and SIC—-CHA4/3) functionals. Results
though a hybrid functional for the LiH/6-311G@,2p) 2-matrix (Table VII) are similar.
Enybria=NEch T (1= N)Echra)» (32 In this case there are 28 orbitals, hence 878eigenvalues.

, - For the functionals considered in this work, we have
with parameten optimized for He atom, has been tesféd.

shown that each 22 block B;; is associated with exactly
We have demonstrated, however, that for a sufficiently large

one negative and one positive eigenvalue. More generally,
basis neither of these two constituent functionals generates a

we suggest that such is likely to be the case in practicat
proper potential energy curve, so it is not surprising that the

|s for variationally optimized density matridefor any an-
f\ebnot;gshybrld also yields qualitatively incorrect diatomic po- satz exhibiting this simple block structure, unless negative

eigenvalues are somehow excluded by design. To understand

B. N-representability }/;r;r); consider the natural expansion f“, which has the
The spectra ob**, Q*®, andG**, reconstructed from

variationally optimized 1-matrices, have also been obtainedd“*= 2 di|piei){ @i @il

For all of the functionals except CHE12, we find that the

RXR block (G{i;) of G*“ is positive. For all remaining

eigenvalues we possess analytic formul@able ). Of +i2<j ;_ dij (leie{eiejl =leie){@jeil) (33
these,d; and dﬁ are necessarily negativer zerg and g;; ’ A
can also be negative. for any reconstruction exhibiting tH#; block structureD *“

Table VI summarizes the spectra Dfe and Ge* ob-  contributes ZE3“ to the electron repulsion energy, where
tained for Be in the best basis set utilized here,ES“=tr(ry,} D?*), which can be decomposed into a sum of
6-311G(alf). This basis consists of 35 orbitals, so there arenatural geminal pair energies. The pair energies for the natu-
595 d+ and 1190g;; eigenvalues. As indicated in the table, ral geminals associated witth, dIJ , and dj; are (iilii),
most of thed;, are more negative than10™*, exceptinthe (ij[ij)+(ijlji), and(ijlij)—(ijlji), respectlvely Whereas

TABLE VI. Spectrum ofD*® (first line for each functionaland G** (second ling for Be/6-311G(2If).

No. <-10""

Largest Most neg.
Functional eigenvalue eigenvalue n=6 n=4 n=2
CH(1) 0.7344 —0.1126 629 602 65
0.7294 —0.1059 544 433 49
SIC-CH1) 0.9608 —0.0473 595 438 27
0.9614 —0.0473 542 291 27
CH(4/3) 0.9860 —0.0121 190 45 6
0.9848 —0.0121 100 35 6
SIC-CH4/3) 0.9950 —0.0062 130 33 0
0.9955 —0.0062 67 33 0
CHKF1) 0.5908 —0.1210 629 492 37
0.6960 —0.0554 528 312 15
CHF1.12 0.5137 —0.1399 630 504 46
0.6577 —0.0630 672 371 39
MCHF 0.6973 —0.1178 629 602 63
0.7101 —0.0856 547 390 32
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TABLE VII. Spectrum ofD** for LiH/6-311G(d,2p) atR, (first line for each functional 1.5R, (second ling,
and R, (third line).

No. <—10""

Largest Most neg.
Functional eigenvalue eigenvalue n=6 n=4 n=2
CH(1) 0.8411 —0.1075 405 364 46
0.7854 -0.1176 405 369 52
0.6748 —0.1249 405 378 57
SIC-CHY) 0.9820 —0.0396 378 189 16
0.9753 —0.0530 378 230 18
0.9271 —0.0939 378 307 27
CH(4/3) 0.9950 —0.0093 116 27 0
0.9878 —0.0201 136 33 2
0.7673 —0.0738 178 51 5
SIC-CH4/3) 0.9981 —0.0047 83 25 0
0.9969 —0.0082 90 25 0
0.9811 —0.0275 134 34 2
CHK1) 0.7771 —0.0869 406 283 14
0.6939 —0.1064 406 295 21
0.5768 —0.1222 406 335 22
CHF1.12 0.7048 —0.1169 406 337 25
0.6348 —0.1301 406 345 29
0.5489 —0.1388 406 352 43
MCHF 0.8292 —0.0911 405 356 42
0.7683 —0.1038 405 369 50
0.6613 —0.1219 405 378 56

(ij[ij)—(ijlji) can be positive or negative, the other two given in Table VIII. Also tabulated i$R|, wherek is the
pair energies are non-negative; consequently the energy iatio of negative- to positive-eigenvalue contributions to
always lowered by admitting negative eigenvaluesist:. EZ“. Except for the near-HF functionals ¢#3) and SIC—
Moreover, this unphysical energy lowering occurs by a “di- CH(4/3), this ratio ranges from 0.4—0.8, meaning that nega-
rect” mechanism, that is, simply by changidgor dﬁ , with-  tive eigenvalues of the 2-matrix annihilate 40%—-80% of the
out modifying the orbitals. parallel-spin electron repulsion energy arising from the posi-
To quantify the energy lowering attributable to negativetive eigenvalues. In absolute terms, this anomalous energy
eigenvalues oD?*, we have decomposed each optimizedlowering is huge—frequently a hartree or more. Clearly, the
electronic energy into a one-electron part, ER negative eigenvalues @ are crucial to determining the
=21tr(h %), and a two-electron part, B+ ESP). ES”is  optimized electronic energy.
further decomposed into natural geminal pair energies, as As we have indicated, numerous negative 2-matrix ei-
described above. The resulting energy decompositions aigenvalues are probably to be expected in reconstructive

TABLE VIIl. Decomposition of DMFT electronic energies for Be311G(2if) (upper data s¢tand LiH(R=1.5953 A)/6-31% G(d,3p) (lower data set
All values are in hartrees.

Contributions to E5*

Functional EY From{d;} From{d; } From{d;;} 2ES8 E 7]
HF —19.061 601 0.000 000 0.000 000 0.911 416 3.578232 —14.571953 0.00
CH(1) —18.668 248 —0.157 949 —1.755 649 2.481 845 3.429 023 —14.670978 0.77
SIC-CH1) —18.997 737 0.000 000 —0.784 286 1.606 510 3.559 236 —14.616 277 0.49
CH(4/3) —19.043 014 —0.004 414 —0.076 264 0.905 666 3.571371 —14.573 330 0.09
SIC-CH4/3) —19.054 487 0.000 000 —0.044 568 0.950 235 3.576 077 —14.572 744 0.05
CHK1) —18.611 223 —0.174 828 —0.724 415 1.532 446 3.393 895 —14.584 124 0.59
CHR(1.12 ~18.518 993 ~0.216 928 ~1.007 801 1.767 850 3361121  —14.614 750 0.69
MCHF ~18.633732 -0.168 191 ~1.476371 2.228729 3411587  —14.637979 0.74
HF —12.465 925 0.000 000 0.000 000 0.669 819 2.814929 —8.981177 0.00
CH(1) —12.122 610 —0.118 276 —1.025775 1.601 107 2.657 043 —9.008 510 0.71
SIC-CH1) —12.416 512 0.000 000 —0.509 962 1.114 852 2.811 963 —8.999 659 0.46
CH(4/3) —12.455 077 —0.002 228 —0.046 952 0.712 088 2.813 598 —8.978571 0.07
SIC-CH4/3) —12.460 630 0.000 000 —0.029 530 0.695 060 2.814 948 —8.980 153 0.04
CHK1) —12.069 959 —0.115591 —0.248 405 0.869 255 2.605 495 —8.959 206 0.42
CHF1.12 —11.941571 —0.159 687 —0.405 064 1.000 109 2.548 057 —8.958 156 0.56
MCHF —12.308 129 —0.157 320 —1.051491 1.680 444 2.774178 —9.062 319 0.72
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DMFT, unless specific steps are taken to avoid them. Thseimilarity to the ones examined her@Ve mention in this
SIC variant of CH¢) takes a step in this direction by remov- regard that an iterative proceddféor removing negative
ing the Di§; matrix elements in the natural orbital direct ejgenvalues ob, Q, andG, by adjustingf) while preserv-
product basis. This annihilates mdgough not all of the  ing the underlying 1-matrix, is ineffective in the present case,
self-interaction associated with CC{-).“ What is more, the 3as there are too few nonzero 2-matrix elemertsthe con-
remaining negative eigenvaluet; , which have the same siderations leading to the GH and CHF1) functionals}
analytic form for both CK{) and SIC-CHY{), tend to be  antisymmetry was abandoned in order to obtain an alterna-
closer to zero for the latter functional, and their contributiontive to the HF functional that still satisfies the contraction
to the energy is also much reduced in the case of SIC+elation in Eq.(4), which is thought to be an extremely im-
CH({). Unfortunately, the aforementioned self-interaction portantN-representability requirement, based on experience
correction is basis-set-specific, and consequently the SICwith sum rules in DFT. To recover antisymmetry in DMFT,
CH(¢) energy functional is not invariant to unitary transfor- yet still maintain this partial trace relation, it is probably
mations among orbitals with degenerate occupari€i@sus  necessary to move beyond one-term tensor product approxi-
the energy will generally change if, for example, real linearmations ford. For more complicated reconstructions, the
pomblnatlons are su_bstltuted for primitive spherical harmongoniraction relation is not so easy to enforce, though we
ics in any orbitals with nonzero angular momentum. speculate that perhaps some variant of Perdew’s real-space
~In contrast to thisad hocprocedure for removing self-  cioff procedur®-2°might be used in this capacity, much as
interaction, any approximate reconstruction functionali is ysed in DET to enforce sum rules on the exchange—
D[ %] that preserves the full antisymmetry of the 2-matrix correlation hole.
(not just the symmetnD{i%,=Dji, which is satisfied by
all of the functionals considered hens completely free of
self-interaction, by construction, and does not suffer theVI' CONCLUDING REMARKS
aforementioned anomaly in the case of degenerate occupan- We have documented extensiMerepresentability viola-
cies. Consider an antisymmetric ansatz@ot“[ 3] that con-  tions for proposed reconstructive density matrix functionals.
sists of the sam®;; block structure as the functionals stud- In particular, half of the eigenvalues 8f*“ are necessarily
ied here. There are noXl1 blocks for such a functional, and negative for each of the functionals examined in this work.
each 2<2 block Bj; contains only one independent elementin applications to Be and LiH, we find that the negative
and has eigenvalues2;%; and zero. Hence antisymmetry eigenvalues significantly lower the electron repulsion energy,
cures the positivity problem, provided that the geminal popu-often by as much as 1-2 hartrees. While this is certainly an
lations 2D{}%j; are themselves positive. undesirable state of affairs, it is perhaps inappropriate to de-
Antisymmetry implies positivity only for extremely mand that reconstruction functionals for DMFT exactly com-
sparse 2-matrices with thg; block structure. More gener- ply with all known N-representability requirements for the
ally, antisymmetric reconstruction functionals need not2-matrix. Even if this were feasible, it would likely result in
eliminate negative eigenvalues bf*® altogether, but may @ method whose computational cost rivals that of proper
avoid large ones, for two reasons. First, elements ofthe variational 2-matrix methods. Instead, we suggest that the
blocks, which represent geminal populations, should be famore appropriate niche for DMFT is to find models that pro-
larger in magnitude than off-diagonal 2-matrix elements,duce good result$preferably, for identifiable reasonand
which represent coherences between geminals. The Schwaagelargely free ofegregious Nrepresentability violations. To
inequality dictates that this end, we suggest that explicitly antisymmetric reconstruc-
v 12 aa —aa tion functionals should help to correct the positivity problem.
|Dij,kl| <DifijDid (34 Any antisymmetric reconstruction is also rigorously free of
though in most cases the coherenBs;, are significantly ~ Self-interaction error. Furthermore, only by employing an an-
smaller than this theoretical upper bound. As such, these efiSymmetric ansatz for the 2-matrix can one hope to obtain a
ements represent small perturbations to the spectrum deteforrect description of the pair density for parallel-spin elec-
mined by theB;; blocks. Second, one finds from E@) that ~ trons, which is poorly described by all of the functionals

A P 8
matrix elements oD ““ lying outside theB;; blocks contrib- exammeq heré . . L
ute only to off-diagonal elements of the 1-matrix.Of is Despite the pervasiveN-representability violations

. ; . nif h rrent generation of density matrix func-
reconstructed in the natural orbital product basis, these offpa ested by the curre tgg eration of density at. unc
. oo tionals, we have found no evidence that the electronic energy
diagonal contributions must sum to zero. Although the off-

, P » ) diverges as the variational space is enlarged, as previous
diagonal elements dD““ can be positive or negative, one cive-space calculatiofishave suggested. Rather, this ap-

hopes that this sum rule leads them to be small, in the ”atur"ﬂarent instability appears to be an artifact of a pronounced

orbital product basig.The off-diagonal elements ffj‘_w will  difference between the shape of diatomic potential curves
be equal to zero in this basis, if the natural geminals are Zajculated in a minimal basis set, and those calculated using
X2 determinants of natural orbitals. extended basis sets. Consistent with previous re&ifttsur

In view of these remarks, the development of antisym-extended-basis calculations demonstrate that the corrected
metric reconstruction functionals should be a priority. Other-Hartree—Fock-type functional§ CHF(?) and MCHF are in-
wise, it is difficult to see how the negative spectrumisf®  appropriate for molecular applications. On the other hand,
can be eliminated or mitigated, within an ansatz bearing anyhe functional SIC—CKL) introduced by Goedecker and
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