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A dynamical extension of the ‘‘curvy-steps’’ approach to linear-scaling self-consistent field
calculations is presented, which yields an extended-Lagrangian formulation ofab initio molecular
dynamics. An exponential parametrization of the one-electron density matrix, expressed in terms of
atom-centered Gaussian basis functions, facilitates propagation along the manifold of density
matrices in a geometrically correct fashion that automatically enforces idempotency constraints. The
extended Lagrangian itself is constraint free, thus neither density matrix purification nor expensive,
iterative solution for Lagrange multipliers is required. Propagation is highly efficient, and time steps
compare favorably to those used in Car–Parrinello molecular dynamics simulations. The behavior
of the method, especially with regard to the maintenance of adiabatic decoupling of nuclei and
electrons, is examined for a sequence of diatomic molecules, and comparison is made to trajectories
propagated on the converged Born–Oppenheimer surface. Certain claims to the contrary
notwithstanding, our results demonstrate that vibrational frequencies may depend on the value of the
fictitious mass parameter, even in an atom-centered basis. Light-atom stretching frequencies can be
significantly redshifted, even when the nuclear and electronic energy scales are well separated. With
a sufficiently small fictitious mass and a short time step, accurate frequencies can be obtained; we
characterize appropriate values of these parameters for a wide range of vibrational
frequencies. ©2004 American Institute of Physics.@DOI: 10.1063/1.1814934#

I. INTRODUCTION

Over the past two decades, Car–Parrinello molecular dy-
namics~CPMD! ~Refs. 1–6! has become thede factotool for
simulation of reactive chemical systems and myriad other
environments where analytic potentials are either unavailable
or unreliable. While the electronic basis functions in tradi-
tional CPMD are plane waves, atom-centered basis functions
are in many ways more suitable for nonperiodic molecular
systems. Gaussian atomic orbitals are intrinsically localized,
which not only reduces basis-set demands, relative to plane
waves~by facilitating compact expansions of both core and
valence molecular orbitals!, but also greatly expedites
reduced- and linear-scaling algorithms for computing the
electronic energy and its derivatives. The presence of overlap
derivatives in an atom-centered basis does introduce a small
~but much-maligned! amount of additional overhead; how-
ever, computation of such quantities has been a standard fea-
ture of geometry optimization since the early days of quan-
tum chemistry.7

One of the most expensive steps in the CPMD algorithm
is the iterative solution, at every time step, for a matrix of
Lagrange multipliers.8,9 These define a ‘‘constraint force’’ in
the equations of motion that is necessary in order to maintain
orthogonality of the molecular orbitals. In this paper, we in-
troduce an alternative to the Car–Parrinello formulation of

extended-Lagrangian molecular dynamics~ELMD!, in which
the Lagrangian is free of constraints. This simplification is
achieved by formulating the self-consistent field~SCF! prob-
lem in terms of the one-electron density matrix, rather than
the molecular orbitals~MOs!; by an exponential parametri-
zation of a unitary density-matrix update; and finally, by
transforming to generalized electronic coordinates in which
idempotency of the density matrix is maintained automati-
cally. These generalized coordinates propagate without con-
straints. Our ELMD formalism can be combined with either
a plane-wave or an atom-centered basis, and here we choose
the latter, in order to exploit the advantages extolled above.

This approach to ELMD represents a dynamical exten-
sion of the curvy-steps approach to linear-scaling SCF cal-
culations that our group has pioneered.10,11 We call this
method ‘‘curvy steps’’ in order to emphasize that the expo-
nentially transformed density matrix parametrizes geodesics
~shortest-distance paths! along the Grassmann manifold of
admissible density matrices.12 This manifold is curved as a
consequence of the idempotency~or orthogonality! con-
straints on the SCF problem. Because we incorporate these
constraints automatically into a geometrically correct energy
gradient, our curvy-steps ELMD technique is highly effi-
cient, requiring at each time step only a few matrix multipli-
cations in addition to the usual Fock build and energy gradi-
ent computations.

Recently, Schlegel and co-workers13–16 have introduced
an alternative, Gaussian-orbital-based ELMD method that
they call ‘‘adiabatic density matrix propagation’’~ADMP!.
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As the name implies, the density matrix elements are propa-
gated directly, without the transformation to generalized co-
ordinates, and this necessitates iterative solution of Lagrange
multiplier equations, as well as iterative purification17,18 of a
nonidempotent~and therefore nonphysical! density matrix at
each time step in the propagation. From a geometrical point
of view, ADMP propagates the density matrix along straight-
line trajectories, as opposed to curved ones, and such linear
updates cannot remain on the Grassmann manifold.11

This paper presents the details of our algorithm~Sec. II!
and its application to simulate vibrational spectra for a se-
quence of diatomic molecules~Sec. III!. Our main goal at
present is to characterize curvy-steps ELMD in terms of time
step and fictitious mass parameters, and to make detailed
comparison to Born–Oppenheimer molecular dynamics
~BOMD!, in which the SCF calculation is converged at each
time step. However, these simple systems allow us to exam-
ine carefully the important question of whether—and to what
extent—ELMD vibrational frequencies depend upon the fic-
titious mass parameter. While such a dependence has been
documented in CPMD,19–21 the developers of ADMP
claim,15 based upon examination of the NaCl molecule, that
the use of atom-centered basis functions eliminates this un-
desirable feature of ELMD.

Although we concur with this result for NaCl, it unfor-
tunately lacks generality: we demonstrate cases—especially,
light-atom stretching vibrations—for which the vibrational
frequency decreases significantly as the fictitious mass is in-
creased, even while the nuclear and electronic energy scales
remain separated by several times the energy of the vibra-
tional fundamental. Other standard metrics used to judge the
quality of ELMD simulations also belie this fictitious mass
dependence. The only reliable indications of the accuracy of
ELMD frequencies are the maximum value of the fictitious
kinetic energy, along with a quantitative estimate of the
slowest electronic time scale.

II. THEORY

A. Curvy-steps extended Lagrangian

At the heart of the curvy-steps SCF method10,11 is a uni-
tary update of a reference density matrixP~0!,

P~l!5elDP~0!e2lD, ~1!

parametrized in terms of a skew-symmetric matrixD
52D† of curvy-steps variables. In this work,P is expressed
in an orthogonal basis, as a matter of convenience rather than
necessity. The curvy-steps update Eq.~1! preserves idempo-
tency and normalization of the density matrixP~l!, provided
that P~0! satisfies these constraints. Although the unitary
transformation that connectsP~l! to P~0! can be param-
etrized in several ways,22–26 the exponential parametrization
alone has thegeodesic property: Eq. ~1! represents the short-
est path between the pointsP~l! andP~0!, along the curved
manifold of one-electron density matrices.11,12A similar pa-
rametrization of the MOs has been exploited for constraint-
free CPMD,27 but to our knowledge this technique has not
been applied to dynamics in the density matrix representa-

tion. As discussed in the following section, the density-
matrix approach is formally simpler and exhibits better scal-
ing than the MO-based method.

A curvy-steps SCF calculation involves minimizing the
energy, for a fixed Fock matrix, along the geodesicP~l!, but
here we take the transformation variablesD i j ( i , j ) as gen-
eralized coordinates representing the electronic degrees of
freedom. This suggests an extended Lagrangian of the form

L5
1

2 (
I

M IṘI
21TF2ESCF2Vnuc, ~2!

in which ESCF is the SCF electronic energy,Vnuc is the
nuclear Coulomb repulsion energy, and

TF5
m

2 (
i , j

Ḋ i j
2 52

m

4
Tr~Ḋ2! ~3!

is the fictitious kinetic energy, with ‘‘mass’’ parameterm. ~m
actually has dimensions of a moment of inertia.! For future
reference, we express the electronic energy

ESCF5Tr@~h1 1
2 H!P# ~4!

in terms of a core Hamiltonianh that is independent ofP,
along with aP-dependent exchange and/or correlation con-
tribution H. ~In Hartree-Fock theory, for example,H is equal
to P contracted with the two-electron integrals.28,29! The
Fock matrixF5h1H is a function of both the nuclear Car-
tesian coordinates$RI% and the curvy-steps electronic vari-
ables$D i j u i , j %, while P in our formulation is viewed as a
function of D only.

The Lagrangian in Eq.~2! leads, via the stationary-action
principle,4 to Euler-Lagrange equations of motion

MIR̈I52
]~ESCF1Vnuc!

]RI
~5a!

for the nuclear Cartesian coordinates and

mD̈ i j 52
]ESCF

]D i j
~5b!

for the curvy-steps variables.
The standard CPMD Lagrangian1,4,30differs from Eq.~2!

in that the electronic variables in CPMD are the occupied
Kohn-Sham MOsc i ~with velocities ċ i), while in ADMP
~Refs. 13–16! the density matrix elementsPi j serve as elec-
tronic coordinates. Relative to ADMP we have transformed
the Lagrangian into generalized coordinates in which the
constraints disappear, sinceP2(t)5P(t) is maintained at all
times t, and therefore the generalized coordinates can be
varied freely. Otherwise, the Lagrangian must contain an ad-
ditional term representing the idempotency violation ofP or
the orthogonality violation of the MOs. Our formulation thus
obviates one of the most expensive steps8,9 in traditional
ELMD, namely, iterative solution for the Lagrange multipli-
ers that define the constraint force. In place of this force, we
have a gradient]ESCF/]D and an electronic trajectoryP~l!
that are geometrically correct for the Grassmann manifold on
which the SCF problem resides.11,12,24,31
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B. Curvy-steps ELMD algorithm

Our ab initio molecular dynamics scheme consists in
integrating the equations of motion, Eqs.~5!, using the ve-
locity Verlet algorithm,32

r ~ t1dt !5r ~ t !1v~ t !dt1 1
2 ~dt !2a~ t !, ~6a!

v~ t1dt !5v~ t !1 1
2 dt@a~ t !1a~ t1dt !#, ~6b!

with r , v, anda replaced by the appropriate nuclear or elec-
tronic coordinates, velocities, and accelerations, respectively.
In particular, for the electronic degrees of freedom we propa-
gater[D i j , v[Ḋ i j , anda[2m21(]ESCF/]D i j ), for each
i , j . Propagation of the nuclear variables is straightforward
but propagation of the electronic degrees of freedom war-
rants some comment.

First of all, based upon its satisfactory performance in
large-molecule SCF calculations,10 we have opted to use a
basis of Cholesky-orthogonalized atomic orbitals~AOs!. The
Cholesky basis is defined by the decomposition

SAO5LL †5Z21~Z21!† ~7!

of the AO overlap matrixSAO , with L5Z21 a lower trian-
gular matrix. The Fock and density matrices in this basis are

F5ZFAOZ† ~8!

and

P5L†PAOL . ~9!

Formally, inversion ofL is inconsistent with linear scaling
and ought to be replaced by an algorithm that forms the
sparse matrixZ directly, via biorthogonalization ofSAO ,33–35

and furthermore eliminates the need forL by working in the
AO basis where necessary. For systems amenable to modern
hardware and algorithms, however, formation of bothZ and
L constitutes a very small fraction of the total computational
effort,10 so in our implementation both are computed using
standard dense-matrix LAPACK routines.

The electronic forces contain a derivative ofP with re-
spect toD, by virtue of Eqs.~1! and~4!. This derivative can
be expressed in closed form,27 but only whenD50 does one
obtain an expression that can be evaluated exactly without
diagonalizingD:

G[
]ESCF

]D
U

D50

5FP2PF. ~10!

~As D and the nuclear coordinatesRW are complementary
variables, it is implied that the latter are fixed in derivatives
with respect to the former.! Diagonalization ofD is avoided
by resettingD to the zero matrix at the end of every time
step, which amounts to a translation of the electronic coor-
dinate frame. Commensurate translation~‘‘parallel trans-
port’’ ! of the electronic velocities is nontrivial, however,
since the Grassmann manifold is non-Euclidean, but in prac-
tice we find this to be numerically unimportant and thus we
do not alterḊ when D is reset to zero. Further exposition
concerning parallel transport and other geometric aspects of
curvy-steps ELMD is provided in Sec. II C.

First let us explicate our updating scheme for the elec-
tronic variables. Following thenth time step, a new matrix
Dn11 of curvy-steps variables is generated according to

Dn115dtḊn2@~dt !2/2m#Gn , ~11!

which is merely the velocity Verlet update of Eq.~6a!, start-
ing from D50. The nuclear coordinatesRW n are updated at
the same time, following which the nuclear and electronic
half-step velocities,32

v~ t1dt/2!5v~ t !1 1
2 a~ t !dt, ~12!

are computed, since these require only the forces saved from
the previous step. For the electronic variables, this corre-
sponds to a velocity update

Ḋn→Ḋn2~dt/2m!Gn . ~13!

Having computed nuclear and electronic half-step ve-
locities, we update the density matrix according to

Pn115eDn11Pne2Dn11. ~14!

Exact evaluation of exp(Dn11) requires diagonalization of
the NAO3NAO matrix Dn11 . We circumvent this expensive
scenario by means of a truncated Baker-Campbell-Hausdorff
~BCH! nested commutator expansion of Eq.~14!, which is
extremely efficient given the small size of a typical ELMD
time step. In an orthogonal basis, only one matrix multipli-
cation per BCH order is required,10 and even with highly
conservative thresholds we find that four to six terms are
sufficient to converge the expansion. Idempotency of the
density matrix is maintained below the BCH truncation
threshold.

In view of this rapid convergence, we speculate that se-
ries expansion of exp(D) might improve the efficiency of
MO-based exponential transformations as well. In these
methods, the MO coefficient matrixC is updated according
to Cn115Cn exp(Dn11), which forms the basis of a
constraint-free CPMD technique introduced by Hutter, Par-
rinello, and Vogel27 and has also seen widespread use in
static SCF calculations~consult Refs. 22–25 for a bibliogra-
phy!. Because the energy depends only on theNocc occupied
columns ofC, this update can be accomplished by diagonal-
izing an Nocc3Nocc matrix rather than anNAO3NAO

matrix,24,27but for large systems this is liable to remain more
expensive than a truncated expansion of exp(D), especially
in dynamics methods, where the density matrix changes little
in a single step.

Returning to our own algorithm, following the density
matrix update we next generate new transformation matrices
Zn11 and Ln11 to reflect the new molecular geometry and
corresponding overlap matrix. UsingZn11 , Pn11 is then
transformed into the new AO basis for use in the subsequent
Fock build, following which the new nuclear and electronic
forces are computed.~Derivation of the nuclear gradient is
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the topic of Sec. II D.! These forces correspond toa(t1dt)
in the velocity Verlet update of Eq.~6b!, which is finally
completed, e.g.,

Ḋn115Ḋn2~dt/2m!Gn11 . ~15!

Note thatD andḊ are never transformed withZ or L ; rather,
these quantities propagate in the orthogonal basis.

Importantly, the electronic gradientG is free of
occupied-occupied and virtual-virtual contributions. Intro-
ducing Q5I2P, the projector onto the virtual space, any
matrix M may be expressed identically as

M[PMP1QMQ1QMP1PMQ. ~16!

The terms on the right define, respectively, the OO, VV, VO,
and OV components ofM (O5occupied,V5virtual). De-
composingG in this manner, one finds that

G5QGP1PGQ, ~17!

which demonstrates that the quantitiesPDP, QDQ, PḊP,
andQḊQ are constants of the motion.

Equation ~17! reflects the fact that only OV and VO
rotations alter theSCF energy, and the SCF problem is con-
verged whenQFP50. That PḊP and QḊQ are constant
implies that the fictitious kinetic energyTF , just like ESCF,
is invariant to OO and VV rotations. However, standard
mass-preconditioning schemes for ELMD destroy this in-
variance inTF . Specifically, in order to achieve longer time
steps, it is standard practice to give larger fictitious masses to
either the high-energy plane waves~in CPMD8,36! or the
high-energy density matrix elements~in ADMP14!. In the
ADMP version of this technique,14 for example, the scalarm
is replaced by a diagonal matrixm, and the fictitious kinetic
energy is expressed asTF5Tr@(m1/2Ṗ)2#/2, which is equiva-
lent to associating a mass (m im j )

1/2 with the density matrix
elementPi j . A mass-preconditioned version of curvy-steps
ELMD could be formulated similarly, with (m im j )

1/2 the
mass for coordinateD i j .

An unfortunate consequence of all these mass-
preconditioning methods is the introduction of nonvanishing
OO and VV contributions to the electronic gradient. This is
readily verified by replacingm with (m im j )

1/2 in electronic
equation of motion, Eq.~5b!, whereuponPDP and QDQ
vanish only in the case thatm i5m j for eachi and j . Non-
vanishing OO and VV accelerations ultimately manifest as
OO and VV rotations of the density matrix. In CPMD8,36 and
ADMP,14 it is evidently the case that increased control over
fluctuations inTF , which facilitates a larger time step, com-
pensates for the inherent decrease in efficiency arising from
the introduction of electronic coordinate variations that do
not alter the energy. In curvy-steps ELMD the electronic co-
ordinate steps are optimally small, and it remains to be tested
whether mass-preconditioning is beneficial. In the interest of
minimizing the number of adjustable parameters, however,
we shall at present employ only a scalar fictitious mass. We
achieve time steps comparable to ADMP sans precondition-
ing, which are somewhat larger than nonpreconditioned
CPMD time steps.13

C. Geometric aspects of curvy-steps ELMD

As a postscript to the procedure outlined in the preced-
ing section, we wish to discuss certain geometric aspects of
this algorithm that we consider important, even though in its
present implementation they have no practical bearing on
curvy-steps ELMD. As pointed out in the seminal work of
Edelman, Arias, and Smith12 ~recapitulated in our own work
on curvy steps10,11,24!, the Grassmann manifold that charac-
terizes the SCF problem is not flat, and consequently vectors
that are tangent to this manifold at a certain point~i.e., for a
certain density matrix or set of MOs! generally do not lie in
the tangent space at other points on the manifold. When tan-
gent vectors associated with a previous time step are re-
quired, these vectors must beparallel transported12,37 along
the geodesic defined by the curvy steps variables, in order to
bring them into the tangent space at the current time step.

Our focus on the matrixD of curvy-steps variables po-
tentially obfuscates the fact that points on the Grassmann
manifold are represented by density matricesP; antisymmet-
ric matricesD are not points on the manifold, but rather for
a given pointP~0!, these matrices parametrize directions of
transit ~i.e., geodesics! originating from that point.P~l! in
Eq. ~1! represents the geodesic whose initial tangent vector
~at l50) is

Ṗ~0!5ḊP~0!2P~0!Ḋ. ~18!

This expression can be used to compute the instantaneous
rate of change in the density matrix elements. In fact, Eq.
~18! represents the general form of a tangent vector, in a
projection-operator representation of the Grassmann
manifold,38 and can be derived from geometric consider-
ations alone. Alternatively, this expression follows from the
chain rule:

Ṗ5(
i , j

]P

]D i j

dD i j

dt
, ~19!

with ]P/]D obtained from Eq.~1!.
The antisymmetric matrixḊ thus parametrizes a tangent

vector whose origin isP~0!. Parallel transport of tangent vec-
tors is realized by transformation of their skew-symmetric
direction matrices,12 and it follows thatḊ ought to be trans-
formed, following each velocity Verlet update, according to
the prescription

Ḋ→eDḊ, ~20!

which engenders parallel transport ofṖ along the geodesic
defined byD. The update ofḊ in Eq. ~20! is fundamentally
different from the exponential transformation of the density
matrix in Eq. ~1!, but this is no cause for alarm, given the
different rôles occupied by these two quantities.

As a practical matter, because the electronic velocities
are kept small~else ELMD breaks down, for reasons unre-
lated to differential geometry!, we find in practice that a
series expansion of Eq.~20! consistently converges at
O(D2), even with highly conservative thresholds, and fur-
thermore parallel transport ofḊ has an undetectable effect on
the dynamics. This may be attributable to the velocity Verlet
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updating scheme that—when implemented in the two-stage
version described in Sec. II B—never combines tangent vec-
tors that differ in time by more thandt/2. Specifically, the
update Ḋ(t)→Ḋ(t1dt/2), Eq. ~13!, utilizes the gradient
G(t) and is therefore geometrically correct, whereas the sec-
ond stage of the velocity update,Ḋ(t1dt/2)→Ḋ(t) @Eq.
~15!# uses the gradientG(t1dt), which is not quite geo-
metrically consistent because the update occurs at timet
1dt/2, not t1dt. We plan to explore this issue further in
future work.

Formally speaking, our practice of resettingD to zero
following each time step may lead to an algorithm that is not
strictly time reversible—indeed, it cannot be rigorously re-
versible so long asḊ is not properly transported—but nu-
merical experiments indicate that this is not important. Spe-
cifically, for the systems discussed in Sec. III, we have
performed experiments in which the signs of all nuclear and
electronic velocities are reversed at the end of a multiple-
picosecond trajectory. In each case, and to very high preci-
sion, the algorithm successfully propagates back to the origi-
nal initial conditions.

D. Nuclear gradients

Evaluation of the nuclear forces requires derivatives
]ESCF/]RI in the case that the SCF calculation is not con-
verged, whereas the usual derivation of the SCF gradient28

makes explicit use of the convergence condition,FP5PF.
Our presentation of the more general formulation shall be
terse, as the gory details can be found, for the ADMP
method, in the work of Schlegelet al.13 Apart from the ab-
sence of a constraint force in our formulation, the derivation
is the same.

Briefly,

]ESCF

]RI
U

D

5
]ESCF

]RI
U

P

5gI
HF1gI

P ~21!

consists of an integral-derivative~Hellmann-Feynman! con-
tribution gI

HF and an overlap-derivative~Pulay7! term gI
P .

The former,

gI
HF5TrF S ]hAO

]RI
1

1

2

]HAO

]RI
U

PAO

D PAOG , ~22!

has the same form irrespective of whether or not the density
matrix is converged, which allows us to recycle much exist-
ing SCF gradient code. For nonconverged density matrices,
the new twist is the form ofgI

P :

gI
P5TrS FAO

]PAO

]RI
U

P
D 52Tr~FPDI !, ~23!

where

DI5
]Z

]RI
L52Z

]L

]RI
~24!

represents the contribution from the transformation to the
Cholesky-orthogonalized basis. At SCF convergence, Eq.

~23! reduces to the more familiar expressiongI
P

5Tr@W(]SAO /]RI)#, whereW5PAOFAOPAO is the energy-
weighted density matrix.28,29

Following Schlegelet al.,13 a simple expression forDI is
obtained by differentiating the identityZ†SAOZ5I and ex-
ploiting the fact thatDI is lower triangular. The result is

~DI ! i j 5H 2@Z~]SAO /]RI !Z
†# i j if i , j

2@Z~]SAO /]RI !Z
†# i i /2 if i 5 j

0 if i . j

. ~25!

Combining this expression with Eqs.~22! and~23! affords an
expression for the gradient that requires only matrix multi-
plications, not diagonalization, and is therefore consistent
with linear scaling. This is one advantage of Cholesky de-
composition over, say, symmetric~Löwdin! orthogonaliza-
tion.

A subtle consequence of the presence of overlap deriva-
tives is that the nuclear derivatives]ESCF/]RI depend upon
the choice of representation for the electronic variables, that
is, they depend upon how the AOs are orthogonalized. Spe-
cifically, while the first equality in Eq.~23! provides a gen-
eral definition ofgI

P for any orthogonal basis, the second
equality is particular to the Cholesky orthogonalized basis
employed here. In the Appendix, we provide a general proof
that the nuclear forces are representation dependent when-
ever atom-centered basis functions are employed, and fur-
thermore illustrate how this dependence disappears at SCF
convergence, yielding BOMD nuclear forces that are repre-
sentation independent.~Similar arguments can be found in
Ref. 16.! From the expressions derived in the Appendix, it
follows that the representation dependence of the nuclear
forces will be minor, provided that the electronic gradientG
is small and oscillatory~always a necessary condition if
ELMD is to reproduce long-time BOMD averages!, and fur-
thermore provided that the transformation matrix from the
AO to the orthogonalized AO basis is differentiable. That
Z(t) and L (t) are smooth functions of time has been veri-
fied, empirically, in our calculations. In addition, ADMP cal-
culations using Cholesky-versus Lo¨wdin-orthogonalized
AOs suggests that the differences are small and do not alter
pertinent nuclear observables.13,16

III. NUMERICAL RESULTS

Curvy-steps ELMD has been implemented in a develop-
mental version of theQ-CHEM electronic structure software
package;39 we have also implemented BOMD in order to
make comparison. Our goal in this initial investigation is to
characterize acceptable values ofm and commensurate time
steps, which will depend upon the fastest nuclear motion of
the system in question, and we have chosen to investigate a
sequence of diatomic molecules as an easy means to generate
a variety of nuclear time scales. Our molecular test set con-
sists of NaCl, F2 , HCl, DCl, HF, and DF, whose vibrational
frequencies span the range from 300 to 4000 cm21. Actually,
much of our analysis will focus on HF, as this is the fastest
vibration and therefore the most difficult case, and because
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high-frequency H-atom stretching vibrations are relevant to
the extensive body of ELMD simulations of liquid water and
water clusters.4–6

A. Simulation parameters

All of our simulations utilize the B3LYP density
functional.49 ~Note that this and other functionals containing
Hartree-Fock exchange greatly increase the cost of plane-
wave CPMD,4,40 but no such penalty is incurred in a Gauss-
ian basis set.! Some all-electron results will be described
below, but most of our calculations utilize the Stevens–
Basch–Krauss–Josien–Cundari~SBKJC! pseudopotential41

and corresponding valence basis set, consisting of (3s)
→@2s# contracted basis functions for hydrogen and (4sp)
→@2sp# functions for second-row elements. All simulations
were initiated from a converged SCF density matrix at the
minimum-energy bond length, withḊ50. ~This last choice
is convenient but may somewhat exaggerate energy
fluctuations.2! Initial nuclear velocities correspond to har-
monic zero-point energy in the vibrational mode, as deter-
mined by an SCF frequency calculation.

Four ELMD simulations were performed for each mol-
ecule, using the time step and fictitious mass parameters
listed in Table I; we shall refer to these simulations by the
Roman numerals given in that table. In the interest of obtain-
ing well-resolved vibrational spectra, each simulation was
propagated for 20 000 time steps, corresponding to 2.4–6.8
ps of simulated time. Since the maximum possible time step
~for a given level of energy conservation, say! ought to scale
asm1/2 @cf. Eq. ~11!#, as should the lowest-energy electronic
oscillation, the simulation parameters vary in such a way that
the ratiodt/m1/2 is approximately constant, up to our deci-
sion to use integer values~in atomic units! for both param-
eters. We have not bothered to tunem by less than factors of
2, but modulo this coarse-grained tuning, the value ofdt for
eachm is as large as it can be made without inducing unac-
ceptably large fluctuations (@1023Eh) in the energy. Nota-
bly, the largest permissable time step is the same for all of
the systems studied here, and thus represents the limit of
velocity Verlet integration of the fast electronic motion.

Table II provides a summary of fluxional quantities ob-
tained from each ELMD simulation. The quantityH intro-
duced in that table is the value of the classical Hamiltonian
corresponding to the extended LagrangianL, and fluctua-
tions in H characterize finite time step integration error. In
contrast toH, the ‘‘real’’ energy

E~ t !5H~ t !2TF~ t ! ~26!

is not a conserved quantity, but its fluctuations also charac-
terize the quality of the extended-Lagrangian dynamics. Also
listed in Table II is the maximum value of the time derivative
of TF in each simulation, another fluxional quantity that has
been suggested14,16 as a measure of the extent of adiabatic
decoupling of nuclei and electrons. For curvy-steps ELMD,
this derivative may be calculated according to

dTF

dt
U

D50

5(
i , j

dḊ i j

dt

]TF

]Ḋ i j

U
D50

5
1

2
Tr~ḊG!. ~27!

However, our experience suggests that this is not a useful
metric by which to characterize ELMD simulations. This
will be discussed in Sec. III B.

Perusing Table II, one finds that fluctuations in bothH
andE are maintained at acceptable, submillihartree levels in
all cases except simulation~iii ! for HF and simulation~iv!
for HCl, DF, and HF. At all times and in all simulations,TF

is maintained at less than 831024Eh , and because our
simulations are quite long, this effectively demonstrates that
TF is free of systematic drift.~Additional evidence that the
electrons do not ‘‘heat up’’ is presented in the following sec-
tion, where we discuss the behavior ofdTF /dt.) Note that
TF , rather thanm, is the quantity to compare across various
ELMD methods, because the fictitious ‘‘mass’’—really a
moment of inertia—depends upon the choice of electronic
coordinates.

While it is not our goal in this report to benchmark the
efficiency of curvy-steps ELMD, at the risk of digressing we
cannot help but call attention to the tabulation, in Table II, of
the average ordern̄BCH necessary to converge the BCH ex-
pansion to an exceedingly conservative threshold of 10214 in
every commutator matrix element.~In comparison, the drop
tolerance for AO integrals is 10211Eh .) In all casesn̄BCH

<7, which means that seven or fewer matrix multiplications
are typically sufficient to update the density matrix. In a
multiple time-scale implementation of ELMD, such as the
one described in Ref. 42, these multiplications would consti-
tute essentially the entire cost of each short electronic time
step, while comparatively expensive Fock builds and integral
derivative calculations would be required only at the conclu-
sion of each longer, nuclear time step.

B. Adiabaticity

We next wish to examine the extent to which curvy-steps
ELMD is a faithful representation of classical dynamics on
the Born–Oppenheimer surface. First, however, we must
demonstrate that our BOMD simulations indeed represent
these dynamics, as such simulations are known to suffer a
systematic drift in the energy~and presumably other proper-
ties! unless the SCF calculation is converged rather
tightly.2,4,43 In our implementation of BOMD, the SCF con-
vergence threshold is set to 1028Eh in the OV elements of
the Fock matrix, which isQ-CHEM’s default threshold when-
ever energy gradients are required. In Table III we list the
fluctuations inE(t)2E(0) and alsouE(t)2E(0)u/uE(0)u,
for long BOMD simulations of each test molecule. The fluc-
tuations are extremely small, reflecting our conservative
choice of time step. More importantly, the mean of the

TABLE I. Parameters for curvy-steps ELMD simulations, in atomic units: 1
a.u. ~fictitious mass! '1820 amu bohr2; 1 a.u.~time! '0.0242 fs.

Simulation
m

~a.u.!

dt

a.u. fs

i 45 5 0.12
ii 90 7 0.17
iii 180 10 0.24
iv 360 14 0.34
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signed energy fluctuationsE(t)2E(0), which places a
bound on any systematic drift in the BOMD energy, is less
than 431025Eh for each simulation. This indicates that our
BOMD simulations are free of drift over the simulation
lengths used in this work. At the risk of belaboring the point,
however, we show in Fig. 1 the normalized energy fluctua-
tions uE(t)2E(0)u/uE(0)u for the initial and final 2000 steps
of a 20 000-step BOMD simulation of HF, withdt510 a.u.
By the end of the simulation the fluctuations have grown
slightly larger, but there is no evidence of drift.~Some sys-
tematic drift is observed if the convergence criterion is re-
laxed to 1025Eh , Q-CHEM’s default for single-point energy
calculations.!

Having demonstrated that our BOMD forces are fully
converged, let us compare them to the ELMD ones. Actually

we find it more convenient to deal with the accelerationR̈
along the bond axis, and in Fig. 2 we plot the ELMD and

BOMD values ofR̈(t) for F2 simulation~iv! and HF simu-
lation ~i!. Consistent with the conclusions of previous
studies,2,19,44 the ELMD force oscillates rapidly around the
BOMD force, at least for appropriate values ofm. Ten vibra-
tional periods are plotted for each of the examples in Fig. 2,
and on this time scale the ELMD force, averaged over the
fast oscillations, is faithful to the BOMD force, although for
HF a small but systematic drift has begun to appear by the

TABLE II. Summary of fluxional quantities~in atomic units!, averaged over 20 000 time steps, for curvy-steps
ELMD simulations on the B3LYP/SBKJC potential surface. Consult the text for definitions.

Simulation n̄BCH

Energy fluctuations/1024 Eh

iGi
max

/1024

dTF /dt
max

/1026

H(t)2H(0) E(t)2E(0)
TF

maxrms max rms max

NaCl ~i! 4.0 0.001 0.004 0.001 0.005 0.004 0.002 0.012
~ii ! 4.2 0.002 0.009 0.003 0.012 0.008 0.005 0.017
~iii ! 4.5 0.003 0.017 0.005 0.023 0.017 0.009 0.024
~iv! 4.8 0.006 0.034 0.010 0.045 0.033 0.019 0.037

F2 ~i! 5.0 0.026 0.113 0.027 0.114 0.035 0.129 0.251
~ii ! 5.0 0.048 0.223 0.049 0.227 0.072 0.267 0.363
~iii ! 5.1 0.102 0.458 0.104 0.476 0.141 0.549 0.502
~iv! 5.4 0.201 0.941 0.205 0.874 0.296 1.111 0.723

DCl ~i! 5.2 0.110 0.564 0.132 0.683 0.149 0.221 0.729
~ii ! 5.5 0.228 1.086 0.273 1.376 0.312 0.447 1.109
~iii ! 5.7 0.465 1.507 0.552 2.552 0.636 1.010 1.531
~iv! 6.0 1.278 5.297 1.407 6.422 1.308 2.404 2.268

HCl ~i! 5.4 0.199 0.968 0.247 1.196 0.319 0.467 1.557
~ii ! 5.8 0.488 2.181 0.570 2.595 0.595 1.581 2.468
~iii ! 6.0 1.348 5.824 1.462 6.659 1.254 2.538 3.164
~iv! 6.4 2.029 9.588 2.388 11.638 2.662 5.686 4.893

DF ~i! 5.4 0.396 1.851 0.448 2.081 0.263 0.500 1.462
~ii ! 5.7 0.742 3.411 0.827 3.829 0.507 1.622 2.142
~iii ! 6.0 1.874 8.416 2.001 9.173 1.123 3.418 3.268
~iv! 6.3 3.942 16.969 4.337 19.076 2.275 6.650 4.498

HF ~i! 5.6 0.768 3.299 0.867 3.756 0.498 1.171 2.678
~ii ! 6.0 1.700 8.342 1.874 9.304 1.114 2.672 4.041
~iii ! 6.3 3.688 16.496 4.071 18.572 2.284 7.174 6.368
~iv! 7.0 9.271 45.702 10.055 66.191 6.619 40.820 18.401

TABLE III. Fluxional parameters from BOMD simulations withdt510 a.u.; numbers in parenthesis denote
powers of ten.

uE(t)2E(0)u/uE(0)u (E(t)2E(0))/Eh

rms Max Mean rms

NaCla 8.4(210) 3.2(29) 5.1(29) 2.8(28)
F2

b 8.6(29) 2.6(28) 5.8(27) 4.2(27)
DCla 2.6(27) 8.5(27) 5.7(26) 4.1(26)
HCla 5.2(27) 1.7(26) 1.1(25) 8.3(25)
DFa 5.0(27) 1.7(26) 1.8(26) 1.3(25)
HFb 1.0(26) 3.4(26) 3.6(25) 2.6(25)

a5 000 time step simulation.
b20 000 time step simulation.
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tenth vibrational period. The origin of this feature is dis-
cussed below.

It is quite intentional that in Fig. 2 we have compared
simulation~i! for HF—which employs the smallest value of
m studied here—to simulation~iv! for F2 , which uses our
largest value ofm. This is a first example of a general prin-
ciple that will figure prominently in our discussion of
ELMD: the accuracy of the simulation~iv! results, for mol-
ecules not containing hydrogen, is quite acceptable over
many vibrational periods, and is comparable to or better than
the accuracy of the simulation~i! results for hydrogen-
containing molecules.

The first indication of possible difficulties with

hydrogen-containing species comes from examiningR̈ for
HF as a function ofm, Fig. 3. Like simulation~i!, the average
ELMD force in simulation~ii ! oscillates tightly around the
BOMD force for at least ten vibrational periods, albeit with a
slightly faster drift than was observed in~i!. By ~iii !, how-
ever, the fluctuations about the BOMD force are noticeably
larger in amplitude and the drift is unmistakably faster. Fi-
nally, for simulation ~iv! the ELMD force is no longer a
reasonable facsimile of the BOMD force beyond two or three
vibrational periods.

The slow drift in the ELMD nuclear forces away from
the BOMD ones, evident in all of our simulations but most
severe for hydrogen-containing molecules, arises because
these forces cannot respond instantaneously when the
BOMD forces turn over. These lag times add coherently, so
that the ELMD forces grow farther out of phase each time a
classical turning point is reached. Increasingm exacerbates
this problem in two ways: first, by slowing down the elec-
tronic oscillations, so that the electrons respond less quickly
when the nuclei reverse direction; and second, by increasing
the amplitude of the fluctuations in the ELMD nuclear force
about the BOMD force, so that they must affect an even
larger change when the BOMD force turns over. This latter
effect is evident from the increasingly jagged features in the

FIG. 1. Normalized energy fluctuations for a BOMD simulation of HF with
dt510 a.u.

FIG. 2. AccelerationR̈ along the diatom bond for~a! F2 , from simulation
~iv!; and ~b! HF, from simulation~i!. Circles represent the BOMD result.

FIG. 3. AccelerationR̈ along the HF bond, from ELMD simulations~ii !–
~iv!. The broken lines are BOMD results.
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ELMD force at largem ~Fig. 3!. These asperous features can
be mollified by coupling thermostats to the electronic veloci-
ties, a technique that has been shown to correct nuclear ve-
locity autocorrelation functions when large values ofm are
employed.30 In our experience, however, the application of
such techniques to hydrogen-containing molecules is non-
trivial, and is beyond the scope of this report.

The drift in the ELMD nuclear force must eventually
manifest as a drift in the ELMD trajectory away from the
BOMD result. This is illustrated by the phase-space trajecto-
ries for HF depicted in Fig. 4. Note especially the distinctly
nonsinusoidal nature of the nuclear velocity in simulation
~iv!. Compared toR(t), the velocity Ṙ(t) offers a better
indication of the failure of this simulation. In Sec. III C we
will demonstrate that the phase lag in the ELMD forces and
trajectories is manifested as a redshift in the nuclear vibra-
tional frequency.

The ELMD forces for HF simulation~iv! might be suf-
ficiently different from sinusoidal as to sound klaxons of
alarm in one’s mind, but the results of simulation~iii !, say,
are more ambiguous, and the situation is apt to become even
more convoluted in polyatomic molecules, where the nuclear
forces do not vary sinusoidally at all. Insofar as theraison
d’être of ELMD is to circumvent the high cost of BOMD, it
is imperative to possess criteria, not requiring an explicit
BOMD calculation, which indicate whether the ELMD
forces are likely to be oscillating about the BOMD ones. The
quantitydTF /dt, introduced in Eq.~27!, has been proffered
as one such ‘‘adiabaticity index’’ for ELMD simulations:14,16

based upon the observation thatdTF /dt oscillates rapidly
about zero without drift, Iyengaret al.16 concluded that cer-
tain ADMP simulations were indeed faithful reproductions of
BOMD nuclear dynamics.

With this in mind, in Fig. 5 we plotdTF /dt for the first
100 fs of HF simulations~i! and ~iv!. Fluctuations in this
quantity are qualitatively similar over the remaining several
picoseconds of these simulations, and the mean value of
dTF /dt, averaged over all 20 000 time steps, is 2.8
310211 a.u. for simulation~i! and 28.9310210 a.u. for
simulation~iv!—that is to say, zero, on the scale thatdTF /dt
fluctuates. Certainly, these fluctuations grow larger in ampli-
tude asm increases, but as an adiabaticity indexdTF /dt falls
flat, utterly failing to detect the impending disaster in the
ELMD forces form5360 a.u. ThatdTF /dt oscillates about
zero appears to be a weak criterion that is necessary but not
sufficient to obtain reliable ELMD results.

In CPMD, the validity of the adiabatic decoupling hy-
pothesis is sometimes interrogated by computing the spec-
trum of fictitious electronic oscillations,44,45 which can be
compared to the~nuclear! vibrational spectrum to determine
whether, in fact, a separation of energy scales exists. Both
spectra are computed in the same way, as the Fourier trans-
form of a velocity autocorrelation function. For curvy-steps
ELMD, the electronic velocity autocorrelation function is de-
fined as

Cel~ t !5(
i , j

^Ḋ i j ~ t !Ḋ i j ~0!&, ~28!

in which the averagê̄ & runs over time origins but not over

any molecular ensemble, as we consider only isolated mol-
ecules. Otherwise,Cel(t) is computed just like any other
classical time correlation function,32 and its cosine transform
@sinceCel(t)5Cel(2t)] affords the spectrum of bound elec-

FIG. 4. Comparison of ELMD trajectories~solid curves! and BOMD trajec-
tories ~broken curves! for HF, starting from the same initial conditions. In
each panel, the upper curves depict the bond lengthR(t), and the lower

curves illustrate the nuclear velocity along this coordinateṘ(t).
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tronic vibrations. These we term fictons, as they do not de-
scribe real physics, and we reserve the wordvibrations to
mean nuclear oscillations.

Unfortunately, the use of ambulating~atom-centered! ba-
sis functions complicates the ficton spectrum considerably,
because the motion of the basis functions necessarily intro-
duces correlations intoCel(t) that decay on a nuclear time
scale. This is illustrated in Fig. 6, which depicts sections of
both the nuclear and electronic velocity autocorrelation func-
tions for HF. The latter exhibits an unmistakable, fast elec-
tronic motion superimposed upon the slow oscillation of the
basis functions. An approximate,a priori estimate of the fast
oscillation time scale is afforded by the simple formula4,44

tel&2pAm/~«LUMO2«HOMO!. ~29!

At the B3LYP/SBKJC level, the highest occupied molecular
orbital-lowest unoccupied molecular orbital~HOMO-
LUMO! gap for HF is 0.442Eh , whencetel;1.5 fs for m
545 a.u. This coincides nicely with a cursory examination
of the electronic correlation function in Fig. 6: the time be-
tween successive local minima inCel(t) is roughly 2 fs.

Whenever atom-centered basis sets are used, the ficton
spectrum will contain Fourier components at all of the fun-
damental vibrational frequencies and, resolution permitting,
at overtones and combinations of these frequencies as well.
This makes for a rather complicated ficton spectrum, as vi-
brational overtones may lie among the ficton lines, even if

the fundamental is well separated in energy, and our decision
to focus on diatomic molecules in this initial investigation is
partly intended to simplify the spectra as much as possible.
This being said, it merits noting that in polyatomic
molecules—and especially in short simulations—there is
little chance that vibrational overtones or the corresponding
ficton lines will be resolved.

The low-energy portions of the ficton spectra for HF
simulations~ii !–~iv! are shown in Fig. 7.~The full spectra
exhibit peaks up to about 75 000 cm21.) The lowest-energy
and most intense peak in each spectrum corresponds
exactly—in both line position and width—to the vibrational
fundamental, while the next peak in each spectrum
(;7500 cm21) represents the first vibrational overtone. The
second overtone, at 11 510 cm21, is just barely visible in the
spectrum from simulation~iii !, though it is resolved in all
three spectra and would be visible upon sufficient magnifi-
cation. Despite these complicating features, there is still a
clear separation between these vibrationally induced ficton
lines and the much higher-energy features arising from re-

FIG. 5. Plots ofdTF /dt for HF simulations~i! ~darker, solid line! and ~iv!
~lighter, broken line!.

FIG. 6. Section of the electronic~solid line! and nuclear~broken line! ve-
locity autocorrelation functions for HF, from simulation~i!.

FIG. 7. Low-energy ficton~electronic oscillation! spectra for HF; the total
integrated intensities are shown as a broken line. The most intense peaks
have been truncated in order to accentuate the weaker lines in the spectrum.
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coupling of the orthogonalized AOs due to changes in the
electronic structure. Peaks of the latter variety are absent in
the portion of the spectrum shown for simulation~ii !, but
these peaks shift into view as the fictitious mass is increased.

In Table IV we compile a list of fundamental vibrational
frequencies and adiabatic gaps, as calculated from our
ELMD ficton spectra. Theadiabatic gapis defined here as
the separation between the vibrational fundamental and the
lowest ficton frequency not coincident with any line in the
vibrational spectrum. Also listed for each simulation is the
electronic time scaletel corresponding to the lowest ficton
frequencyvel . As expected, the measured values oftel scale
as m1/2, and moreover the estimate oftel from Eq. ~29!
proves, in each instance, to be an upper bound to the ob-
served electronic time scale. This is important, since Eq.~29!
can be used to determine an appropriate value ofm using
only a known or estimated value for the HOMO-LUMO gap.

The adiabatic gap is a highly seductive measure because
it, too, can be calculated from the ELMD simulation alone,
without the need for BOMD. Based upon CPMD results for
liquid water, Grossmanet al.45 concluded that the onset of
deviations from BOMD is a direct consequence of overlap-
ping ficton and vibrational spectra. It is rather unnerving,
therefore, to note that even for HF simulation~iv!, in which
the ELMD forces exhibit large deviations from BOMD, the
adiabatic gap is still 5727 cm21, and furthermore the lowest
ficton peak is;1000 cm21 higher in energy than the first

vibrational overtone~see Fig. 7!. A better harbinger of the
problems with this simulation is the observation that the fun-
damental vibrational periodtnuc exceedstel only by a factor
of 2.5, which evidently is not a sufficient separation of time
scales. Of course, the corresponding frequenciesvnuc andvel

contain the same information as the time scalestnuc andtel ,
but this content is packaged differently. Whereas a frequency
differencevnuc2vel;5700 cm21, in conjunction with the
CPMD results of Grossmanet al.,45 might tempt one to con-
clude that the simulation is adiabatically decoupled, a time-
scale ratiotnuc/tel;2.5 seems less convincing, as the vacil-
lating ELMD force then has time for only 1.25 oscillations
between nuclear turning points. This rapidly gives rise to the
phase differences seen in Fig. 3.

C. m dependence of vibrational frequencies

A recurring issue in the CPMD literature is the depen-
dence of vibrational frequencies on the fictitious mass pa-
rameter. Such a dependence has been reported both in small
molecules20,21 and bulk materials,19 in bulk MgO, over a
range ofm otherwise thought to provide sufficient adiabatic
decoupling. Having already pointed out in this work the slow
drift of ELMD trajectories away from BOMD ones, it comes
as no surprise that the computed frequencies differ, though it
is important to quantify the extent of the discrepancy. Thedv
values listed in Table IV are vibrational frequency differ-

TABLE IV. Spectral data from ELMD simulations:v is the fundamental vibrational frequency anddv
5vBOMD2v is its ~red! shift relative to the BOMD result.tel and tnuc are the electronic and nuclear time
scales, as defined in the text, with the former either observed from the spectrum or calculated from Eq.~29!.
Here ‘‘gap’’ refers to the adiabatic gap defined in the text.

Frequency/cm21 TF /cm21 tel /fs

Simulation v dv Gap rms Max Obs. Calc. tnuc/tel

NaCl ~i! 317 0 14498 0.02 0.09 2.3 2.6 45.7
~ii ! 317 0 10158 0.04 0.18 3.2 3.7 32.9
~iii ! 317 0 7103 0.07 0.36 4.5 5.3 23.4
~iv! 317 0 4920 0.14 0.73 6.4 7.4 16.4

F2 ~i! 989 0 26231 0.12 0.78 1.2 2.1 28.1
~ii ! 989 0 23596 0.25 1.57 1.4 2.9 24.1
~iii ! 989 0 16411 0.50 2.90 1.9 4.1 17.7
~iv! 988 1 11325 1.03 6.22 2.7 5.9 12.5

DCl ~i! 1902 0 22313 0.63 3.26 1.4 1.8 12.5
~ii ! 1900 2 16580 1.29 6.86 1.8 2.5 9.8
~iii ! 1896 6 11190 2.58 13.96 2.5 3.5 7.0
~iv! 1888 14 7400 5.03 28.70 3.6 4.9 4.9

HCl ~i! 2648 3 20827 1.30 6.99 1.4 1.8 9.0
~ii ! 2642 9 15858 2.65 13.05 1.8 2.5 7.0
~iii ! 2633 18 10372 4.92 27.52 2.6 3.5 4.9
~iv! 2614 37 6726 10.71 58.42 3.6 4.9 3.6

DF ~i! 2788 7 20502 1.28 5.78 1.4 1.5 8.6
~ii ! 2783 12 15692 2.26 11.16 1.8 2.2 6.7
~iii ! 2773 22 10358 4.87 24.65 2.5 3.1 4.8
~iv! 2751 44 6671 10.79 49.93 3.5 4.3 3.5

HF ~i! 3836 17 22294 2.47 10.93 1.3 1.5 6.7
~ii ! 3824 29 14726 5.20 24.06 1.8 2.2 4.8
~iii ! 3796 57 9444 10.42 50.12 2.5 3.1 3.5
~iv! 3738 115 5727 25.12 145.27 3.5 4.3 2.5
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ences relative to the correct values obtained from BOMD.
For NaCl and F2 , ELMD simulations reproduce the BOMD
vibrational frequency across the entire range ofm employed
here. The agreement for NaCl is especially significant in
light of a previous ADMP study15 that also found the NaCl
vibrational frequency to be independent ofm over a wide
range of the latter. These authors went on to claim that the
use of atom-centered Gaussian orbitals eliminates them de-
pendence of ELMD vibrational frequencies in general. Our
results reveal this conclusion to be erroneous.

In fact, NaCl is the most well-behaved molecule studied
here, according to every single metric that we have intro-
duced, while vibrational frequencies of other molecules~es-
pecially those containing hydrogen atoms! exhibit a pro-
nounced redshift asm is increased. HF is the worst case,
where even simulations~i! and ~ii ! afford shifts of 17 and
29 cm21, respectively. For this molecule we have clearly
been too greedy in selecting a fictitious mass; however, our
main point is to emphasize that this fact is not obvious, ab-
sent BOMD data, and is concealed by several of the usual
measures for assessing ELMD simulation results. In particu-
lar, adiabatic gaps, real energy fluctuations, anddTF /dt are
each deficient metrics in this respect. Separation of time
scales is a much more incisive measure: in all cases consid-
ered here, a time-scale separationtnuc/tel;10 is sufficient to
obtain a vibrational frequency that is within a few cm21 of
the BOMD frequency.

Figure 8 presents a graphical illustration of the shift in
the HF vibrational frequency as a function ofm. In the lower
panel of that figure, we plot the same spectra, shifted to the
blue by an amount equal to the maximum value ofTF in
each simulation. In the case of simulation~iv!, wherem is
much too large and the ELMD forces are rather erratic, this
adjustment overcompensates for the vibrational frequency
shift, but for the other three simulations this correction af-
fords remarkable agreement with the BOMD vibrational
spectrum. For polyatomic molecules, the maximum value of
TF will increase~all else being equal!, sinceTF is an exten-
sive quantity, but we expect some correlation between the
maximumTF and the vibrational frequency shift per mode.
However, the distribution is unlikely to be statistical, hence it
is doubtful that a similara posterioricorrection is possible in
polyatomic molecules. On the other hand, in CPMD simula-
tions of isolated H2O and CO2 molecules,20 all three vibra-
tional frequencies were shown to shift linearly withm, open-
ing the possibility of extrapolating the vibrational spectrum
to the m50 limit in toto. This remains a topic for future
investigation.

In order to verify that these frequency shifts are not an
artifact of the treatment of the electronic structure, we have
performed all-electron B3LYP/6-31G** ELMD simulations
for HF, using parameters (m545 a.u.,dt52.5 a.u.) in one
simulation and (m5180 a.u.,dt55.0 a.u.) in a second simu-
lation. The corresponding BOMD simulation useddt
510 a.u., and all three simulations were propagated for
5000 time steps. For the first of the ELMD simulations, the
maximum value ofTF was 18.4 cm21 and fluctuations inE
andH were maintained below 5.031024Eh . For the second
ELMD simulation,TF<72.9 cm21 and fluctuations inE and

H were less than 1.831023Eh . As depicted in Fig. 9, the
larger fictitious mass results in a vibrational frequency that,
within the limited resolution afforded by this short-time
spectrum, appears to be redshifted by precisely the maximum
value ofTF . For the other all-electron ELMD simulation, the
maximum fictitious kinetic energy is substantially smaller

FIG. 8. Upper panel: calculated vibrational spectra for HF. Solid lines are
the ELMD results and broken lines are BOMD spectra obtained from a 2.4
ps trajectory~broader spectrum! and a 4.8 ps trajectory~narrower spectrum!.
Lower panel: result of shifting the ELMD spectra by an amount equal to the
maximum value ofTF for each simulation.

FIG. 9. Vibrational spectra for HF from all-electron B3LYP/6-31G** simu-
lations.
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than the width of the spectrum, and the calculated vibrational
frequency is in good agreement with BOMD.

These results demonstrate convincingly that the error in
ELMD vibrational frequencies increases as the maximum
value ofTF increases. The simplest way to suppress fluctua-
tions in TF is to reducem; for H-atom stretching motions
above 3000 cm21 (tnuc,12 fs) and a target time-scale sepa-
rationtnuc/tel*10, this requires at best our smallest value of
m. The fictitious mass, in conjunction with the HOMO-
LUMO gap, sets the electronic time scale, and the finite time
step integration error in turn determines the maximum per-
missable time step, which is limited in our B3LYP/SBKJC
calculations todt'0.12 fs for m545 a.u. For comparison,
in the absence of mass preconditioning, thermostats, or other
techniques designed to suppress the most rapid electronic
fluctuations, it appears thatdt'0.07 fs is appropriate for
CPMD simulations of liquid water,46 increasing to perhaps
0.1 fs when electronic thermostats are employed.47

On the other hand, for the HF simulations discussed
here, we have demonstrated that ELMD phase-space trajec-
tories are an accurate approximation to BOMD trajectories
~with the same initial conditions! only for ;100 fs, while
our ELMD simulations are propagated for 2.4–6.8 ps. These
long-time results represent the true, converged vibrational
frequency in the ELMD universe, though one might argue
that for large systems, where propagation of picosecond tra-
jectories is exorbitantly expensive, one will often be limited
to simulating only the broad envelope of the vibrational
spectrum, which can be obtained from a relatively short
simulation. Thus we have computed B3LYP/SBKJC vibra-
tional spectra for HF based on 100 fs of total propagation
time, using the samem and dt parameters as in the longer
pseudopotential simulations~i!–~iv!. These spectra are
shown in Fig. 10, set against the narrow spectrum from a 4.8
ps BOMD trajectory. For the short versions of simulations~i!
and ~ii !, the broad spectra are centered at the BOMD fre-
quency, in contrast to the long-time results, even though the
maximum and r.m.s. values ofTF are essentially the same as
in the longer simulations. On the other hand, short versions
of simulations~iii ! and ~iv! broaden the spectrum with re-
spect to the long-time result but do not significantly alter the

position of the line. This is not surprising because for these
simulations, 100 fs of propagation time is sufficient to ob-
serve substantial deviations from the BOMD trajectory~see
Fig. 4!.

IV. SUMMARY

We have described an approach toab initio molecular
dynamics—‘‘curvy steps’’ ELMD—based on a transforma-
tion into generalized electronic coordinates in which the ex-
tended Lagrangian is free of constraints. Although this part
of the formalism works equally well in a plane-wave basis,
we have chosen to implement the method using atom-
centered Gaussian orbitals. Propagation is highly efficient,
requiring only a few matrix multiplications~in order to up-
date the electronic density matrix! in between Fock build and
integral derivative calculations. Neither purification nor so-
lution for Lagrange multipliers is required. Time steps com-
parable to those typical of CPMD are possible, without the
need to resort to thermostats, and using only a single ficti-
tious mass parameter. We expect that the use of multiple
time-scale integration techniques8,42,48 will substantially ac-
celerate this method by obviating a significant fraction of the
integral and integral derivative calculations, and in the future
we shall present a detailed analysis of the efficiency of the
method.

In this preliminary report, we have focused on a micro-
scopic examination and characterization of the dynamics, as
a function of the fictitious mass parameter. Our results deni-
grate the value of most fluxional quantities as criteria to as-
sess the validity of ELMD results. Especially for hydrogen-
atom stretching vibrations above 3000 cm21, we have
exhibited cases where both the real and the total energy fluc-
tuations are kept to&1024 a.u.; where the time derivative
dTF /dt of the fictitious kinetic energy oscillates around zero
with a mean of 10210 a.u. and no systematic drift; and where
the fictitious electronic oscillations are separated from the
nuclear vibrations by several times the energy of the latter;
yet even still the ELMD forces are not an accurate represen-
tation of the BOMD forces, even when averaged over fast
electronic oscillations. In such cases, ELMD vibrational fre-
quencies may exhibit a pronounced redshift relative to the
correct BOMD values~though the gross features of the vi-
brational spectrum, obtained from a short simulation, can
still be correct!. These results contradict an earlier claim15

that the use of atom-centered basis functions eliminates them
dependence of vibrational frequencies, and we suggest that
the developers of the ADMP method13–16 should reexamine
this dependence, using more difficult test cases.

Two criteria prove to be useful characterizations of the
accuracy of ELMD: the ratiotnuc/tel of the fastest nuclear
time scale to the slowest electronic time scale, and the maxi-
mum value ofTF , the fictitious kinetic energy. For ELMD
simulations that are near, but not within, the adiabatic decou-
pling régime, the latter offers a reliable estimate of the vibra-
tional redshift, at least for diatomic molecules. More impor-
tantly, the ratio tnuc/tel , where tel may be estimated
accurately using the fictitious mass and the HOMO-LUMO
gap, is a reliable indication of whether the ELMD simulation
is within the adiabatic decoupling re´gime. A time-scale sepa-

FIG. 10. Vibrational spectra for HF, obtained from 100 fs ELMD trajecto-
ries. The narrow spectrum is calculated from a 4.8 ps BOMD trajectory with
the same initial conditions.
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ration tnuc/tel;10 appears sufficient to obtain hydrogen-
atom stretching frequencies that are correct to within a few
cm21. Our results indicate that these difficult cases may re-
quire a time step on the order of 0.1 fs or less~consistent
with the CPMD liquid water results of Schwegleret al.46!,
although mass preconditioning may increase this value
somewhat.
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APPENDIX: GRADIENTS IN AN ARBITRARY
ORTHOGONAL BASIS

In Sec. II D we gave an expression for]ESCF/]RI that
was particular to the Cholesky-orthogonalized AO basis, our
representation of choice for the calculations in Sec. III. In
this appendix we examine the form of the nuclear gradient
for an arbitrary~bi!orthogonalization of the AO density ma-
trix, i.e., for transformation matricesA and B such that
SAO5BA, where

P5APAOB ~A1!

is the density matrix in the biorthogonal basis. The Fock
matrix transforms contravariantly with respect toP, so

F5B21FAOA21. ~A2!

For brevity, we introduce the notationM x5]M /]x and
write the nuclear gradient asgx

HF1gx
P . The Hellmann-

Feynman derivativegx
HF in our arbitrary biorthogonal basis is

the same as that given in Eq.~22!, which is obvious since
this expression involves only AO matrices and derivatives at
fixed PAO ~rather than fixedP!. For the Pulay termgx

P , on
the other hand, the general result is

gx
P52Tr~AxA

21PF1B21BxFP!, ~A3!

which reduces to Eq.~23! for B5L5A†.
Now consider an arbitrary unitary transformation of the

Fock and density matrices,

F̃5UFU†5B̃21FAOÃ21 ~A4a!

P̃5UPU†5ÃPAOB̃, ~A4b!

whereÃ5UA andB̃5BU†. Let gx
P̃ denote the Pulay deriva-

tive in this new basis, defined as in Eq.~A3! but with tildes
on all of the matrices. It can then be shown that

gx
P̃2gx

P52 Tr@UxU
†~PF2FP!#, ~A5!

which renders manifest the fact thatgx
P̃2gx

P50 at SCF con-
vergence, hence the BOMD nuclear forces are independent
of the choice of representation. Away from SCF conver-
gence,]ESCF/]RI depends upon the choice of orthonormal
basis through the transformation derivative termUxU

†. ~The
same conclusion was also reached in Ref. 16.! So long as the
derivativeUx is well-behaved—assuming, for example, that
the transformation from AOs to orthogonalized AOs does not

change discontinuously as a function of the nuclear
geometry—Eq.~A5! suggests that the smallness of the elec-
tronic gradientG5FP2PF is important for achieving near
independence of representation. This bodes well for the
scalar-mass curvy-steps ELMD scheme, in which the
occupied-occupied and virtual-virtual components ofG are
identically zero. By this logic, it is plausible that mass pre-
conditioning may exacerbate the representation dependence
of the nuclear forces, though this has not been investigated.
We have, however, confirmed that for the diatomic molecules
studied in Sec. III,Z(t) and L (t) are smooth functions of
time.
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