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Curvy-steps approach to constraint-free extended-Lagrangian ab initio
molecular dynamics, using atom-centered basis functions: Convergence
toward Born—Oppenheimer trajectories
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A dynamical extension of the “curvy-steps” approach to linear-scaling self-consistent field
calculations is presented, which yields an extended-Lagrangian formulatiaim ioftio molecular
dynamics. An exponential parametrization of the one-electron density matrix, expressed in terms of
atom-centered Gaussian basis functions, facilitates propagation along the manifold of density
matrices in a geometrically correct fashion that automatically enforces idempotency constraints. The
extended Lagrangian itself is constraint free, thus neither density matrix purification nor expensive,
iterative solution for Lagrange multipliers is required. Propagation is highly efficient, and time steps
compare favorably to those used in Car—Parrinello molecular dynamics simulations. The behavior
of the method, especially with regard to the maintenance of adiabatic decoupling of nuclei and
electrons, is examined for a sequence of diatomic molecules, and comparison is made to trajectories
propagated on the converged Born—Oppenheimer surface. Certain claims to the contrary
notwithstanding, our results demonstrate that vibrational frequencies may depend on the value of the
fictitious mass parameter, even in an atom-centered basis. Light-atom stretching frequencies can be
significantly redshifted, even when the nuclear and electronic energy scales are well separated. With
a sufficiently small fictitious mass and a short time step, accurate frequencies can be obtained; we
characterize appropriate values of these parameters for a wide range of vibrational
frequencies. ©2004 American Institute of Physic§DOI: 10.1063/1.1814934

I. INTRODUCTION extended-Lagrangian molecular dynamig&MD), in which
the Lagrangian is free of constraints. This simplification is

Over the past two decades, Car—Parrinello molecular dyachieved by formulating the self-consistent fiéRCPH prob-
namics(CPMD) (Refs. 1-6 has become thée factotool for  |em in terms of the one-electron density matrix, rather than
simulation of reactive chemical systems and myriad othethe molecular orbital§MOs); by an exponential parametri-
environments where analytic potentials are either unavailablgation of a unitary density-matrix update; and finally, by
or unreliable. While the electronic basis functions in tradi-transforming to generalized electronic coordinates in which
tional CPMD are plane waves, atom-centered basis functionglempotency of the density matrix is maintained automati-
are in many ways more suitable for nonperiodic molecularcally. These generalized coordinates propagate without con-
systems. Gaussian atomic orbitals are intrinsically localizedstraints. Our ELMD formalism can be combined with either
which not only reduces basis-set demands, relative to plang plane-wave or an atom-centered basis, and here we choose
waves(by facilitating compact expansions of both core andthe latter, in order to exploit the advantages extolled above.
valence molecular orbitals but also greatly expedites This approach to ELMD represents a dynamical exten-
reduced- and linear-scaling algorithms for computing thesion of the curvy-steps approach to linear-scaling SCF cal-
electronic energy and its derivatives. The presence of overlagulations that our group has pioneef8d* We call this
derivatives in an atom-centered basis does introduce a smatiethod “curvy steps” in order to emphasize that the expo-
(but much-malignedamount of additional overhead; how- nentially transformed density matrix parametrizes geodesics
ever, computation of such quantities has been a standard feghortest-distance pathalong the Grassmann manifold of
ture of geometry optimization since the early days of quanadmissible density matricé$.This manifold is curved as a
tum chemistry. consequence of the idempoten¢gr orthogonality con-

One of the most expensive steps in the CPMD algorithimstraints on the SCF problem. Because we incorporate these
is the iterative solution, at every time step, for a matrix of constraints automatically into a geometrically correct energy
Lagrange multiplier§:® These define a “constraint force” in gradient, our curvy-steps ELMD technique is highly effi-
the equations of motion that is necessary in order to maintaigient, requiring at each time step only a few matrix multipli-
orthogonality of the molecular orbitals. In this paper, we in-cations in addition to the usual Fock build and energy gradi-
troduce an alternative to the Car—Parrinello formulation ofent computations.
Recently, Schlegel and co-worké&ts!® have introduced

3Electronic mail: herbert@bastille.cchem.berkeley.edu an alternative, Gaussian-orbital-based ELMD method that
bElectronic mail: mhg@bastille.cchem.berkeley.edu they call “adiabatic density matrix propagatiofADMP).
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As the name implies, the density matrix elements are propaion. As discussed in the following section, the density-
gated directly, without the transformation to generalized co-matrix approach is formally simpler and exhibits better scal-
ordinates, and this necessitates iterative solution of Lagrangag than the MO-based method.
multiplier equations, as well as iterative purificatioff of a A curvy-steps SCF calculation involves minimizing the
nonidempotentand therefore nonphysigallensity matrix at  energy, for a fixed Fock matrix, along the geodd(k), but
each time step in the propagation. From a geometrical poirttere we take the transformation variables (i <j) as gen-
of view, ADMP propagates the density matrix along straight-eralized coordinates representing the electronic degrees of
line trajectories, as opposed to curved ones, and such linefneedom. This suggests an extended Lagrangian of the form
updates cannot remain on the Grassmann mantfold. L

This paper presents the details of our algoritt8ec. 1)) _ - 52 _ _
and its application to simulate vibrational spectra for a se- £=3 2| MR+ Te = Esce Viue, @
guence of diatomic moleculgSec. Ill). Our main goal at ) ) ) )
present is to characterize curvy-steps ELMD in terms of timd" Which Escr is the SCF electronic energy/n,. is the
step and fictitious mass parameters, and to make detaild'clear Coulomb repulsion energy, and
comparison to Born—Oppenheimer molecular dynamics
(BOMD), in which the SCF calculation is converged at each TF=%2 Af=— %Tr(Az) 3
time step. However, these simple systems allow us to exam- 1<l
ine carefully the i_mpo_rtant guestion _of whether—and to Whaﬁs the fictitious kinetic energy, with “mass” parameter (u
eygtent—ELMD vibrational fr(_aquenmes depend upon the fIC'actually has dimensions of a moment of inejtigor future
titious mass p_arameter. Whlle such a dependence has beﬁﬁerence, we express the electronic energy
documented in CPMD’2! the developers of ADMP

claim,™ based upon examination of the NaCl molecule, that  g__—11[(h+ 1H)P] (4
the use of atom-centered basis functions eliminates this un-
desirable feature of ELMD. in terms of a core Hamiltoniah that is independent dP,

Although we concur with this result for NaCl, it unfor- along with aP-dependent exchange and/or correlation con-
tunately lacks generality: we demonstrate cases—especiallgribution H. (In Hartree-Fock theory, for example, is equal
light-atom stretching vibrations—for which the vibrational to P contracted with the two-electron integrdf The
frequency decreases significantly as the fictitious mass is ifFock matrixF=h+H is a function of both the nuclear Car-
creased, even while the nuclear and electronic energy scaléssian coordinate$R,} and the curvy-steps electronic vari-
remain separated by several times the energy of the vibraables{A;;|i<j}, while P in our formulation is viewed as a
tional fundamental. Other standard metrics used to judge thinction of A only.
quality of ELMD simulations also belie this fictitious mass The Lagrangian in Eq2) leads, via the stationary-action
dependence. The only reliable indications of the accuracy ofrinciple; to Euler-Lagrange equations of motion
ELMD frequencies are the maximum value of the fictitious
kinetic energy, along with a quantitative estimate of the MR = I(Escet Viud (59
slowest electronic time scale. i IR,

for the nuclear Cartesian coordinates and

. JE
Il. THEORY | MA” _ Oms__CF (5b)
A. Curvy-steps extended Lagrangian ij
At the heart of the curvy-steps SCF metfidttis a uni-  for the curvy-steps variables.

tary update of a reference density matfi¢0), The standard CPMD Lagrangiah®differs from Eq.(2)

_ in that the electronic variables in CPMD are the occupied

P(\)=e"P(0)e M4, ) : L L
Kohn-Sham MOsy; (with velocities ¢;), while in ADMP

parametrized in terms of a skew-symmetric matdx  (Refs. 13-1Hthe density matrix elementd;; serve as elec-
= — A" of curvy-steps variables. In this worR,is expressed tronic coordinates. Relative to ADMP we have transformed
in an orthogonal basis, as a matter of convenience rather thahe Lagrangian into generalized coordinates in which the
necessity. The curvy-steps update FL). preserves idempo- constraints disappear, sin®8(t)=P(t) is maintained at all
tency and normalization of the density matBif), provided timest, and therefore the generalized coordinates can be
that P(0) satisfies these constraints. Although the unitaryvaried freely. Otherwise, the Lagrangian must contain an ad-
transformation that connect8(\) to P(0) can be param- ditional term representing the idempotency violatiorPobr
etrized in several way€ 2°the exponential parametrization the orthogonality violation of the MOs. Our formulation thus
alone has thgeodesic propertyEq. (1) represents the short- obviates one of the most expensive stépm traditional
est path between the poin&\) and P(0), along the curved ELMD, namely, iterative solution for the Lagrange multipli-
manifold of one-electron density matricEs:?A similar pa-  ers that define the constraint force. In place of this force, we
rametrization of the MOs has been exploited for constrainthave a gradienfEscr/dA and an electronic trajectorg(\)
free CPMD?’ but to our knowledge this technique has notthat are geometrically correct for the Grassmann manifold on
been applied to dynamics in the density matrix representawhich the SCF problem residés!?243
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B. Curvy-steps ELMD algorithm First let us explicate our updating scheme for the elec-
tronic variables. Following thath time step, a new matrix

Our ab initio molecular dynamics scheme consists in . ) .
A, 1 of curvy-steps variables is generated according to

integrating the equations of motion, EdS), using the ve-

locity Verlet algorithm®2 _
B 1 2 An+1:5tAn_[(8t)2/2M]Gny (11)

r(t+éot)=r(t)+ov(t)st+ 5(t)a(t), (62

which is merely the velocity Verlet update of E@a), start-

ing from A=0. The nuclear coordinatelﬁn are updated at

with r, v, anda replaced by the appropriate nuclear or elec-the same time, following which the nuclear and electronic

tronic coordinates, velocities, and accelerations, respectiveljialf-step velocities?

In particular, for the electronic degrees of freedom we propa-

gater=A;;, v=4;;, anda=—pu~*(9Esce/dA;;), for each v(t+6t12)=v(t)+ 3a(t)dt, (12)

i<j. Propagation of the nuclear variables is straightforward

but propagation of the electronic degrees of freedom Walzre computed, since these require only the forces saved from

rantls:.som? Cﬁmk;neng. . ist ; . the previous step. For the electronic variables, this corre-
irst of all, based upon its satisfactory performance 'nsponds to a velocity update

large-molecule SCF calculatioh®we have opted to use a
basis of Cholesky-orthogonalized atomic orbite©s). The ) )
Cholesky basis is defined by the decomposition An— A= (3t2u)G,. (13

1 fo7-17-1yt
Sao=LL'=2"%(27) @) Having computed nuclear and electronic half-step ve-

of the AO overlap matrixS,o, with L=Z"1 a lower trian-  locities, we update the density matrix according to
gular matrix. The Fock and density matrices in this basis are

v(t+8)=v(t)+ 3 dt[a(t)+a(t+t)], (6b)

F=Z|:AOZJr (8) Poa= eAn+ane_An+l, (14
and Exact evaluation of ex@,, ) requires diagonalization of
t the NyoX Nap matrix A, ;. We circumvent this expensive
P=L"PolL. 9

scenario by means of a truncated Baker-Campbell-Hausdorff
Formally, inversion ofL is inconsistent with linear scaling (BCH) nested commutator expansion of E@4), which is
and ought to be replaced by an algorithm that forms theextremely efficient given the small size of a typical ELMD
sparse matrix directly, via biorthogonalization dB,o,33"3®  time step. In an orthogonal basis, only one matrix multipli-
and furthermore eliminates the need foby working in the ~ cation per BCH order is requiréd,and even with highly
AO basis where necessary. For systems amenable to modeg¢anservative thresholds we find that four to six terms are
hardware and algorithms, however, formation of batand  sufficient to converge the expansion. Idempotency of the
L constitutes a very small fraction of the total computationaldensity matrix is maintained below the BCH truncation
effort,'° so in our implementation both are computed usingthreshold.
standard dense-matrix LAPACK routines. In view of this rapid convergence, we speculate that se-
The electronic forces contain a derivative Pfwith re-  ries expansion of exa) might improve the efficiency of
spect toA, by virtue of Eqs.(1) and(4). This derivative can MO-based exponential transformations as well. In these
be expressed in closed forfhbut only whenA=0 does one methods, the MO coefficient matri@ is updated according
obtain an expression that can be evaluated exactly withou® Cn+1=C,exp@,;1), which forms the basis of a

diagonalizingA: constraint-free CPMD technique introduced by Hutter, Par-
rinello, and Vogel” and has also seen widespread use in
G= JEsce —EP—PE (10) static SCF calculationconsult Refs. 22—25 for a bibliogra-
A |, ' phy). Because the energy depends only onligg. occupied

_ R columns ofC, this update can be accomplished by diagonal-
(As A and the nuclear coordinatd® are complementary izing an No.X Ny Mmatrix rather than anNyoXNag

variables, it is implied that the latter are fixed in derivativesmatrix 42" but for large systems this is liable to remain more
with respect to the formerDiagonalization ofA is avoided expensive than a truncated expansion of Ajp(especially

by resettingA to the zero matrix at the end of every time in dynamics methods, where the density matrix changes little
step, which amounts to a translation of the electronic coorin a single step.

dinate frame. Commensurate translati¢iparallel trans- Returning to our own algorithm, following the density
port”) of the electronic velocities is nontrivial, however, matrix update we next generate new transformation matrices
since the Grassmann manifold is non-Euclidean, but in pracz_ ., andL ., to reflect the new molecular geometry and
tice we find this to be numerically unimportant and thus wecorresponding overlap matrix. Using,.;, P,.; is then

do not alterA when A is reset to zero. Further exposition transformed into the new AO basis for use in the subsequent
concerning parallel transport and other geometric aspects ¢fock build, following which the new nuclear and electronic
curvy-steps ELMD is provided in Sec. Il C. forces are computedDerivation of the nuclear gradient is
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the topic of Sec. Il D. These forces correspond &gt + 6t) C. Geometric aspects of curvy-steps ELMD
in the velocity Verlet update of Eq6b), which is finally

As a postscript to the procedure outlined in the preced-
completed, e.g.,

ing section, we wish to discuss certain geometric aspects of
this algorithm that we consider important, even though in its
present implementation they have no practical bearing on
curvy-steps ELMD. As pointed out in the seminal work of
Edelman, Arias, and Smith(recapitulated in our own work
on curvy step¥1?§, the Grassmann manifold that charac-
terizes the SCF problem is not flat, and consequently vectors
that are tangent to this manifold at a certain pdirg., for a
certain density matrix or set of MQgenerally do not lie in
the tangent space at other points on the manifold. When tan-

M=PMP+QMQ + QMP + PMQ. (16) gent vectors associated with a previous time step are re-

quired, these vectors must parallel transported®*’ along

The terms on the right define, respectively, the OO, VV, VO, the geodesic defined by the curvy steps variables, in order to
and OV components oM (O=occupied,\=virtual). De-  bring them into the tangent space at the current time step.
composingG in this manner, one finds that Our focus on the matriA of curvy-steps variables po-
tentially obfuscates the fact that points on the Grassmann
manifold are represented by density matriBesntisymmet-

. . - ric matricesA are not points on the manifold, but rather for
which _demonstrates that the quarltmEA P, QAQ, PAP, a given pointP(0), these matrices parametrize directions of
and QAQ are constants of the motion. transit (i.e., geodesigsoriginating from that pointP(\) in

Equation (17) reflects the fact that only OV and VO gq (1) represents the geodesic whose initial tangent vector
rotations alter th&sCF energy, and the SCF problem is con- (atA=0) is

verged whenQFP=0. That PAP and QAQ are constant _ _ _
implies that the fictitious kinetic energye, just like Egcr, P(0)=AP(0)—P(0)A. (18)

is invariant to OO and VV rotations. However, standard._, . . .
o .. “This expression can be used to compute the instantaneous
mass-preconditioning schemes for ELMD destroy this in- . . .
rate of change in the density matrix elements. In fact, Eq.

variance inTg. Specifically, in order to achieve longer time .
S . . L 18) represents the general form of a tangent vector, in a
steps, it is standard practice to give larger fictitious masses tg . .
projection-operator representation of the Grassmann

: - : 3
either the high-energy plane wavéls CPMD’®) or the manifold® and can be derived from geometric consider-

high-energy density matrix elementsm ADMP%). In the . ) ; ;
ADMP version of this techniqu¥: for example, the scalax ations alone. Alternatively, this expression follows from the

Ani1=An—(8t/214) Gy 1. (15)

Note thatA andA are never transformed with or L ; rather,
these quantities propagate in the orthogonal basis.

Importantly, the electronic gradienG is free of
occupied-occupied and virtual-virtual contributions. Intro-
ducing Q=1—P, the projector onto the virtual space, any
matrix M may be expressed identically as

G=QGP+PGQ, (17)

is replaced by a diagonal matrgx, and the fictitious kinetic chain rule:
energy is expressed g = Tr[ (u*?P)?]/2, which is equiva- - aP dA;
lent to associating a masg{x;) "2 with the density matrix P= & 9A; dt (19)

elementP;; . A mass-preconditioned version of curvy-steps _

ELMD could be formulated similarly, with &;x;)*? the ~ Wwith JP/JA obtained from Eq(1).

mass for coordinatd;; . The antisymmetric matriA thus parametrizes a tangent
An unfortunate consequence of all these massvector whose origin i®(0). Parallel transport of tangent vec-

preconditioning methods is the introduction of nonvanishingtors is realized by transformation of their skew-symmetric

OO and VV contributions to the electronic gradient. This isdirection matrice<? and it follows thatA ought to be trans-

readily verified by replacings with (u;x;)"? in electronic  formed, following each velocity Verlet update, according to
equation of motion, Eq(5b), whereuponPAP and QAQ  the prescription

vanish only in the case that;= u; for eachi andj. Non- ) )

vanishing OO and VV accelerations ultimately manifest as ~A—e*A, (20
0O and VV rotations of the density matrix. In CPK¥iE$ and _ . _
ADMP,** it is evidently the case that increased control overVhich engenders parallel transport Bfalong the geodesic
fluctuations inTg, which facilitates a larger time step, com- defined byA. The update ofA in Eq. (20) is fundamentally
pensates for the inherent decrease in efficiency arising frorflifferent from the exponential transformation of the density
the introduction of electronic coordinate variations that domatrix in Eq. (1), but this is no cause for alarm, given the
not alter the energy. In curvy-steps ELMD the electronic co-different rdes occupied by these two quantities.

ordinate steps are optimally small, and it remains to be tested As a practical matter, because the electronic velocities
whether mass-preconditioning is beneficial. In the interest ofire kept smallelse ELMD breaks down, for reasons unre-
minimizing the number of adjustable parameters, howeverated to differential geometjy we find in practice that a
we shall at present employ only a scalar fictitious mass. W&eries expansion of Eq(20) consistently converges at
achieve time steps comparable to ADMP sans preconditiof@(A?), even with highly conservative thresholds, and fur-
ing, which are somewhat larger than nonpreconditionedhermore parallel transport d&f has an undetectable effect on
CPMD time steps? the dynamics. This may be attributable to the velocity Verlet
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updating scheme that—when implemented in the two-stage3) reduces to the more familiar expressiog,P
version described in Sec. Il B—never combines tangent vec=Tr[W(JSxo/dR,)], whereW =PaoFaoPao is the energy-
tors that differ in time by more thaat/2. Specifically, the \eighted density matri®?°
update A(t)—A(t+ 6t/2), Eq. (13), utilizes the gradient Following Schlegekt al.'® a simple expression fdD, is
G(t) and is therefore geometrically correct, whereas the sembtained by differentiating the identit#'S,oZ=1 and ex-
ond stage of the velocity updatA(tJr 5t/2)—>A(t) [Eq. ploiting the fact thaD, is lower triangular. The result is
(15)] uses the gradien&(t+ 6t), which is not quite geo- o
metrically consistent because the update occurs at time ~[Z(3Sp0lIR)ZTY;j iF i<]
+ 5t/2, nott+ 8t. We plan to explore this issue further in (D)ij=1 —[Z(dSno/dR)Z /2 if i=]. (25)
future work. 0 if i>j

Formally speaking, our practice of resettidgto zero
following each time step may lead to an algorithm that is notCombining this expression with Eq22) and(23) affords an
strictly time reversible—indeed, it cannot be rigorously re-expression for the gradient that requires only matrix multi-
versible so long a is not properly transported—but nu- plications, not diagonalization, and is therefore consistent
merical experiments indicate that this is not important. SpeWith linear scaling. This is one advantage of Cholesky de-
cifically, for the systems discussed in Sec. Ill, we haveCOMposition over, say, symmetri¢.owdin) orthogonaliza-
performed experiments in which the signs of all nuclear and!on-
electronic velocities are reversed at the end of a multiple- A subtle consequence of the presence of overlap deriva-
picosecond trajectory. In each case, and to very high precfives is that the nuclear derivativé&scr/dR, depend upon

nal initial conditions. is, they depend upon how the AOs are orthogonalized. Spe-

cifically, while the first equality in Eq(23) provides a gen-
eral definition ong for any orthogonal basis, the second
equality is particular to the Cholesky orthogonalized basis
employed here. In the Appendix, we provide a general proof
Evaluation of the nuclear forces requires derivativesthat the nuclear forces are representation dependent when-
dEsce/ IR, in the case that the SCF calculation is not con-ever atom-centered basis functions are employed, and fur-
verged, whereas the usual derivation of the SCF gradientthermore illustrate how this dependence disappears at SCF
makes explicit use of the convergence conditiBR=PF.  convergence, yielding BOMD nuclear forces that are repre-
Our presentation of the more general formulation shall beentation independentSimilar arguments can be found in
terse, as the gory details can be found, for the ADMPRef. 16) From the expressions derived in the Appendix, it
method, in the work of Schlegeit al’® Apart from the ab- follows that the representation dependence of the nuclear
sence of a constraint force in our formulation, the derivationforces will be minor, provided that the electronic gradiént

D. Nuclear gradients

is the same. is small and oscillatory(always a necessary condition if
Briefly, ELMD is to reproduce long-time BOMD averageand fur-
thermore provided that the transformation matrix from the
JEscr :‘?ESCF‘ —gFigP 21) AO to the orthogonalized AO basis is differentiable. That
IRy [y R [, TN Z(t) andL(t) are smooth functions of time has been veri-

fied, empirically, in our calculations. In addition, ADMP cal-
culations using Cholesky-versus “\Wwdin-orthogonalized
AOs suggests that the differences are small and do not alter
pertinent nuclear observabl&s'®

consists of an integral-derivativé&iellmann-Feynmancon-
tribution gi'" and an overlap-derivativéPulay) term gF.
The former,

JR, 2 4R,

gf=Tr , (22)

) Pao
Pao
1. NUMERICAL RESULTS
has the same form irrespective of whether or not the density
matrix is converged, which allows us to recycle much exist- ~ Curvy-steps ELMD has been implemented in a develop-

ing SCF gradient code. For nonconverged density matrice@ental version of th&-CHEM electronic structure software
the new twist is the form of”: package® we have also implemented BOMD in order to

make comparison. Our goal in this initial investigation is to
) —2TH(FPD)), 23) characteri.ze ac_ceptable valuesofind commensurate ti_me
b steps, which will depend upon the fastest nuclear motion of
the system in question, and we have chosen to investigate a
sequence of diatomic molecules as an easy means to generate
9z aL a variety of nuclear time scales. Our molecular test set con-
=O7?L= —ZO.,—R (24)  sists of NaCl, &, HCI, DCI, HF, and DF, whose vibrational
: ! frequencies span the range from 300 to 4000 trActually,
represents the contribution from the transformation to themuch of our analysis will focus on HF, as this is the fastest
Cholesky-orthogonalized basis. At SCF convergence, Eqvibration and therefore the most difficult case, and because

IPao
o = Tf( FAOa_RI

where

D
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TABLE |. Parameters for curvy-steps ELMD simulations, in atomic units: 1 js not a conserved quantity, but its fluctuations also charac-

a.u. (fictitious mass ~1820 amu boff; 1 a.u.(time) ~0.0242 fs. terize the quality of the extended-Lagrangian dynamics. Also
St listed in Table Il is the maximum value of the time derivative
“ of T¢ in each simulation, another fluxional quantity that has
Simulation (au) a.u. fs been suggestédi’® as a measure of the extent of adiabatic
[ 45 5 0.12 decoupling of nuclei and electrons. For curvy-steps ELMD,
i 90 7 0.17 this derivative may be calculated according to
ii 180 10 0.24
iv 360 14 0.34 dTF dA” ¢9T|: 1 )
— | =2 ——| ==Tr(AG). (27
dt |, _, i< dt TN 2

high-frequency H-atom stretching vibrations are relevant tdHowever, our experience suggests that this is not a useful
the extensive body of ELMD simulations of liquid water and metric by which to characterize ELMD simulations. This
water cluster§:® will be discussed in Sec. Il B.

Perusing Table II, one finds that fluctuations in béth
andE are maintained at acceptable, submillihartree levels in
. . - ~all cases except simulatiofiii) for HF and simulation(iv)

All of our simulations utilize the B3LYP density for HCl, DF, and HF. At all times and in all simulation®
functional®® (Note that this and other functionals containing is maintained at less than>80*E,,, and because our
Hartree-Fock 4%xchange greatly increase the cost of plangjmylations are quite long, this effectively demonstrates that
wave CPMD,""but no such penalty is incurred in a Gauss-T_ is free of systematic drift(Additional evidence that the
ian basis sel.Some all-electron results will be described gjectrons do not “heat up” is presented in the following sec-
below, but most of our calculations utilize the Stevens—jon where we discuss the behavior &T/dt.) Note that
Basch-Krauss-Josien—Cund48BKJO pseudopotentiat Te, rather thanu, is the quantity to compare across various
and corresponding valence basis set, consisting & (3 g MD methods, because the fictitious “mass’—really a

—[2s] contracted basis functions for hydrogen ang@#  moment of inertia—depends upon the choice of electronic
—[2sp] functions for second-row elements. All simulations ogrdinates.

were initiated from a converged SCF density matrix at the  \wnile it is not our goal in this report to benchmark the

minimum-energy bond length, witA=0. (This last choice efficiency of curvy-steps ELMD, at the risk of digressing we
is convenient but may somewhat exaggerate energgannot help but call attention to the tabulation, in Table I, of
fluctuations’) Initial nuclear velocities correspond to har- the average orddmgcy necessary to converge the BCH ex-
monic zero-point energy in the vibrational mode, as deterpansion to an exceedingly conservative threshold of‘4th
mined by an SCF frequency calculation. every commutator matrix elemeritn comparison, the drop
Four ELMD simulations were performed for each mol- tolerance for AO integrals is IG'E,,.) In all casesngcy
ecule, using the time step and fictitious mass parameterg 7, which means that seven or fewer matrix multiplications
listed in Table I; we shall refer to these simulations by theare typically sufficient to update the density matrix. In a
Roman numerals given in that table. In the interest of obtainmultiple time-scale implementation of ELMD, such as the
ing well-resolved vibrational spectra, each simulation wasone described in Ref. 42, these multiplications would consti-
propagated for 20 000 time steps, corresponding to 2.4-6.8ite essentially the entire cost of each short electronic time
ps of simulated time. Since the maximum possible time stegtep, while comparatively expensive Fock builds and integral
(for a given level of energy conservation, $ayight to scale  derivative calculations would be required only at the conclu-
asu'?[cf. Eq.(11)], as should the lowest-energy electronic sjon of each longer, nuclear time step.
oscillation, the simulation parameters vary in such a way that
the ratio 6t/ u'? is approximately constant, up to our deci- B. Adiabaticity
sion to use integer valugim atomic unit$ for both param-

eters. We have not bothered to tyndy less than factors of ELMD is a faithful representation of classical dynamics on

2, but modulo this coarse-grained tuning, the valuatofor the Born—Oppenheimer surface. First, however, we must

eachu is as large as it can be made without inducing unac- . . .
ceptably large fluctuations{10°E,) in the energy. Nota- demonstrate that our BOMD simulations indeed represent

. ) . [rhese dynamics, as such simulations are known to suffer a
bly, the largest permissable time step is the same for all 0L tematic drift in the ener (and presumably other proper-
the systems studied here, and thus represents the limit A b y hrop

: . . : : les unless the SCF calculation is converged rather
velocity Verlet integration of the fast electronic motion. . 2443 . .
. . o tightly.=**°In our implementation of BOMD, the SCF con-
Table 1l provides a summary of fluxional quantities ob-

tained from each ELMD simulation. The quantity intro- vergence threshold is set to 1%E,, in the OV elements of

duced in that table is the value of the classical Hamiltoniar;[he Fock matrix, which i%-cHEmS default threshold when-

corresponding to the extended LagrangiBnand fluctua- ever energy gradients are required. In Table Il we list the

tions in H characterize finite time step integration error. lnfluctuauons mE(fc)—E(_O) and alsolE(t) ~E(0)I/|E(O)],
o i for long BOMD simulations of each test molecule. The fluc-
contrast toH, the “real” energy

tuations are extremely small, reflecting our conservative
E(t)=H(t)—Tg(t) (26) choice of time step. More importantly, the mean of the

A. Simulation parameters

We next wish to examine the extent to which curvy-steps

Downloaded 05 Nov 2006 to 128.146.173.210. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



11548  J. Chem. Phys., Vol. 121, No. 23, 15 December 2004 J. M. Herbert and M. Head-Gordon

TABLE Il. Summary of fluxional quantitie§in atomic unit3, averaged over 20 000 time steps, for curvy-steps
ELMD simulations on the B3LYP/SBKJC potential surface. Consult the text for definitions.

Energy fluctuations/10* E,,

H(t)—H(0) E(t)— E(0) Ie|l  dTe/dt
Te max max

Simulation Mgy rms max rms max  max /1074 /1078

NaCl (i) 4.0 0.001 0.004 0.001 0.005 0.004 0.002 0.012

(i) 4.2 0.002 0.009 0.003 0.012 0.008 0.005 0.017
(i) 4.5 0.003 0.017 0.005 0.023  0.017 0.009 0.024
(iv) 4.8 0.006 0.034 0.010 0.045 0.033 0.019 0.037

F, (i) 5.0 0.026 0.113 0.027 0.114  0.035 0.129 0.251
(i) 5.0 0.048 0.223 0.049 0.227  0.072 0.267 0.363
(iii ) 51 0.102 0.458 0.104 0.476  0.141 0.549 0.502
(iv) 5.4 0.201 0.941 0.205 0.874  0.296 1.111 0.723

DCI @) 5.2 0.110 0.564 0.132 0.683  0.149 0.221 0.729
(i) 5.5 0.228 1.086 0.273 1.376  0.312 0.447 1.109
(iii) 5.7 0.465 1.507 0.552 2,552 0.636 1.010 1.531
(iv) 6.0 1.278 5.297 1.407 6.422  1.308 2.404 2.268

HCI (i) 5.4 0.199 0.968 0.247 1.196 0.319 0.467 1.557
(i) 5.8 0.488 2.181 0.570 2595 0.595 1.581 2.468
(i) 6.0 1.348 5.824 1.462 6.659 1.254 2.538 3.164
(iv) 6.4 2.029 9.588 2.388 11638 2.662 5.686 4.893

DF () 5.4 0.396 1.851 0.448 2.081 0.263 0.500 1.462
(i) 5.7 0.742 3.411 0.827 3.829  0.507 1.622 2.142
(i) 6.0 1.874 8.416 2.001 9.173  1.123 3.418 3.268
(iv) 6.3 3.942  16.969 4.337 19.076  2.275 6.650 4.498

HF (i) 5.6 0.768 3.299 0.867 3.756  0.498 1171 2.678
(i) 6.0 1.700 8.342 1.874 9.304 1.114 2.672 4.041
(iii) 6.3 3.688  16.496 4.071 18572 2.284 7.174 6.368
(iv) 7.0 9.271 45.702 10.055 66.191 6.619 40.820 18.401

signed energy fluctuationsg(t) —E(0), which places a Having demonstrated that our BOMD forces are fully
bound on any systematic drift in the BOMD energy, is lessconverged, let us compare them to the ELMD ones. Actually
than 4x :I-_(TSEh_fOr each simulation. This indicates that our e find it more convenient to deal with the acceleration
BOMD smulgnoqs are free of .dl’lft over thg S|mulat|c_)n along the bond axis, and in Fig. 2 we plot the ELMD and
lengths used in this work. At the risk of belaboring the point, .. . L :
however, we show in Fig. 1 the normalized energy quctua—BQMD yalues OTR(t) for ,FZ S|mulat|on(|v). and HF 3|mg-
tions|E(t)— E(0)|/|E(0)| for the initial and final 2000 steps Iatlop (|)1§4i30n5|stent with the .conclusm.ns of previous
of a 20 000-step BOMD simulation of HF, witht=10 a.u. studies**®***the ELMD force oscillates rapidly around the
By the end of the simulation the fluctuations have grownBOMD force, at least for appropriate valuesafTen vibra-
slightly larger, but there is no evidence of drifSome sys- tional periods are plotted for each of the examples in Fig. 2,
tematic drift is observed if the convergence criterion is re-and on this time scale the ELMD force, averaged over the
laxed to 10 °E,,, Q-CHEMs default for single-point energy fast oscillations, is faithful to the BOMD force, although for
calculations. HF a small but systematic drift has begun to appear by the

TABLE llI. Fluxional parameters from BOMD simulations witht=10 a.u.; numbers in parenthesis denote
powers of ten.

[E(t)~E(0)//|E(O)| (E(t) ~E(0))/Eh

rms Max Mean ms
NaCFP 8.4(—10) 3.2(-9) 5.1(-9) 2.8(—8)
F,° 8.6(—9) 2.6(—8) 5.8(-7) 4.2(-7)
DCI? 2.6(=7) 8.5(—7) 5.7(-6) 4.1(—6)
HCI2 5.2(=7) 1.7(-6) 1.1(-5) 8.3(—5)
DF? 5.0(=7) 1.7(-6) 1.8(—6) 1.3(-5)
HF? 1.0(—6) 3.4(—6) 3.6(—5) 2.6(—5)

@ 000 time step simulation.
P20 000 time step simulation.

Downloaded 05 Nov 2006 to 128.146.173.210. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



J. Chem. Phys., Vol. 121, No. 23, 15 December 2004

-5

i il ‘ "
{

-6

|
~

log ( |E@) - E©)|/ |E©)|)

0 1 2 18 19 20

time steps / 1000

FIG. 1. Normalized energy fluctuations for a BOMD simulation of HF with
ot=10 a.u.

tenth vibrational period. The origin of this feature is dis-
cussed below.

It is quite intentional that in Fig. 2 we have compared
simulation(i) for HF—which employs the smallest value of
wu studied here—to simulatiofiv) for F,, which uses our
largest value ofu. This is a first example of a general prin-
ciple that will figure prominently in our discussion of

Lagrangian molecular dynamics
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L Gi)

ELMD: the accuracy of the simulatiofiv) results, for mol-

ecules not containing hydrogen, is quite acceptable over A BT Y AN ANR\A R {1 IR /{1
many vibrational periods, and is comparable to or better than

the accuracy of the simulatioi) results for hydrogen-
containing molecules.
The first indication of possible difficulties with

R/107 a.u.

i
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FIG. 2. AcceleratiorR along the diatom bond fafa) F,, from simulation
(iv); and(b) HF, from simulation(i). Circles represent the BOMD resullt.

0 10 20 30 40 50 60 70 80
time / fs

FIG. 3. AcceleratiorR along the HF bond, from ELMD simulation(@)—
(iv). The broken lines are BOMD results.

hydrogen-containing species comes from examiritidor

HF as a function of, Fig. 3. Like simulatior(i), the average
ELMD force in simulation(ii) oscillates tightly around the
BOMD force for at least ten vibrational periods, albeit with a
slightly faster drift than was observed {n. By (iii), how-
ever, the fluctuations about the BOMD force are noticeably
larger in amplitude and the drift is unmistakably faster. Fi-
nally, for simulation(iv) the ELMD force is no longer a
reasonable facsimile of the BOMD force beyond two or three
vibrational periods.

The slow drift in the ELMD nuclear forces away from
the BOMD ones, evident in all of our simulations but most
severe for hydrogen-containing molecules, arises because
these forces cannot respond instantaneously when the
BOMD forces turn over. These lag times add coherently, so
that the ELMD forces grow farther out of phase each time a
classical turning point is reached. Increasjagexacerbates
this problem in two ways: first, by slowing down the elec-
tronic oscillations, so that the electrons respond less quickly
when the nuclei reverse direction; and second, by increasing
the amplitude of the fluctuations in the ELMD nuclear force
about the BOMD force, so that they must affect an even
larger change when the BOMD force turns over. This latter
effect is evident from the increasingly jagged features in the
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ELMD force at largeu (Fig. 3. These asperous features can
be mollified by coupling thermostats to the electronic veloci-
ties, a technique that has been shown to correct nuclear ve-
locity autocorrelation functions when large valueswofare
employed® In our experience, however, the application of
such techniques to hydrogen-containing molecules is non-
trivial, and is beyond the scope of this report.

The drift in the ELMD nuclear force must eventually
manifest as a drift in the ELMD trajectory away from the
BOMD result. This is illustrated by the phase-space trajecto-
ries for HF depicted in Fig. 4. Note especially the distinctly
nonsinusoidal nature of the nuclear velocity in simulation
(iv). Compared toR(t), the velocity R(t) offers a better
indication of the failure of this simulation. In Sec. Il C we
will demonstrate that the phase lag in the ELMD forces and
trajectories is manifested as a redshift in the nuclear vibra-
tional frequency.

The ELMD forces for HF simulatiortiv) might be suf-
ficiently different from sinusoidal as to sound klaxons of
alarm in one’s mind, but the results of simulatiGi), say,
are more ambiguous, and the situation is apt to become even
more convoluted in polyatomic molecules, where the nuclear
forces do not vary sinusoidally at all. Insofar as tlagson
d’étre of ELMD is to circumvent the high cost of BOMD, it
is imperative to possess criteria, not requiring an explicit
BOMD calculation, which indicate whether the ELMD
forces are likely to be oscillating about the BOMD ones. The
quantityd T /dt, introduced in Eq(27), has been proffered
as one such “adiabaticity index” for ELMD simulatiort™®
based upon the observation théte/dt oscillates rapidly
about zero without drift, lyengaet al® concluded that cer-
tain ADMP simulations were indeed faithful reproductions of
BOMD nuclear dynamics.

With this in mind, in Fig. 5 we ploti T /dt for the first
100 fs of HF simulationdi) and (iv). Fluctuations in this
guantity are qualitatively similar over the remaining several
picoseconds of these simulations, and the mean value of
dTe/dt, averaged over all 20000 time steps, is 2.8
x 10" a.u. for simulation(i) and —8.9x10 % a.u. for
simulation(iv)—that is to say, zero, on the scale thldi- /dt
fluctuates. Certainly, these fluctuations grow larger in ampli-
tude asu increases, but as an adiabaticity indEk: /dt falls
flat, utterly failing to detect the impending disaster in the
ELMD forces for =360 a.u. Thad T /dt oscillates about
zero appears to be a weak criterion that is necessary but not
sufficient to obtain reliable ELMD results.

In CPMD, the validity of the adiabatic decoupling hy-
pothesis is sometimes interrogated by computing the spec-
trum of fictitious electronic oscillation;*> which can be

R/ a.u.

J. M. Herbert and M. Head-Gordon

time / fs

compared_ to thénucleay Vlb_ratlonal spectrum to det_ermlne FIG. 4. Comparison of ELMD trajectorigsolid curve$ and BOMD trajec-
whether, in fact, a separation of energy scales exists. Botlyries (broken curvesfor HF, starting from the same initial conditions. In
spectra are computed in the same way, as the Fourier transach panel, the upper curves depict the bond leR{t), and the lower
form of a velocity autocorrelation function. For curvy-steps curves illustrate the nuclear velocity along this coordirf(e).

ELMD, the electronic velocity autocorrelation function is de-

fined as

cem:;j (Aij(DA;(0)), (28)

any molecular ensemble, as we consider only isolated mol-
ecules. OtherwiseC((t) is computed just like any other
classical time correlation functioff,and its cosine transform

in which the averagé --) runs over time origins but not over [sinceCg((t)=Cg(—1)] affords the spectrum of bound elec-
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FIG. 5. Plots ofd T /dt for HF simulations(i) (darker, solid ling¢ and (iv) =2 R 4
(lighter, broken ling. 2
‘GEJ 0.6 j
% _________________________________ |
tronic vibrations. These we term fictons, as they do not de- ® %47
scribe real physics, and we reserve the wueitgkations to 3
mean nuclear oscillations. £ 0zp ]
Unfortunately, the use of ambulatifigtom-centeredba-
sis functions complicates the ficton spectrum considerably, g e ]
because the motion of the basis functions necessarily intro- 1.0
duces correlations int€(t) that decay on a nuclear time Simulation (iv)
scale. This is illustrated in Fig. 6, which depicts sections of 08 1
both the nuclear and electronic velocity autocorrelation func- I
tions for HF. The latter exhibits an unmistakable, fast elec- oor i 1
tronic motion superimposed upon the slow oscillation of the agll I e I 1
basis functions. An approximate,priori estimate of the fast '
oscillation time scale is afforded by the simple fornftfta oal frommme —---e- ]
rei= 271\l (£ Lumo— Eromo)- (29) J \ |
0OF-- 8
At the B3LYP/SBKJC level, the highest occupied molecular . p- P 10 > 1

orbital-lowest unoccupied molecular orbitalHOMO-
LUMO) gap for HF is 0.44E,, whencery~1.5 fs for u
=45 a.u. This coincides nicely with a cursory examinationg|g. 7. Low-energy fictorielectronic oscillation spectra for HF; the total

of the electronic correlation function in Fig. 6: the time be- integrated intensities are shown as a broken line. The most intense peaks
tween successive local minima @y(t) is roughly 2 fs. have been truncated in order to accentuate the weaker lines in the spectrum.

Whenever atom-centered basis sets are used, the ficton

spectrum will contain Fourier components at all of the fun- he fund i I qgi q decisi
damental vibrational frequencies and, resolution permitting!"€ fundamental is well separated in energy, and our decision

at overtones and combinations of these frequencies as wetP focus on diatomic molecules in this initial investigation is
This makes for a rather complicated ficton spectrum, as viPartly intended to simplify the spectra as much as possible.
fThis being said, it merits noting that in polyatomic

molecules—and especially in short simulations—there is

little chance that vibrational overtones or the corresponding

R A I W S —— ficton lines will be resolved.

’,’ ‘ /| Al i b | ! The low-energy portions of the ficton spectra for HF
) ik il il ' simulations(ii)—(iv) are shown in Fig. 7(The full spectra

‘ | iy ‘ ! exhibit peaks up to about 75000 ch) The lowest-energy

R A T (I and most intense peak in each spectrum corresponds

exactly—in both line position and width—to the vibrational

AR | fundamental, while the next peak in each spectrum

! iiix ‘ (~7500 cm 1) represents the first vibrational overtone. The

. b i il | ‘ second overtone, at 11510 ¢/ is just barely visible in the

N R T R spectrum from simulatioriii ), though it is resolved in all

450 460 470 480 490 500 three spectra and would be visible upon sufficient magnifi-

ime I cation. Despite these complicating features, there is still a
FIG. 6. Section of the electronisolid line) and nuclearbroken ling ve-  Clear separation between these vibrationally induced ficton
locity autocorrelation functions for HF, from simulatid. lines and the much higher-energy features arising from re-

frequency / 10%cm™

brational overtones may lie among the ficton lines, even i

C () (arb. units)
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TABLE IV. Spectral data from ELMD simulationsw is the fundamental vibrational frequency add
=wgomp— @ IS its (red shift relative to the BOMD resultr, and 7, are the electronic and nuclear time
scales, as defined in the text, with the former either observed from the spectrum or calculated fi@89).Eq.
Here “gap” refers to the adiabatic gap defined in the text.

Frequency/cm? Te/em ! o lfs
Simulation ) Sw Gap rms Max Obs. Calc. T/ 7el

NaCl () 317 0 14498 0.02 0.09 2.3 2.6 45.7
(i) 317 0 10158 0.04 0.18 3.2 3.7 32.9

(iii) 317 0 7103 0.07 0.36 4.5 5.3 234

(iv) 317 0 4920 0.14 0.73 6.4 7.4 16.4

F, (i) 989 0 26231 0.12 0.78 1.2 21 28.1
(i) 989 0 23596 0.25 1.57 1.4 2.9 24.1

(i) 989 0 16411 0.50 2.90 1.9 4.1 17.7

(iv) 988 1 11325 1.03 6.22 2.7 5.9 12.5

DCI (i) 1902 0 22313 0.63 3.26 1.4 1.8 12.5
(i) 1900 2 16580 1.29 6.86 1.8 25 9.8

(i) 1896 6 11190 2.58 13.96 2.5 3.5 7.0

(iv) 1888 14 7400 5.03 28.70 3.6 4.9 4.9

HCI (i) 2648 3 20827 1.30 6.99 1.4 1.8 9.0
(i) 2642 9 15858 2.65 13.05 1.8 2.5 7.0

(i) 2633 18 10372 4.92 27.52 2.6 35 4.9

(iv) 2614 37 6726 10.71 58.42 3.6 4.9 3.6

DF (i) 2788 7 20502 1.28 5.78 1.4 15 8.6
(i) 2783 12 15692 2.26 11.16 1.8 2.2 6.7

(i) 2773 22 10358 4.87 24.65 2.5 3.1 4.8

(iv) 2751 44 6671 10.79 49.93 35 4.3 35

HF (i) 3836 17 22294 2.47 10.93 13 15 6.7
(i) 3824 29 14726 5.20 24.06 1.8 2.2 4.8

(i) 3796 57 9444 10.42 50.12 25 3.1 3.5

(iv) 3738 115 5727 25.12 145.27 3.5 4.3 2.5

coupling of the orthogonalized AOs due to changes in thevibrational overtongsee Fig. 7. A better harbinger of the
electronic structure. Peaks of the latter variety are absent iproblems with this simulation is the observation that the fun-
the portion of the spectrum shown for simulatiGn, but  damental vibrational period,,. exceedsr, only by a factor
these peaks shift into view as the fictitious mass is increaseaf 2.5, which evidently is not a sufficient separation of time
In Table IV we compile a list of fundamental vibrational scales. Of course, the corresponding frequensigsandwyg,
frequencies and adiabatic gaps, as calculated from ouwrontain the same information as the time scalgsand 7,
ELMD ficton spectra. Theadiabatic gapis defined here as but this content is packaged differently. Whereas a frequency
the separation between the vibrational fundamental and theifference w,,— we~5700 cm' %, in conjunction with the
lowest ficton frequency not coincident with any line in the CPMD results of Grossmaet al.*®> might tempt one to con-
vibrational spectrum. Also listed for each simulation is theclude that the simulation is adiabatically decoupled, a time-
electronic time scale, corresponding to the lowest ficton scale ratior,./7¢~2.5 seems less convincing, as the vacil-
frequencyw . As expected, the measured valuesgfscale lating ELMD force then has time for only 1.25 oscillations
as u'2, and moreover the estimate of, from Eq. (29)  between nuclear turning points. This rapidly gives rise to the
proves, in each instance, to be an upper bound to the olphase differences seen in Fig. 3.
served electronic time scale. This is important, since(Zg).
can be used to determine an appropriate valug: afsing
only a known or estimated value for the HOMO-LUMO gap.
The adiabatic gap is a highly seductive measure because A recurring issue in the CPMD literature is the depen-
it, too, can be calculated from the ELMD simulation alone,dence of vibrational frequencies on the fictitious mass pa-
without the need for BOMD. Based upon CPMD results forrameter. Such a dependence has been reported both in small
liquid water, Grossmamt al*® concluded that the onset of moleculed®?! and bulk materiald® in bulk MgO, over a
deviations from BOMD is a direct consequence of overlap+ange ofu otherwise thought to provide sufficient adiabatic
ping ficton and vibrational spectra. It is rather unnerving,decoupling. Having already pointed out in this work the slow
therefore, to note that even for HF simulatiow), in which  drift of ELMD trajectories away from BOMD ones, it comes
the ELMD forces exhibit large deviations from BOMD, the as no surprise that the computed frequencies differ, though it
adiabatic gap is still 5727 cnt, and furthermore the lowest is important to quantify the extent of the discrepancy. dhe
ficton peak is~1000 cm'! higher in energy than the first values listed in Table IV are vibrational frequency differ-

C. m dependence of vibrational frequencies
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ences relative to the correct values obtained from BOMD. ' ' '
For NaCl and i, ELMD simulations reproduce the BOMD @iv)
vibrational frequency across the entire rangeucgmployed
here. The agreement for NaCl is especially significant in
light of a previous ADMP study that also found the NaCl
vibrational frequency to be independent @fover a wide
range of the latter. These authors went on to claim that the
use of atom-centered Gaussian orbitals eliminatesutloe-
pendence of ELMD vibrational frequencies in general. Our
results reveal this conclusion to be erroneous.

In fact, NaCl is the most well-behaved molecule studied
here, according to every single metric that we have intro-
duced, while vibrational frequencies of other molecules ; ;
pecially those containing hydrogen atogmexhibit a pro- 3700 3750 3800 3850 3900
nounced redshift ag is increased. HF is the worst case,
where even simulation§) and (ii) afford shifts of 17 and
29 cmi !, respectively. For this molecule we have clearly
been too greedy in selecting a fictitious mass; however, our
main point is to emphasize that this fact is not obvious, ab-
sent BOMD data, and is concealed by several of the usual
measures for assessing ELMD simulation results. In particu-
lar, adiabatic gaps, real energy fluctuations, dig@/dt are
each deficient metrics in this respect. Separation of time
scales is a much more incisive measure: in all cases consid- |
ered here, a time-scale separatiqp./ 7~ 10 is sufficient to AW
obtain a vibrational frequency that is within a few chof
the BOMD frequency. G

Figure 8 presents a graphical illustration of the shift in o 37‘50 o '3850 ; P
the HF vibrational frequency as a function @f In the lower
panel of that figure, we plot the same spectra, shifted to the
blue by an amount equal to the maximum valueTefin kg, g uUpper panel: calculated vibrational spectra for HF. Solid lines are
each simulation. In the case of simulatiGm), where u is the ELMD results and broken lines are BOMD spectra obtained from a 2.4
much too large and the ELMD forces are rather erratic, thi$s trajectory(broader spe_ct_ruhand a 4.8 ps trajectornarrower spectruim
adjustment overcompensates for the vibrational frequenc&oa‘l’)v(ﬁ;gi”sgl;?z'ftrc’ffzf':;”C%tg%'igri'fns’)ec"a by an amount equal to the
shift, but for the other three simulations this correction af- - '
fords remarkable agreement with the BOMD vibrational
spectrum. For polyatomic molecules, the maximum value of; were less than 1:810 3E,,. As depicted in Fig. 9, the
Tr will increase(all else being equalsinceT is an exten- |arger fictitious mass results in a vibrational frequency that,
sive quantity, but we expect some correlation between th@iithin the limited resolution afforded by this short-time
maximumTe and the vibrational frequency shift per mode. spectrum, appears to be redshifted by precisely the maximum
HOWeVer, the distribution is Unlikely to be StatiStical, hence itva'ue OfTF . For the other all-electron ELMD Simulation' the

is doubtful that a similaa posterioricorrection is possible in - maximum fictitious kinetic energy is substantially smaller
polyatomic molecules. On the other hand, in CPMD simula-

tions of isolated HO and CQ molecules? all three vibra-
tional frequencies were shown to shift linearly with open-

(iii)

intensity (arb. units)

intensity (arb. units)

frequency / em™!

ELMD p= 45au. — —

ing the possibility of extrapolating the vibrational spectrum ELMD 1= 180 au. -
BOMD ——

to the =0 limit in toto. This remains a topic for future
investigation.

In order to verify that these frequency shifts are not an
artifact of the treatment of the electronic structure, we have
performed all-electron B3LYP/6-3TG ELMD simulations
for HF, using parametersuy(=45 a.u.gt=2.5 a.u.) in one
simulation and =180 a.u.$t=5.0 a.u.) in a second simu-
lation. The corresponding BOMD simulation useét
=10 a.u., and all three simulations were propagated for B = E w1}
5000 time steps. For the first of the ELMD simulations, the »
maximum value ofT was 18.4 cri* and fluctuations irE frequency / em
andH were maintained below 5:010™“E;,. For the second g o, vibrational spectra for HF from all-electron B3LYP/6-3tGsimu-
ELMD simulation, T,=<72.9 cm ! and fluctuations ifE and lations.

intensity (arb. units)
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N ' ' position of the line. This is not surprising because for these
p s Al ‘\ simulations, 100 fs of propagation time is sufficient to ob-
2 / R/ N serve substantial deviations from the BOMD traject(sge
< oy N Sim. (i) Fig. 4).
S — \ . sim. (i) — - — 9.4
xe) s VN Sim. (i) - - - - -
G .y VoL sim(v) — — — IV. SUMMARY
> Y | . s
@ / / \\ \\\ We have described an approachaib initio molecular
PE’ / //// \ W dynamics—*“curvy steps” ELMD—based on a transforma-
- / A \ \\\\ tion into generalized electronic coordinates in which the ex-
// S L X, by tended Lagrangian is free of constraints. Although this part
L7 . A of the formalism works equally well in a plane-wave basis,
3400 3600 3800 4000 4200 4400 we have chosen to implement the method using atom-
frequency / cm centered Gaussian orbitals. Propagation is highly efficient,

FIG. 10. Vibrational spectra for HF, obtained from 100 fs ELMD trajecto- requiring only a Tew ma_trlx mul__tlpllcatlonSIn order t.o up-
ries. The narrow spectrum s calculated from a 4.8 ps BOMD trajectory withdate the electronic density matri between Fock build and
the same initial conditions. integral derivative calculations. Neither purification nor so-
lution for Lagrange multipliers is required. Time steps com-
parable to those typical of CPMD are possible, without the
than the width of the spectrum, and the calculated vibrationaheed to resort to thermostats, and using only a single ficti-
frequency is in good agreement with BOMD. tious mass parameter. We expect that the use of multiple
These results demonstrate convincingly that the error iime-scale integration techniqifé€#8 will substantially ac-
ELMD vibrational frequencies increases as the maximuncelerate this method by obviating a significant fraction of the
value of Tg increases. The simplest way to suppress fluctuaintegral and integral derivative calculations, and in the future
tions in T¢ is to reduceu; for H-atom stretching motions we shall present a detailed analysis of the efficiency of the
above 3000 cm?! (7,,,<12 fs) and a target time-scale sepa- method.
ration 7,/ 7= 10, this requires at best our smallest value of  In this preliminary report, we have focused on a micro-
m. The fictitious mass, in conjunction with the HOMO- scopic examination and characterization of the dynamics, as
LUMO gap, sets the electronic time scale, and the finite timea function of the fictitious mass parameter. Our results deni-
step integration error in turn determines the maximum pergrate the value of most fluxional quantities as criteria to as-
missable time step, which is limited in our B3LYP/SBKJC sess the validity of ELMD results. Especially for hydrogen-
calculations tost~0.12 fs for u=45 a.u. For comparison, atom stretching vibrations above 3000ch we have
in the absence of mass preconditioning, thermostats, or othexhibited cases where both the real and the total energy fluc-
techniques designed to suppress the most rapid electronigations are kept tes10 # a.u.; where the time derivative
fluctuations, it appears thadt~0.07 fs is appropriate for dTg/dt of the fictitious kinetic energy oscillates around zero
CPMD simulations of liquid watef® increasing to perhaps with a mean of 10%° a.u. and no systematic drift; and where
0.1 fs when electronic thermostats are emplo¥/ed. the fictitious electronic oscillations are separated from the
On the other hand, for the HF simulations discussechuclear vibrations by several times the energy of the latter;
here, we have demonstrated that ELMD phase-space trajeget even still the ELMD forces are not an accurate represen-
tories are an accurate approximation to BOMD trajectoriegation of the BOMD forces, even when averaged over fast
(with the same initial conditionsonly for ~100 fs, while  electronic oscillations. In such cases, ELMD vibrational fre-
our ELMD simulations are propagated for 2.4—6.8 ps. Thesguencies may exhibit a pronounced redshift relative to the
long-time results represent the true, converged vibrationatorrect BOMD valueqthough the gross features of the vi-
frequency in the ELMD universe, though one might arguebrational spectrum, obtained from a short simulation, can
that for large systems, where propagation of picosecond trastill be correct. These results contradict an earlier cl&m
jectories is exorbitantly expensive, one will often be limited that the use of atom-centered basis functions eliminateg the
to simulating only the broad envelope of the vibrationaldependence of vibrational frequencies, and we suggest that
spectrum, which can be obtained from a relatively shorthe developers of the ADMP methtid*® should reexamine
simulation. Thus we have computed B3LYP/SBKJC vibra-this dependence, using more difficult test cases.
tional spectra for HF based on 100 fs of total propagation  Two criteria prove to be useful characterizations of the
time, using the samg@ and 6t parameters as in the longer accuracy of ELMD: the ratior, ./ 7¢ Of the fastest nuclear
pseudopotential simulationgi)—(iv). These spectra are time scale to the slowest electronic time scale, and the maxi-
shown in Fig. 10, set against the narrow spectrum from a 4.8 um value ofTg, the fictitious kinetic energy. For ELMD
ps BOMD trajectory. For the short versions of simulations simulations that are near, but not within, the adiabatic decou-
and (i), the broad spectra are centered at the BOMD frepling regime, the latter offers a reliable estimate of the vibra-
guency, in contrast to the long-time results, even though th&onal redshift, at least for diatomic molecules. More impor-
maximum and r.m.s. values @f are essentially the same as tantly, the ratio 7,,./7, Where 7, may be estimated
in the longer simulations. On the other hand, short versionaccurately using the fictitious mass and the HOMO-LUMO
of simulations(iii) and (iv) broaden the spectrum with re- gap, is a reliable indication of whether the ELMD simulation
spect to the long-time result but do not significantly alter theis within the adiabatic decouplinggeme. A time-scale sepa-
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ration 7,/ 7e~10 appears sufficient to obtain hydrogen- change discontinuously as a function of the nuclear
atom stretching frequencies that are correct to within a fevgeometry—Eq(A5) suggests that the smallness of the elec-
cm™ L. Our results indicate that these difficult cases may retronic gradientG=FP—PF is important for achieving near
quire a time step on the order of 0.1 fs or ldssnsistent independence of representation. This bodes well for the
with the CPMD liquid water results of Schweglet al#®),  scalar-mass curvy-steps ELMD scheme, in which the
although mass preconditioning may increase this valu@ccupied-occupied and virtual-virtual componentsGfre
somewhat. identically zero. By this logic, it is plausible that mass pre-
conditioning may exacerbate the representation dependence
of the nuclear forces, though this has not been investigated.
We have, however, confirmed that for the diatomic molecules
This work was partially supported by National Sciencestudied in Sec. IlI,Z(t) andL(t) are smooth functions of
Foundation(NSP Grant No. CHE-9981997, and J.M.H. fur- time.
ther acknowledges a NSF postdoctoral fellowship.
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