THE JOURNAL OF CHEMICAL PHYSICS 130, 124115 (2009)

The static-exchange electron-water pseudopotential, in conjunction
with a polarizable water model: A new Hamiltonian for hydrated-electron

simulations

Leif D. Jacobson, Christopher F. Williams, and John M. Herbert?
Department of Chemistry, The Ohio State University, Columbus, Ohio 43210, USA

(Received 26 September 2008; accepted 6 February 2009; published online 25 March 2009)

Previously, Turi and Borgis [J. Chem. Phys. 117, 6186 (2002)] parametrized an electron-water
interaction potential, intended for use in simulations of hydrated electrons, by considering H,O™ in
the “static exchange” (essentially, frozen-core Hartree—Fock) approximation, then applying an
approximate Phillips—Kleinman procedure to construct a one-electron pseudopotential representing
the electron-water interaction. To date, this pseudopotential has been used exclusively in
conjunction with a simple point charge water model that is parametrized for bulk water and yields
poor results for small, neutral water clusters. Here, we extend upon the work of Turi and Borgis by
reparametrizing the electron-water pseudopotential for use with the AMOEBA water model, which
performs well for neutral clusters. The result is a one-electron model Hamiltonian for (H,0),, in
which the one-electron wave function polarizes the water molecules, and vice versa, in a fully
self-consistent fashion. The new model is fully variational and analytic energy gradients are
available. We have implemented the new model using a modified Davidson algorithm to compute
eigenstates, with the unpaired electron represented on a real-space grid. Comparison to ab initio
electronic structure calculations for (H,0),, cluster isomers ranging from n=2 to n=35 reveals that
the new model is significantly more accurate than the Turi—-Borgis model, for both relative isomer
energies and for vertical electron detachment energies. Electron-water polarization interactions are
found to be much more significant for cavity states of the unpaired electron than for surface

states. © 2009 American Institute of Physics. [DOI: 10.1063/1.3089425]

I. INTRODUCTION

The chemical physics literature is replete with electron-
water interaction potentials,l_16 which have long been used
(in conjunction with various methods of one-electron quan-
tum mechanics) to examine the nature of the hydrated
electron.'™ As such, a person might reasonably question
whether the chemical physics community genuinely needs
yet another hydrated-electron model, especially in view of a
study by Turi et al.'’ that seems to validate certain assump-
tions that were made previously in the course of constructing
electron-water pseudopotentials, such as the use of a local
potential to model the exchange interaction. However, recent
simulations®* of large (H,O), clusters using the pseudopo-
tential of Turi and Borgis, ~ which was parametrized for the
bulk aqueous electron based upon the aforementioned analy-
sis by Turi et al.,lo have failed to settle>™ an old contro-
versy regarding the nature and evolution of the electron bind-
ing motifs in finite water cluster anions, and the question of
whether molecular beam experiments probe surface-bound
or cavity-bound states of the unpaired electron.'**?7° Thus,
it appears that there is still a need for hydrated-electron mod-
els that afford quantitative results for clusters, yet are trac-
table enough to be used in molecular dynamics (MD) and
Monte Carlo simulations, which are necessary in order to
make contact with experiments.
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At a phenomenological level, there are at least two im-
portant features missing from the Turi and Borgis (TB)
hydrated-electron model that one might reasonably expect to
be qualitatively important. The first of these is the absence of
any dynamical correlation between the unpaired electron and
the charge distributions of the classical water molecules, i.e.,
the absence of electron-water dispersion interactions. Ab ini-
tio electronic structure calculations demonstrate that such in-
teractions are significantly larger for cavity-bound electrons
than they are for surface-bound electrons.”” Jordan and
co-workers'>"**7 have addressed this deficiency using a
quantum-mechanical Drude oscillator for each H,O
molecule,'*"? and this appears to be the most accurate model
currently available (short of ab initio quantum chemistry) for
prediction of vertical electron binding energies (VEBEs).
Such calculations, however, require the solution of an (n
+1)-particle quantum mechanics problem, for a cluster of n
water molecules. While far more affordable than ab initio
calculations, the Drude model is therefore much more expen-
sive than one-electron pseudopotential methods, and exhaus-
tive simulations have so far been reported only for
n< 13131527

A second potential deficiency of the TB model, which
we address here, is the use of a simple point charge (SPC)
model*"* for the water-water interactions. Electrostatic in-
teractions in this model are represented by fixed, atom-
centered point charges that are chosen in order to reproduce
the structure of bulk water under ambient conditions. Per-
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haps unsurprisingly, the SPC model is rather inaccurate for
predicting relative conformational energies of small neutral
water clusters. Meanwhile, considerable evidence points to
the fact that the neutral water potential is often more impor-
tant in determining VEBEs than is the electron-water
potential‘lg”44 because the electron-water interaction stabilizes
water networks that are extremely high in energy (and far
from any stationary point) on the neutral water potential sur-
face. Neutral water potentials, however, are rarely param-
etrized using such high-energy structures, and simple func-
tional forms are not flexible enough to describe structures
that are far from any local minimum. One consequence (as
detailed in Refs. 43 and 44) is that small differences in the
(H,0), cluster geometry, which scarcely affect the total
electron-water interaction energy, often substantially modify
the water-water interaction and hence the VEBE, defined as

VEBE = Eneulral - Eanion' (1)

Changes in the underlying water model have been shown, for
example, to produce qualitatively different isomer distribu-
tions for (H,O); in finite-temperature Monte Carlo
simulations.”’

At present, the manner in which these facets of the TB
model manifest as observables remains unknown. As a first
step toward investigating this issue (and towards a more gen-
eral investigation of the role of polarization in condensed-
phase environments), we report here a reparametrization of
the electron-water interaction potential, following the TB
procedure but using the polarizable AMOEBA (Atomic Mul-
tipole Optimized Energetics for Biomolecular Applications)
water model,” which is known to perform well (as judged
by comparison to ab initio calculations) for structures and
conformational energies of neutral water clusters.**° In con-
structing our electron-water potential, we follow the TB pre-
scription as closely as possible so that in cases where the
new model predicts different physical properties than the TB
model, these differences can safely be attributed to the water-
water interaction potential. The TB model reproduces the
VEBE and absorption spectra in the bulk (for which it was
parameterized),11 and by following a similar parametrization
procedure we hope to improve upon the TB model for cluster
energetics while retaining accuracy in the bulk. As the TB
model has been used extensively in the most recent genera-
tion of aqueous electron simulations,”’zg_32 it serves as a de
facto electron-water pseudopotential against which to com-
pare the polarizable model.

The result of this work is a one-electron model Hamil-
tonian for (H,O); in which the one-electron wave function
and the classical water molecules polarize one another self-
consistently. An electron-water polarization potential arises
from our model in a natural way, via induced dipoles on the
water molecules; the ad hoc polarization potential used by
TB and others can be recovered as a well-defined approxi-
mation to the polarization potential arising from our model.
We calculate eigenstates of the resulting one-electron Hamil-
tonian on a three-dimensional, real-space grid, using a modi-
fied Davidson algorithm that is considerably simpler than the
Lanczos-based algorithm often used in hydrated-electron
simulations.?” Based on comparisons to ab initio electronic
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structure calculations in (H,0),, clusters (n=2-35), the new
model appears to be significantly more accurate than the TB
model, for both relative conformational energies and for
VEBEs.

Il. BACKGROUND
A. Pseudopotential theory

To date, most electron-water pseudopotentials have been
based upon the so-called static-exchange (SE)
approximation.4‘6’10’48 Within this approximation, one consid-
ers the interaction of the excess electron with the ground-
state wave function of an isolated H,O molecule. The anion’s
wave function is taken to be an antisymmetrized product of
the excess-electron orbital and the frozen ground-state wave
function of the H,O molecule (itself an antisymmetrized
product of spin orbitals), which leads to a one-electron ei-
genvalue equation for the excess electron,*'%#

Hgg| W) = (T+ Ve + Vi + V) [¥) = | 1), (2)

Here, T is the one-electron kinetic energy operator, V. is
the electron-nuclear interaction, Vj is the electronic Cou-

lomb (Hartree) potential, and \7x is the (nonlocal) exchange

operator. The quantities V and \7x are identical to the Cou-
lomb and exchange operators in a Hartree—-Fock (HF) calcu-
lation of neutral H,O, so the lowest-energy solutions of Eq.
(2) are the doubly-occupied molecular orbitals (MOs) of neu-
tral H,O, followed by the ground-state excess-electron or-
bital. The highest occupied MO in the SE approximation is
the lowest unoccupied MO in the HF calculation.

Although Eq. (2) is a one-electron eigenvalue equation,

construction of H sg requires MOs for H,O. This dependence
must be eliminated in order to define a local potential V(r)
that can be fit to some analytical expression, thus converting
Eq. (2) into a comparatively simple one-electron eigenvalue
equation, (T+V)|¥)=¢|W¥).

To motivate this approximation, consider the two rea-
sons why Eq. (2) is not already such an equation: First, the

nonlocality of \7x means that the exchange interaction de-
pends upon the core MOs; and second, the MOs must remain
orthogonal (which prevents the excess electron from pen-
etrating significantly into the core molecular region). It is
common to approximate the exchange interaction with some
local functional of the density, as in the electron-gas
approximation,49 which affords an attractive potential near
the core region. In order to avoid collapse of the one-electron
wave function into the molecule, a repulsive potential must
also be included. Early pseudopotentialls2’3’6 used a simple
exponential for the repulsive potential, a functional form that
can be motivated based on density-functional considerations
of the change in kinetic energy upon assembling the system
(e.g., H,O") from its constituents (H,0+¢).” As an alter-
native, we employ a repulsive potential derived from an ap-
proximate version® of the Phillips—Kleinman theory.51 This
repulsive potential has the form
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occupied

Vrep(;) == 2

k

i (r) f ar' ('), (3)

where the i, are the occupied MOs of neutral H,O, with
orbital energies g;.

The repulsive potential in Eq. (3) was derived from the
exact Phillips—Kleinman theory by Schnitker and Rossky4 by
expressing the wave function of the excess electron as a sum
of a nodeless pseudo-wave function and a linear combination
of the MOs for neutral H,O. By subtracting out the core
oscillations, one obtains a Hamiltonian that is (by construc-
tion) written for a nodeless wave function. Simplification of
this Hamiltonian to yield the repulsive potential in Eq. (3)
involves two assurnptions:4 first, that the orbital eigenvalue
for the excess electron is much less than the eigenvalues
corresponding to core (molecular) MOs, which is validated
by HF calculations; and second, that the pseudo-wave func-
tion is constant in the core region. The latter approximation
was later validated by TB."

Smallwood et al.”? recently reformulated the Phillips—
Kleinman treatment in a formally equivalent but computa-
tionally efficient form. We choose the approximate treatment
described above so that when comparing to TB results, we
may isolate (to the greatest extent possible) the effects of
using a polarizable water model. The approximate Phillips—
Kleinman treatment described here is used also in the Drude
model of Jordan and co-workers.'*"?

When the repulsive potential is included in the SE
Hamiltonian, the result is a Hamiltonian that contains a local
pseudopotential and is easily evaluated,

Hsp(P) = T+ Voo () + V(D + VI[p(D] + Vi) (4)

Since the core MOs used to construct these local potentials
are frozen, polarization is not included in the SE treatment,
yet electron-water polarization is crucial to obtaining accu-
rate VEBEs. Previous workers have dealt with this defi-
ciency by grafting an asymptotically correct (o<177%) polar-
ization potential onto an otherwise nonpolarizable
model,4’6’11 as detailed in the next section. We will instead
use a polarizable water potential, from which an electron-
water polarization potential arises in a natural way. Our ap-
proach is described in Sec. III.

B. TURI-BORGIS MODEL

In the model potential developed by Turi and Borgis,11
the interaction between the unpaired electron and a given
atomic site (oxygen or hydrogen) has a very simple func-
tional form, expressed in terms of three error functions:

V;rsl?rep = rl{— q' erf(A\r;) + B\ [erf(B5r;) — erf(Byr) 1. (5)

L
This potential incorporates both repulsion (rep), in the sense
discussed in the previous section, as well as electrostatics
(es). Beginning with Eq. (5), summation over repeated indi-
ces is implied, and atomic units are used unless otherwise
specified. The quantity r; represents the distance between the
electron and the ith nucleus, the ¢’ are the SPC point charges,
and the A; and Bj- are fitting parameters. These parameters

J. Chem. Phys. 130, 124115 (2009)

were not fit to reproduce the various local-potential compo-
nents of the SE pseudopotential [Eq. (4)], but rather to re-
produce the eigenvalue and density of the excess electron
obtained by solution of Eq. (2). It is clear, however, that the
first term in Eq. (5) is a damped Coulomb interaction, while
the second and third terms together represent a repulsive in-
teraction. The Coulomb potential must be damped in order to
avoid singularities at the atomic sites.

The TB model predicts the optical absorption maximum
of the bulk aqueous electron more accurately than previous
one-electron models. ! Specifically, the TB absorption maxi-
mum is redshifted relative to that predicted by previous one-
electron models, which TB attribute the fact that the potential
in Eq. (5) is much less repulsive at the molecular core than
previous potentials, thereby allowing greater penetration of
the electron into the core molecular regions.ll This effect is
one aspect of the TB model that we hope to retain in our
reparametrization.

The polarization potential used by TB is taken from
Barnett et al.,6

o
V= ———— (6)

1=~ 2
b z(rOXy + COXy)2 |

where «a represents the isotropic polarizability of H,O, ryyy is
the electron-oxygen distance [with an implied summation
over oxygen sites in Eq. (6)], and Cy,, is a parameter that is
fit to give the correct ground-state eigenvalue of the bulk
aqueous electron. This potential is spherically symmetric and
has the proper r~* asymptotic distance dependence, although
the presence of the electron has no effect on the water-water
interactions defined by the SPC water model. In this way,
one might consider the TB potential to be a truly adiabatic
surface, i.e., the electron-water and water-water potentials
are coupled only through geometry.

Our implementation of the TB model employs the har-
monic version of the flexible SPC potential,42 as we experi-
enced difficulties using the Morse version of the stretching
potential; see Ref. 44 for a detailed discussion. The SPC
water model consists of a Coulomb interaction between point
charges located at the oxygen and hydrogen sites, a 12-6
Lennard-Jones potential between the oxygen sites, and in-
tramolecular interactions that are quadratic in the atomic dis-
placements.

lll. NEW MODEL

Our new electron-water model is based upon the polar-
izable water model known as AMOEBA, which is part of a
more general polarizable molecular mechanics (MM) force
field developed by Ren and Ponder.* In order to establish
our notation, and to lay the groundwork for our model, we
briefly review AMOEBA’s electrostatic and polarization in-
teractions in Sec. IIT A. (For complete details, see Ref. 45.)
Following this, our electron-water model is introduced in
Sec. III B.

A. AMOEBA water model

Electrostatic interactions in the AMOEBA water model
are based upon electric monopole, dipole, and quadrupole
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moments obtained from a distributed multipole analysi553’54

of gas-phase H,O at the MP2/aug-cc-pVTZ level of theory,
where MP2 denotes second-order Mgller—Plesset perturba-
tion theory. The quadrupole moments are then scaled by a
factor of 0.73 in order to reproduce the “flap angle” of
(H,0), predicted by ab initio calculations.*

Using Applequist’s notation,”>>® we collect the electric
multipole moments at the ith atomic site into a so-called
polytensor,

M= @ | =g Q1 ()

consisting of monopole (g'), dipole ('), and quadrupole
(Q;E) moments at site i, where «, 8 € {x,y,z}. Throughout
this work, we use curly boldface type (e.g., M;) to indicate
a polytensor, whereas plain boldface type (e.g., Q') is used
for ordinary matrices. To simplify the notation, we express
our formulas in terms of cartesian quadrupole moments Q
(following Appleqmst ) whereas the AMOEBA potentlal
(as implemented by Ren and Ponder® in the TINKER software
packageS7) employs traceless quadrupole tensors. There ex-
ists no unique transformation between a traceless quadrupole
tensor and a cartesian quadrupole tensor, but the formulas
presented here can be used with traceless quadrupole tensors
in place of the Cartesian tensors Q', upon scaling the latter
by a factor of one-third.”®

Let us next define the multipole interaction tensor ele-
ments,

o1
M=—, (8a)
rij
a1
i = v;(—), (8b)
rij
and
1
0= VoV, ( ) (8¢)
rij

where i and j index atomic sites, a,B8 € {x,y,z}, and r;=|r;
—r_,|. From these elements we construct an interaction poly-
tensor

ij ij ij
t fa  lap

Tj=\~ta ~lap _taﬁy : ©)
e 1
aB  “aBy an?

where the negative signs in alternating rows arise from the
identity

ﬁ"<l> =—v31<l). (10)
Tij T

This notation enables us to write the full electrostatic poten-
tial in a simple, compact form,
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1
Vee= 3 M TM,,. (11)

Equation (11) is merely a compact notation for the double
Taylor series expansion of the Coulomb potential between
two charge distributions; the multipole moments are the co-
efficients of this expansion.

In AMOEBA, polarization is represented by inducible
dipoles placed at each atomic site i,

il = aiF, (12)
or in polytensor notation
M™M= a[0,F,0]" = o F;, (13)

where F; represents the electric field at site 7 that arises from
all of the other MM sites, ¢; is the isotropic polarizability at

the ith site, and the polytensor JF;= [0,F +,0]7 is defined for
convenience. For an N-atom system, thus Eq. (12) represents
a set of 3N linear equations that must be solved self-
consistently for the induced dipoles (since the induced di-
poles themselves contribute to the electric field).

If one writes the full multipole polytensor as the sum of
permanent and induced terms, keeping in mind that only the
dipoles are polarizable within the AMOEBA model, then Eq.
(11) may be partitioned according to

Ves= Vgsrm_i_ Vpol’ (14)
where
1
Vg:rm — E(-/\/t?erm)szjj./\/l;)erm (15)

is the electrostatic interaction arising from the permanent
multipoles and

. 1 . .
Vo1 = (MEP™) TT A + E(M;“d)TT,-jM}“d (16)

is a polarization potential, defined as the sum of all electro-
static terms involving induced dipoles. It should also be clear
that the electric field at site i can be generated by a polyten-
sor €;, where

£=[¢.F.G] =- Zj(MEerm + M}nd)- (17)
The quantities ¢;, F » and G; are the electric potential, the
electric field, and the electric field gradient at the ith site,
respectively.

The final term that defines the electrostatic potential is
the so-called self—energy,59 i.e., the work required to distort a
charge distribution from its equilibrium state (an isolated
molecule) to its final state in the supramolecular system. For
linear-response dipoles, the self-energy i

1 . .
Wpo1= —— (M) T MM, (18)
Zai

Using Egs. (13) and (17) to simplify, and noting that
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FImMmM=gl mind (19)

when only the dipoles are polarizable, the final expression
for the electrostatic contribution to the AMOEBA water po-
tential is

erm
Viot= VES + Vpo] + Wpol

1 1 )
- rmy T m o, rmy T ind
= SMITTME™ + S(ME™) T M.

(20)

The second equality reflects how the potential in AMOEBA
is actually implemented. It should be noted that the electric
field due to all atomic-site multipoles is damped using a
Thole-type scheme,”" in which dipole interactions are attenu-
ated by replacing one of the point dipoles with a smeared
charge distribution. Interaction tensor elements analogous to
those in Egs. (8a)—(8c) are obtained by differentiation of the
Coulomb interaction involving the smeared-out dipole. This
procedure avoids the so-called polarization catastrophe, in
which the electric field diverges as any site-site distance ap-
proaches zero.

Dispersion and exchange repulsion are modeled in
AMOEBA using a buffered 14-7 potential.** Unlike SPC,
AMOEBA uses pairwise van der Waals interactions at every
atomic site. DeFusco er al.*® point out the necessity of in-
cluding repulsive interactions between all atomic sites in or-
der to describe the potential energy surface of the water
dimer at oxygen-oxygen distances <2.65 A.

B. Electron-water potential

We are now prepared to describe the components of our
electron-water potential and the fitting procedure used to pa-
rametrize it. To avoid singularities arising from the electron-
water Coulomb interaction, electrostatic interactions between
the electron and the water molecules must be damped. The
electric field due to the electron (which is used to induce the
water dipoles) must also be damped, in order to avoid a
polarization catastrophe of the sort described above. The
damping of both interactions is accomplished in the same
manner.

In the spirit of the TB potential (and also following Staib
and Borgis,7 who developed the first fully self-consistent
model of electron-water polarization), we define a damped
Coulomb potential

erf(ar,pe. ;)

— ) elec)?

élec,j - = s (21)
relec,j

where a; is one of two damping parameters, one for oxygen
and one for hydrogen. The subscript elec in this equation is a
special case of the generic subscript j that indexes multipole
centers. Higher-order interaction elements are derived by re-
placing the Coulomb potential in Egs. (8a)—(8c) by the
damped form in Eq. (21). The electric field is computed by
integrating the damped analog of Eq. (8b) over the coordi-
nates 7 of the electron, weighted by the one-electron density,
()P

The electron-water electrostatic interaction is

J. Chem. Phys. 130, 124115 (2009)

Viec = (Melec) TT,

elec,j

M (22)

where the prime indicates that the interaction matrix ele-
ments are generated from the damped Coulomb potential,
Eq. (21). The polytensor M. for the electron contains
only a negative point charge (i.e., the dipole and quadrupole
moments are set to zero), and the implied sum over j in Eq.
(22) runs over all MM atoms. By defining a damped Cou-
lomb potential, polarization from the quantum-mechanical
(QM) region (i.e., the electron) arises in a natural way; we
simply add the electric field due to the electron to that of the
MM region when solving for induced dipoles.

In order to compute the polarization work, we separate
the contributions due to the MM and QM regions. Recalling
the definition of the polytensor F; in Eq. (13), we write the
polarization work as

1 i i 1 : in
Wpol= E(M;nd)TM}nd= E(J:z'\/lM"'ffla)TMi d’

(23)

where the polytensor ]:Ii\/IM contains the electric field at site i
that arises from both the permanent and induced multipoles

of the MM region (F}™), and 7 contains the electron’s

contribution to the electric field at the same site (F' fl“). For
convenience, we define the final term in Eq. (23) to be the
polarization work done by the electron,

Welec

pol —

(]:l?leC)TMi'nd. (24)

Note that while W, [Eq. (18)] is strictly positive, Wzloelc need
not be. This can be understood by imagining a system in

which a large electric field in the MM region effectively

“wins out” over Ij"fl“', polarizing a dipole nearby the excess
electron in such a way that this dipole has a positive (desta-
bilizing) interaction with the electron. In such a case, W;loef
<0, and represents a restoring force that, in the absence of
the MM electric field, would re-orient the nearby dipole.

Following TB, we employ a repulsive potential of the
form given in Eq. (3). This potential was computed using the
MOs and orbital eigenvalues from a HF calculation of H,O
at the HF geometry. The basis set used for this calculation
consists of the aug-cc-pV6Z basis with all g-type and higher
angular momentum functions removed, but further aug-
mented with two additional s-type diffuse functions on the
hydrogen atoms, with exponents of 0.001 and 0.006 a.u. The
integrals appearing in Eq. (3) were evaluated analytically and
Vrep(f) was calculated on a grid. These numerical data were
then fit to a linear combination of four gaussian functions
placed at the center of mass of the H,O molecule.

Denoting AMOEBA’s van der Waals terms and valence
(intramolecular) terms as Vi isp and VMM respectively, the

val »
full electron-water potential for our new model is

lec-water __ MM lec
% Val+Vdlgp + Vg Vol+ 01+Ve

+ Velec + Welec + Velec (25)

pol rep

Writing out the electrostatic and repulsive terms explicitly,
the potential is given by
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TABLE I. Parameters that determine the electron-water potential developed
in this work.

Parameter Value (a.u.)
do 038
ay 0.72

Z 1.5

2 0.5

23 0.1

24 0.01
C -0.0144
C, 0.2170
c; 0.0453
C, ~0.0110

disp

Velec—water le + M + % ( M?erm)sz M})erm
l(Mperm)TT Mind
D) i iV

T
+ (Melec) lec jMFerm

1 :
+ (Melec)T leClend EM}ndJ_-flgg
H,0 4
2
+ 2 E Cke‘_szelezr,n' (26)
n k=1

The final term represents the repulsive potential, and in-
volves a sum over each water molecule (n=1,2...) and a
second sum over four gaussians centered at that water mol-
ecule’s center of mass, as discussed above. Thus R,,., rep-
resents the distance between the electron and the center of
mass of the nth water molecule.

The new electron-water potential, Eq. (26), contains no
explicit exchange potential. Exchange effects are included
implicitly, as detailed in Sec. VIC, but attempts to fit ex-
change separately were unsuccessful. Similar difficulties
were noted by TB." Instead, we adjusted the damping pa-
rameters ag and ay, along with an overall scaling factor for
the repulsive potential, in order to obtain an accurate VEBE
for (H,0O);. This value is the only empirical data used to
parametrize our electron-water potential, and the (H,0);
VEBE that we obtain from the model (24 meV) is essentially
the same as the MP2/6-31(1+,3+)G* value (26 meV),%
which is underbound by ~10 meV compared to higher-level
ab initio estimates, and by about 20 meV relative to experi-
ment. We consider this level of accuracy acceptable. In per-
forming the fit, we attempted to maintain the two damping
parameters at similar values, in order to obtain an even-
tempered electrostatic potential. The final fitted parameters
are collected in Table I.

C. Polarization potential

Unlike the treatment of polarization within the TB
model, the new potential, Ve!¢Var includes a polarization
potential, pl(flc W;loef, that arises in a natural way. We next
show that the empirical polarization potential defined in Eq.

J. Chem. Phys. 130, 124115 (2009)

(6), and used in most previous hydrated-electron models, can
be recovered as a well-defined approximation to the polar-
ization potential in our model.

Let us momentarily ignore water-water polarization, and
suppose that the induced dipoles on the MM atoms are de-
termined solely by a point charge located at some other site
that we label elec. Then the component of the jth induced
dipole in the cartesian direction x is given by

aqelec eleC/ (27)

lu“md qeleclj,elec
Because we intend for the charge at site elec to be the un-
paired electron, this equation does not contain an implicit
sum over the elec index, nor does Eq. (28) that follows.
Substituting the induced dipole in Eq. (27) into the polariza-

: . lec lec :
tion potential Vi '+ Wf,ol, we obtain

a

V[e)loe](, WEIOCIC — a(qelec elec, j)( elec elec j) — 2
rClCC_]

(28)

Our polarization potential thus recovers the r* distance de-
pendence of the empirical polarization potential.

In order to recover the TB polarization potential, we
make a further assumption that polarization is represented
not by atomic dipoles, but rather by one isotropic, inducible
dipole per water molecule. Noting that the interaction tensor
elements in Eq. (28) are undamped (¢ instead of ¢'), we in-
troduce damping by replacing r?,ec ; in this equation with

e j+C, where C is a constant. This substitution, along with
the assumption of one flexible dipole per water molecule,
recovers the empirical polarization potential V .1 of Eq. (6).
In addition to removing the singularity as 7, J—>0, we ex-
pect that this substitution mimics, to some extent, the effect
of water-water polarization, as the bath of water molecules
will tend to induce dipoles in directions dissimilar to those
induced by the point charge, thus reducing the polarizing
effect of the electron.

Sommerfeld et al."” have provided an alternative deriva-
tion of the polarization potential, based upon an adiabatic
approximation to the Drude oscillator model'*"® of the
electron-water interaction. By averaging over the fast Drude
oscillator coordinates, and expanding the electron-water in-
teraction in powers of the electron-water distance, r, these
authors obtain an asymptotic polarization potential of the
form

VDrude

== LA, (29)

where f(r) represents the damping function that is applied to
the electron-oscillator interaction in the Drude model. Som-
merfield e al." conclude from this that the TB polarization
potential implicitly includes some long-range electron-water
dispersion. Note, however, that 4 decay is also indicative of
an ion-dipole interaction, i.e., an inductive effect, whereas
(in our view) dispersion should be defined as correlation aris-
ing from electron-oscillator coupling beyond the adiabatic
approximation. In our view, what Sommerfeld et al.” actu-
ally proved is that the Drude oscillator model includes both
dispersion and polarization.
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D. Energy gradients

Gradients of the electron-water potential are formally
simple due to the variational nature of the model. A single-
point energy calculation minimizes the total energy with re-
spect to all parameters in the Hamiltonian, namely, the in-
duced dipoles for the MM atoms, and the expansion
coefficients of the one-electron wave function (grid ampli-
tudes, in our implementation). Stationarity with respect to
the latter is obvious since the wave function is determined by

solving the equation H|W)=E|¥), where
H — f_’_ yelec—water | y/AMOEBA (30)

However, the induced dipoles that determine H are them-
selves determined by solution of the coupled linear equations
represented by Eq. (12), and it is not immediately obvious
that these parameters are indeed variational. This we now
demonstrate, following the proof outlined in Ref. 64.

One may imagine determining the one-electron wave
function via a minimization carried out in two separate steps.
First, we fix the induced dipoles and minimize the expecta-
tion value of the Hamiltonian with respect to linear expan-
sion coefficients of the wave function (grid amplitudes). This
minimization is equivalent to solving H|W)=E|¥), and
yields a new one-electron density and hence a new electric
field, I;fl“, at each MM site i. This electric field, together
with that of the water molecules, is then used to compute the
induced dipoles, and the energy (at fixed values of the wave
function coefficients) may be expressed as a function of
these dipoles,

! 1
E(M™) = EM,T T, M,
+ <\P| (Melec) TZlec,jM}ndPP)

o (MET A 31)
Zai
The second step is to minimize the function E(AM")
with respect to the induced dipoles. Taking the derivative of
Eq. (31) with respect to the induced dipole on the kth site,
oE/ c?,&{‘nd, and equating the result to zero, one obtains

1 .
0= ZciMi + <\I’|7—k,elecMelec|\I’> + _M;cnd
@

L
=-gM-gl“+ — M (32)
QA

Since only the dipoles are inducible in our model, this last
expression simplifies to

0=— FYM_ pelec y oot gk (33)

which shows that the variational condition &E/ﬁﬁfnfo is
equivalent to Eq. (12), the equation that determines the
linear-response dipoles. Thus, gradients of the energy require
only direct differentiation of the Hamiltonian, i.e., Hellman—
Feynman forces, with no response terms.

The variational nature of our hydrated-electron model
stands in contrast to the polarizable models developed re-

J. Chem. Phys. 130, 124115 (2009)
cently by Sommerfield and co-workers.'*'* These authors do
not include £ in the field that polarizes the water mol-
ecules (i.e., the water molecules polarize one another, and
they polarize the one-electron wave function, but the wave
function does not polarize the water molecules). Conse-
quently, the energy is not variational with respect to the in-
duced dipoles, so calculation of the gradients requires the
solution of linear equations that determine how the induced
dipoles respond to the perturbation.65 This procedure is
adopted, we presume, in anticipation of using these poten-
tials in conjunction with a Drude oscillator model that would
replace the electron-water (but not the water-water) polariza-
tion interactions, as has been done in previous Drude oscil-
lator models developed by Jordan and co-workers.'>"* Nev-
ertheless, such an approach does lack the desirable features
of self-consistency and satisfaction of a variational theorem.

IV. SIMULATION ALGORITHM

This section describes the algorithm that we employ to
calculate eigenstates of the one-electron model Hamiltonian,
Eq. (30). Because analytic energy gradients are available,
this algorithm may equally well be used to perform quantum/
classical MD simulations, in which classical MD for the wa-
ter molecules is propagated on the adiabatic potential energy

surface corresponding to some eigenvalue of H, but always
with self-consistent polarization of the wave function and the
water molecules.

We calculate the lowest few eigenstates of H on an
evenly spaced cartesian grid in three dimensions,**®’ via an
iterative technique described below, then calculate forces on
the atoms via the Hellmann-Feynman theorem, JE/dx
=(W|aV/dx|¥). Regarding iterative eigensolvers, Webster et
al.*” note that Lanczos-type methods are problematic for
hydrated-electron models due to the high spectral density of

H. This problem is especially severe for clusters, which may
possess no more than a few bound states. We are consistently
able to converge the ground state, and occasionally one or
two excited states, using a standard block-Lanczos proce-
dure, but we are unable to converge all of the excited states
that have significant oscillator strength out of the ground
state.

To overcome this problem, Webster et alt’ employed a
two-step procedure that involves first using Lanczos iteration
to determine eigenpairs of the operator

I:I)\ =exp(— \V/2)exp(- )\f“)exp(— \V/2), (34)

where H=T+V is the original Hamiltonian. If the parameter
A>0 is sufficiently large, then the spectrum of I:IA will be

much less dense than that of I:I, making the former amenable
to Lanczos iteration. A second Lanczos procedure is then
used to correct for the fact that the eigenstates of H, are not
eigenstates of H. When using this technique, one must take
steps to detect and remove spurious eigenvalues.“’(’8

As an alternative to this rather complicated prescription

. . . 11,22,32 ;
(which appears still to be in use ), we calculate eigen-
states of H via block-Davidson iteration,69 a procedure that is
known to work well for diagonally dominant matrices. When
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represented on a real-space grid, the matrix of V is strictly

diagonal, while the matrix representation of T decays qua-
dratically away from the diagonal,67

(_ l)i—jhz

1
-, i=j
=1 3

T 2m(Ax)?

20-j)2 i#].

(35)

For fixed-charge potentials (e.g., the TB model), we em-
ploy a standard version of the Davidson algorithm (as de-
scribed, for example, in the Appendix of Ref. 70). All sub-
space vectors V;,V,,...,Vy are stored in core memory, as are
the vectors w;=Hy,; generated by the action of Hamiltonian
matrix. Some limited testing led us to cap the number of
subspace vectors at N~200 to avoid a diagonalization
bottleneck; if the subspace size reaches this limit, it is col-
lapsed down to one vector per desired root. We employ a
“locking” procedure, whereby only the unconverged roots
are used to generate new subspace vectors.””

Comparison to exact diagonalization indicates that this

procedure consistently determines as many eigenpairs of H
as desired, to arbitrary accuracy and without spurious eigen-
values. Starting from guess vectors with random entries, with
a limit of N=200 subspace vectors and a very stringent con-

vergence criterion (|[(H-E)W||<1.0X107® a.u.), the sub-
space must be collapsed two or three times in order to cal-
culate the lowest five eigenstates of a (H,0)3,, cluster in
which the electron is contained within a cavity. (For the TB
model, these five states account for =90% of the oscillator
strength from the ground state.) For geometry optimizations
and MD simulations, where converged eigenvectors from a
previous step are available as an initial guess, the same cal-
culation requires only 15-25 subspace vectors per root, for
MD, and significantly fewer than that for geometry optimi-
zations. In fact, for geometry optimizations it is often the
case that zero additional subspace vectors are required, i.e., it
is only necessary to diagonalize the new Hamiltonian in the
basis of converged eigenvectors from the previous geometry.
(To some extent, this is a consequence of the fact that we
optimize in cartesian coordinates, where the step sizes are
necessarily small.)

The simple block-Davidson procedure must be modified

for polarizable water models, because in this case H depends
upon the values of the induced dipoles. These in turn depend

upon the one-electron density, W(7)|?, and thus H is a func-
tional of its own eigenvectors. Strictly speaking, the vectors
w; therefore become out of date every time one adds a new
subspace vector because each new subspace vector modifies
the approximate eigenvectors (Ritz vectors), thus altering the
density |W(7)|? that is used to polarize the water molecules,
and consequently modifying the Hamiltonian itself. How-
ever, the difference in w;=Hyv, is typically quite small from
one iteration to the next, especially in the later iterations.
The procedure that we adopt is to update the subspace
matrix every time that the norm of the residual vector de-
creases by a factor of 2-5. We store the potential energy
vector each time that we polarize the water molecules with
the electron density; once we decide to update, we repolarize

J. Chem. Phys. 130, 124115 (2009)

the solvent bath, compute the change AV in the potential
energy at each grid point, and finally update the matrix-
vector products w; using AV. This procedure is very efficient
for smaller clusters with highly diffuse, surface-bound elec-
trons, where a large grid is required but where the potential
and linear-response equations [Eq. (12)] are inexpensive to
compute. All results presented here utilize this algorithm.

Preliminary calculations on larger clusters [e.g.,
(H,0)5,6] that exhibit cavity-bound electrons indicate that
high accuracy can be achieved using much smaller grids
since the electron is highly localized, but that evaluation of
the potential and self-consistent iteration for the induced di-
poles are the bottleneck steps. (In smaller clusters with large
grids, repeated formation of matrix-vector products is the
most expensive step.) For these larger clusters, it is advanta-
geous to converge all eigenvectors of interest between each
update of the dipoles. Overall convergence is achieved when
the difference in energy between updates of the dipoles is
smaller than some threshold, for each eigenvalue of interest.
This typically requires three to five updates of the dipoles for
an energy threshold of 107 a.u.

V. COMPUTATIONAL DETAILS

Grid-based model Hamiltonian calculations were per-
formed with our homebuilt Fourier grid code, FURRY (ver-
sion A), which incorporates a locally modified version of the
TINKER MM software (Ref. 57) to evaluate the AMOEBA
water potential, solve for the induced dipoles, and evaluate
the electron-water potential. All ab initio calculations were
performed using a locally modified version of Q-cHEM,”" in
which we have implementedn’73 the long-range-corrected
(LRC)-BOP density functional that is discussed below. The
remainder of this section provides details of both the Fourier
grid calculations and the ab initio benchmarks.

All eigenpairs were converged to an accuracy of ||(I:I
—E)¥||<10® au. Our calculations employ a 60X 60
X 60 A3 cartesian grid with a spacing of Ax=1.0 A, except
in the case of (H,0);, where an 80 A wide cubic grid (with
the same Ax) is necessary to converge the ground-state ei-
genvalue with respect to the grid parameters. Geometry op-
timizations were performed with a smaller 40X 40 X 40 A3
grid, again with Ax=1.0 A. Note that the maximum momen-
tum component in the x direction is 77/ Ax,”* thus the maxi-
mum kinetic energy of the wave function is (3/2m)

X (har/ Ax)2. Values for (T) in our calculations are well be-
low this upper bound. Furthermore, numerical tests reveal
that VEBEs obtained using the aforementioned grids are con-
verged to within 0.01-0.02 eV of the Ax— 0 limit. At this
level, the magnitude of the grid truncation error is smaller
than the intrinsic accuracy of the calculated VEBEs them-
selves.

In Sec. VI, we validate the accuracy of predicted VEBEs
against benchmark ab initio calculations, using a library of
92 (H,0), cluster isomers that we have assembled from our
previous work,**” which range in size from n=2 to n=35,
including both surface and cavity electron binding motifs,
and with VEBEs ranging from =0 up to 2.5 eV. Atomic
coordinates for these structures, along with energies calcu-
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FIG. 1. (Color online) Comparison of VEBEs obtained with various ab
initio methods to those obtained at the CCSD(T) level, for a set of 24
(H,0),, cluster isomers ranging from n=2 to n=7, each of which is a sta-
tionary point at the B3LYP/6-31(1+,3+)G* level. The MP2 and CCSD(T)
calculations employ the 6-31(1+,3+)G* basis set, while the density-
functional calculations use the aug-cc-pVDZ+diff basis. LRC-BOP calcu-
lations employ a range-separation parameter of 0.33 bohr~!, as recom-
mended in Ref. 76. The diagonal line indicates where the predicted VEBE is
the same as the CCSD(T) value.

lated at various levels of theory, are available in the support-
ing information.

We have made extensive use of the MP2/6-31(1+,3
+)G* method for ab initio VEBE predictions,40’43’63’75 as this
approach typically affords VEBEs that lie only ~30 meV
below accurate CCSD(T) values,7 yet is affordable
enough to be applied to the (H,0)3; clusters in our database.
Recently, however, Yagi et al.”” demonstrated that the
LRC-BOP functional,””””® which asymptotically incorporates
full HF exchange, affords VEBEs of comparable or slightly
better quality than MP2/6-31(1+,3+)G* values. (This
stands in sharp contrast to most traditional density function-
als, which significantly overestimate VEBEs.”) As such, we
will compare MP2 and LRC-BOP results, in order to ascer-
tain whether a more reliable set of VEBE benchmarks can be
obtained. We will also compare to results obtained with the
BH&HLYP functional,” as this functional performs well for
electron affinities.*

For all density-functional calculations, we employ the
basis recommended by Yagi et al.,”® which we denote as
aug-cc-pVDZ+diff. Relative to aug-cc-pVDZ, this basis is
further augmented with an additional diffuse s function on
each hydrogen atom (with an exponent of 3.72X 1072 a.u.)
as well as a diffuse s function and a set of diffuse p functions
on each oxygen atom (with exponents of 9.87 X 1072 and
8.57 X 1072 a.u., respectively).

Figure 1 shows that VEBEs calculated with either LRC-
BOP or BH&HLYP are quite comparable to MP2/6-31(1
+,3+)G* results. The mean absolute errors [relative to
CCSD(T)/6-31(1+,3+)G* values] are 30+ 6 meV for
MP2, 25+ 13 meV for LRC-BOP, and 22+ 10 meV for
BH&HLYP, where error bars indicate one standard deviation.
(For comparison, the B3LYP error is 194 =36 meV, always
in the direction of overbinding. The smaller amount of HF
exchange in this functional leads to significant self-
interaction associated with the singly-occupied MO, leading

J. Chem. Phys. 130, 124115 (2009)

to overstabilization of the anion.) In our calculations, MP2
exhibits the most systematic error, although this was not ob-
served by Yagi et al.”® and may result from the fact that our
MP2 and CCSD(T) calculations both employ the same
(rather small) basis set.

For the entire database of 92 cluster isomers (with
VEBEs ranging up to 2.5 eV), the mean absolute deviation
from MP2 is 37 meV for LRC-BOP and 51 meV for
BH&HLYP, although the latter functional exhibits several
outliers that differ by ~0.2 eV from the MP2 and LRC-BOP
values. We will therefore use the MP2/6-31(1+,3+)G* and
LRC-BOP/aug-cc-pVDZ +diff levels of theory to bench-
mark VEBEs. The mean signed deviation between the
VEBE:s calculated by these two methods is only 17 meV.

In Sec. VI we will also test the accuracy of the model
Hamiltonians for predicting relative conformational energies
of small clusters. As conformational energies place more
stringent demands on the basis set, for these quantities we
benchmark against MP2 energies extrapolated to the com-
plete basis set (CBS) limit. The MP2/CBS energies were
determined by separate extrapolation of the HF energy and
the MP2 correlation energy, using the aug-cc-pVXZ+diff se-
quence of basis sets, where X=2, 3, or 4 (i.e., D, T, or Q) and
“+diff” signifies the addition of extra diffuse functions, as
specified above. (The same set of additional diffuse functions
was used for each X.) The HF/CBS energy was estimated
using a three-point fit to the ansatz"!

E(X) = E() + ae "X, (36)

where a and b are fitting parameters. The MP2 correlation
energy was extrapolated using a two-point fit (X=3 and 4) to
the expression8

E(®)=EX) +cX3, (37)

where ¢ is a fitting parameter.

VI. ANALYSIS OF THE NEW MODEL

We now turn our attention from the development and
technical description of the model to the analysis of its prop-
erties. We first verify, by comparison to ab initio bench-
marks, that the new model Hamiltonian is indeed more ac-
curate than the TB model for (H,O), clusters. We then make
a detailed analysis of the potential itself, in order to compare
and contrast it with the TB potential. In this work, we con-
sider only the ground state of the model potentials.

A. VEBEs

Figure 2 compares MP2 VEBEs to those obtained from
the two model Hamiltonians, for 91 different (H,O), isomers
ranging from n=3 to n=35. Overall, our new model outper-
forms the TB model, reducing the mean absolute
deviation (with respect to the MP2 values) from
263+ 185 to 108 =89 meV. The maximum deviation is also
reduced, from 744 meV (TB model) to 348 meV (new
model). We emphasize that our model is fit exclusively to the
VEBE of (H,0);, so we regard the rather small errors in
VEBEs as evidence that our model contains most of the cor-
rect physics for (H,0),. (As discussed below, a QM treat-

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



124115-10  Jacobson, Williams, and Herbert
1.6 ‘
(@) oTB %
3 o new model ]
12} ]
o]
L 4 ]
[ ]
08¢ - o 1
[ ]
E|. N o
S ] 4 nl%' ]
[0} 04 F Ce ]
~ - =P °
LL] -
R L |
S C/a
S 00 : : : : : :
‘g 0.0 0.4 0.8 1.2 1.6
= 2.5
£ (b) 7B o
— o new model
L 20t "
= 89
o
15} o o
X
: @’
1.0} o
® o °
TR
0.5+ afiy
° [ ]
0-0 Il Il Il Il
0.0 0.5 1.0 1.5 2.0 2.5
MP2 VEBE / eV
FIG. 2. (Color online) Comparison of VEBEs computed at the

MP2/6-31(1+,3+)G* level of theory to those predicted using model
Hamiltonians, for (a) 32 (H,0), isomers ranging from n=3 to n=19, and (b)
59 (H,0), isomers ranging from n=20 to n=35. The diagonal line indicates
where the model Hamiltonian and MP2 predications are identical.

ment of electron-water dispersion, which is absent or at best
implicit in our model, affords VEBEs that are even more
accurate.) By fitting our potential to a subset consisting of 20
out of the 92 VEBE data points, we can reduce the mean
error for the entire database to 58 meV; in the present work,
however, we opt to use the potential that is fit only to
(H,0)5.

Turi et al.™? suggest that the TB model is expected to
give large errors for clusters smaller than n=20, so in Fig. 2
we have segregated the VEBEs based upon this size crite-
rion. For the TB model, the mean absolute deviations from
MP2 are 167 £ 106 meV for n<20 and 318 £ 189 meV for
n>?20. Apparently, errors in the TB binding energy predic-
tions are not strictly related to cluster size. Our new model is
more accurate than TB in both size categories, with mean
absolute deviations of 53*30meV (n<20) and
139+97 meV (n>20). For the n>20 clusters, the mean
error in both models would decrease by about 30 meV if we
took the LRC-BOP values as benchmarks, rather than the
MP2 values.

The cluster geometries in our database were obtained in
a variety of ways. All but six of the n <20 geometries in Fig.
2(a) were taken from Ref. 75, where they were optimized at
the B3LYP/6-31(1+,3+)G* level. The remaining six of
these smaller clusters, and all of the larger clusters, were
taken from an equilibrated MD simulation of a (H,0)5,, cav-
ity state at 7=150 K, as described by the TB model

J. Chem. Phys. 130, 124115 (2009)
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FIG. 3. (Color online) Comparison of VEBEs computed at the
MP2/6-31(1+,3+)G* level of theory to those predicted using model
Hamiltonians, for (H,0), isomers (with 17 <n=<35) that were (a) extracted
from a MD simulation, as described in the text; and (b) subsequently opti-
mized, using the TB model.

Hamiltonian.*’ Clusters were extracted from this simulation
at 1 ps intervals, by selecting all water molecules within ei-
ther R=4.5 A or R=5.5 A of the centroid of the wave func-
tion, radii that were dictated by the size constraints of the
subsequent MP2 calculations. The number of monomers in
the R=4.5 A clusters ranges from n=17 to n=24, which is
insufficient to complete the electron’s first solvation shell. As
such, these clusters are not really representative of either the
bulk environment or stable cluster structures, so we subse-
quently optimized the geometries on the TB potential sur-
face. Only the optimized structures were placed into the da-
tabase. The larger (R=5.5 A) clusters, on the other hand,
each contain 30-35 water molecules, enough to complete
one solvation shell. We include these clusters in the database
both before and after optimization on the TB potential sur-
face.

Figure 3 breaks down the VEBE predictions among the
three sets of isomers obtained from the simulation (i.e., R
=4.5 A, optimized; R=5.5 10\, optimized; and R=5.5 10%, un-
optimized). For the TB model, optimization of the 5.5 A
clusters significantly improves the accuracy of the predicted
VEBEs, reducing the mean absolute deviation (relative to
MP2) from 744 to 166 meV, whereas the optimized 4.5 A
clusters exhibit a mean error of 373 meV. The performance
of our new model, in contrast, is not strongly affected by
optimization. (In particular, the mean error is virtually un-
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changed.) We take this as compelling evidence that our new
hydrated-electron model provides a more uniform descrip-
tion of the global (H,O), potential energy surface, including
both surface states and cavity states.

Focusing on the R=5.5 A clusters, we note that VEBEs
predicted by the new model track the MP2 results fairly well,
regardless of whether the cluster structures are optimized or
simply carved out of the MD simulation. (Note that both the
MD simulation and the subsequent geometry optimizations
were performed using the TB model Hamiltonian.) In con-
trast, the accuracy of the TB model improves significantly
upon geometry optimization, to the point where (for opti-
mized clusters) the accuracy is comparable to that of the new
model, and slightly better for those structures exhibiting the
largest VEBEs. (Note that the TB model was parameterized
using bulk aqueous electron data,"" for which the experimen-
tal VEBE is estimated to be =3.3 eV,Sé’83 whereas our model
is parameterized using the VEBE of the gas-phase water
dimer anion, which is measured to be 0.045 eV.36) Presum-
ably, optimization restores the clusters to more bulk-like
structures, for which the TB model performs well. In future
simulations, we plan to evaluate the performance of our
model for the bulk aqueous electron.

Finally, it is significant that our model underbinds the
electron in nearly all cases. We have neglected a QM treat-
ment of electron-water dispersion, a correct description of
which would probably increase the calculated VEBEs."” Us-
ing a Drude model to incorporate this interaction, Wang and
Jordan'? report errors of less than 5 meV in small-cluster
VEBEs (n=<4), relative to CCSD(T) benchmarks. This sug-
gests a hierarchy of model Hamiltonians of increasing com-
plexity, expense, and accuracy. A nonpolarizable water
model combined with an asymptotically correct polarization
potential suffices to predict VEBEs within ~0.3 eV (albeit
with some fairly significant outliers), while a self-consistent
treatment of polarization decreases this error to about 0.1 eV
and renders it much more systematic. A QM description of
dispersion reduces the error even further, at significantly
greater computational expense.

B. Conformational energies

Another important test of a model potential is its ability
to predict relative conformational energies of cluster isomers.
In the case of (H,O); clusters, molecular beam experiments
appear to sample preferentially those isomers with the largest
VEBEs,* which tend to be fairly high-energy local minima
on the anion potential energy surface.” For this reason, we
desire a model that can predict relative conformation ener-
gies, for both (H,0),, and (H,0),, cluster isomers, at energies
well above the global minimum. Thus, we next compare the
relative conformational energies predicted by the model
Hamiltonians to those obtained at the MP2/CBS level, for a
set of (H,0);, (H,0)5, and (H,0); cluster isomers whose
structures are depicted in Fig. 4. Each isomer in Fig. 4 is a
stationary point at the B3LYP/6-31(1+,3+)G* level of
theory, and the MP2/CBS energy calculations use these
B3LYP geometries. For the model Hamiltonian calculations,
the B3LYP geometries were re-optimized using the model. In
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FIG. 4. (Color online) Structures of the (H,0);, (H,0)s, and (H,0); iso-
mers used to benchmark relative conformational energies. Each geometry
shown here is a stationary point at the B3LYP/6-31(1+,3+)G* level.

what follows, we discuss relative conformational energies,
not only for these anionic clusters but also for the corre-
sponding neutral cluster isomers computed at the anion ge-
ometries.

Figure 5 compares the relative conformational energies
for the tetrameric clusters. Five of the six structures exhibit
the well-known “double acceptor” or AA structural
motif,*” in which one of the water molecules accepts two
hydrogen bonds and donates none, leaving it with two “dan-
gling” hydrogen atoms. The excess-electron wave function
(or singly-occupied MO, in the case of ab initio calculations)
is largely localized around this AA water molecule. Among
these six cluster isomers, the only non-AA isomer is the
cyclic structure tet3 (see Fig. 4), which represents the lowest-
energy structure (of those considered here) on both the an-
ionic and the neutral potential energy surfaces. [In view of
the extensive ab initio calculations available for the
tetramer,>* it seems safe to conclude that tet3 is the global
minimum of (H,0);. This isomer is structurally similar to
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FIG. 5. (Color online) Energies of tetrameric clusters on (a) the (H,0)4
potential surface and (b) the (H,0); potential surface. Note that the two

panels use different energy scales. Ab initio geometries for each cluster are
depicted in Fig. 4.
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FIG. 6. (Color online) Energies of pentameric clusters on (a) the (H,0)s
potential surface and (b) the (H,0)5 potential surface. Note that the two
panels use different energy scales. Ab initio geometries for each cluster are
depicted in Fig. 4.

the (H,0), global minimum.*] The AA isomers, although
they are far more prominent in the experimental photoelec-
tron spectrum of (HZO)Z,87 each lie at least 4 kcal/mol above
tet3; upon detachment of the excess electron, these AA struc-
tures lie at least 8 kcal/mol above the neutral tet3 isomer.

The SPC and TB models perform remarkably well at
describing the relative energies of the (H,0), isomers, which
is somewhat surprising in view of the fact that both models
were parametrized for the bulk. For the neutral tetramers, the
largest difference between MP2/CBS and SPC is only about
1.0 kcal/mol, versus 0.3 kcal/mol for AMOEBA. Both an-
ion models overstabilize the tet3 isomer, although the largest
error for our model is only 0.9 kcal/mol, versus
1.7 kcal/mol for the TB model.

Like the tetramers, the pentameric structures are mostly
AA-type binding motifs, the exception being the neutral-like
pent2 isomer (see Fig. 4). Relative energies of these isomers
are depicted in Fig. 6, and once again the non-AA isomer is
the lowest-energy structure on both the neutral and the an-
ionic potential surface. Looking at the (H,O)5 relative ener-
gies, the largest difference between the MP2/CBS and the
TB results occurs for isomer pent5, coinciding with the larg-
est differences between SPC and MP2/CBS for the neutral
pentamers. The AMOEBA water model once again agrees
quantitatively with MP2/CBS results for the neutral pen-
tamer structures. Relative energies of (H,O); isomers, as
predicted by our new model, agree with MP2/CBS results to
within 1 kcal/mol.

Stationary points for the (H,O)3 clusters on the TB sur-
face are compared to the corresponding B3LYP/6-31(1
+,34)G* geometries in Fig. 7. (With regard to the analysis
that follows, similar arguments can be made for the hexam-
ers.) Geometries optimized using our new model Hamil-
tonian are nearly identical to the B3LYP structures, and are
therefore omitted. The TB model (and underlying SPC

J. Chem. Phys. 130, 124115 (2009)
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FIG. 7. (Color online) Stationary points of (H,0)5 isomers on the TB po-
tential surface compared to stationary points at the B3LYP/6-31(1+,3
+)G* level.

model) tends to produce geometries in which the water mol-
ecules lie in a plane, as seen for example in structure pent2,
where the hydrogen atoms not involved in hydrogen bonding
tend to point directly away from the center of the ringlike
network of hydrogen bonds. This is not observed in the cor-
responding B3LYP geometry. Another striking example is
pent4, where reoptimization of the B3LYP geometry using
the TB model causes the structure to collapse to something
that is nearly planar. The reason for this behavior is fairly
clear: within the SPC model, the minimum-energy geometry
tends to align the dipoles created by the fixed point charges,
resulting in overly planar clusters. The new model is free of
this artifact, owing to the presence of electrical quadrupole
moments, the first multipole moments in H,O that have out-
of-plane components. Tellingly, the only pentamer for which
TB/SPC does not significantly exaggerate the planarity is
isomer pent5, for which alignment of the dipoles would
break hydrogen bonds. This geometry can be thought of as
“strained” on the TB potential surface, and as a result it lies
quite high in energy, despite the fact that it has more hydro-
gen bonds than the other pentamers considered here.

Each of the tetrameric geometries in our data set can
accommodate some alignment of dipoles without breaking
any hydrogen bonds, so the TB model performs rather well
for these clusters, as evident from Fig. 5. In contrast, many
of the hexamer geometries do not allow such alignment, and
we will see that the TB model performs rather poorly for
these isomers. We suspect that any water model that relies
solely on point charges at atomic centers to describe electro-
static interactions will suffer from this planarity problem,
and that only models with explicit quadrupole interactions
will accurately describe cluster geometries.

Relative energies for the hexameric clusters are depicted
in Fig. 8. For the neutral hexamers, SPC is unsatisfactory
while the AMOEBA potential performs well, aside from one
isomer (hex2) that is omitted from Fig. 8, for reasons dis-
cussed below. For the hexamer anions, the TB model pre-
dicts three isomers below the correct minimum-energy struc-
ture (the AA isomer hex5). The correct minimum-energy
structure is one that we suspect to be strained on the TB/SPC
potential surface, in the sense described above, and should
actually lie much lower in energy. Our new model also pre-
dicts one isomer (hex3) to be lower in energy than the ab
initio minimum, although only by 0.3 kcal/mol. The TB
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FIG. 8. (Color online) Energies of hexameric clusters on (a) the (H,O)
potential surface and (b) the (H,O); potential surface. Note that the two
panels use different energy scales. Ab initio geometries for each cluster are
depicted in Fig. 4. Isomer hex2 is omitted, for reasons discussed in the text.

model, in contrast, places hex4 a full 2 kcal/mol below the
true minimum.

Isomer hex2 is omitted from Fig. 8 because at the ab
initio geometry shown in Fig. 4 [which is a local minimum at
the B3LYP/6-31(1+,3+)G* level of theory], this structure
is a transition state on the adiabatic ground-state potential
surface generated by the polarizable model Hamiltonian,
with an imaginary vibrational frequency of 40i cm™'. This
transition state lies on a very flat region of the potential en-
ergy surface, and with loose optimization convergence
thresholds, the geometry optimization using the polarizable
model converges to a structure very close to the ab initio one
shown in Fig. 4, with relative conformational energies that
are very close to MP2/CBS benchmarks evaluated at the ab
initio geometry. With tight convergence thresholds, however,
the topmost water molecule (as shown in Fig. 4) flips its
hydrogen atoms towards the exterior of the cluster, while the
rest of the cluster collapses in order to donate a second hy-
drogen bond to this AA water molecule, resulting in an AA
isomer that is structurally very similar to hex5. The relative
energetics of this new isomer are nearly identical to those of
isomer hex5.

C. Pseudopotentials

A direct comparison between the TB potential and our
new potential is made in Fig. 9. Because the polarization
potential in our model is a many-body effect (and therefore
cannot be plotted as a simple one-dimensional potential),
both potentials in Fig. 9 are plotted sans polarization, i.e., we

T

omit fol [Eq. (6)] from the TB potential, and set all induced

dipoles to zero in our model.

J. Chem. Phys. 130, 124115 (2009)
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FIG. 9. Comparison of the TB model (dashed curves) and the new potential
(solid curves) for H,O™, in four one-dimensional slices. To facilitate the
comparison, both potentials are shown without polarization. In (a)—(c), r
=0 represents the H,O center of mass, whereas in (d), r=0 at the oxygen
atom.

Compared to the TB potential, our potential is much
softer around the oxygen atom and is largely attractive along

the in-plane axis perpendicular to the molecular 6‘2 axis [see
Fig. 9(d)]. This attraction is a manifestation of the exchange
interaction that is implicitly included in the fit. Turi et al.'
showed that a Slater-type (or Xa-type) exchange potential®

Vo) = = k(P == 23], (38)

in which p(7) is the electron density of neutral H,O, repro-
duces the eigenvalue of the excess electron in the SE ap-
proximation. The collection of constants in Eq. (38) corre-
sponds to a Slater-exchange scaling parameter of 1.33, which
is larger than the values typically employed in atomic X«
calculations,” but consistent with variationally optimized
values determined recently for small molecules.®®

Figure 10 depicts the pseudopotential energy surface for
H,O~ that is obtained using the exchange potential in Eq.
(38) scaled by a constant c,, with 0=<c¢,<1. Increasing c,
deepens the potential wells—especially around the oxygen
atom—and narrows the repulsive part of the potential. Also
note that the difference in well depth between the bisector
coordinate in Fig. 10(a) and the bond coordinate in Fig.
10(b) increases with increasing exchange. Although we at-
tempted to adjust the parameters in our potential to fit the
numerical pseudopotential surface directly, the results were
unsatisfactory; while we were able to reproduce the VEBE of
(H,0);, we were not able to reproduce the VEBE of even a
small number of other structures, based on comparison to
MP2 benchmarks.**®”> TB were similarly unable to achieve
a satisfactory direct fit of the pseudopotential energy
surface,'’ which may indicate an inadequacy in the simple
local exchange functional of Eq. (38).

Our new potential model is more attractive along the
O-H bond than is the TB model [see Fig. 9(b)], but less
attractive along the H-O-H bisector coordinate [Fig. 9(a)].
Perhaps most importantly, we observe that our potential de-
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FIG. 10. (Color online) Plots of the pseudopotential for H,O™ using various
Xa-type exchange potentials of the form V(7)=c,Vx,(F), where Vy, is
defined in Eq. (38). Values of the scaling parameter ¢, range from ¢,=0 (the
top curve, in red, which is least attractive) to ¢,=1 (the bottom curve, in
black, which is most attractive), in increments of 0.2. In (a)-(c), r=0 rep-
resents the H,O center of mass, whereas in (d), r=0 at the oxygen atom.

cays more rapidly that that of Turi and Borgis [Figs. 9(c) and
9(d)]. This is due to the fact that at long range, the monopole
term dominates the electrostatic expansion, and the exagger-
ated point charges of the SPC model (¢°=-0.82, ¢'=0.41)
provide a more attractive potential than those of AMOEBA
(¢°=-0.519 66, ¢''=0.259 83). This is significant because
the hydrated electron is quite diffuse, and thus the long-range
part of the potential is sampled extensively.

D. Energy decompositions

In an effort to understand why our new potential is less
repulsive than the TB potential, and also to investigate which
(H,0); structures are most affected by polarization, we next
examine the expectation values of various components of the
electron-water interaction potential, for the same library of
(H,0); isomers that was used to evaluate VEBEs. Recall
that this library consists of 91 cluster geometries ranging in
size from n=3 to n=35, including both surface states and
cavity states. Figures 11-15 show histograms of various ex-
pectation values, binned over this library of structures. For
ease of analysis, we have subdivided the database into
AA-type isomers, non-AA surface states (denoted simply as
“surface states” in the discussion that follows), and cavity
states.

The histograms in Fig. 11 show the distribution of values
for (V). the expectation value of the repulsive potential, for
both the new model and the TB model. This quantity is
smallest, on average, for AA isomers and largest for cavity
states, indicating that electron penetration into the molecular
core is greatest for cavity states; in AA isomers, the excess
electron resides largely outside of the cluster and samples
little of the repulsive potential. The most noticeable differ-
ence between our model and the TB model is that the latter
predicts much larger values of (V,.,) in the case of cavity-
bound electrons. According to our model, (V)

J. Chem. Phys. 130, 124115 (2009)
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FIG. 11. (Color online) Histograms of the average repulsion energy, for a
library of (H,0), isomers.
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<12 kcal/mol for all of the structures in the data set,
whereas the TB model affords (V,.,) >20 kcal/mol for most
cavity states.

Because both models exhibit qualitatively similar
VEBEs, the large disparity in (V) for cavity states indicates
that some other component of the potential must approxi-
mately offset this difference. Polarization energy is an obvi-
ous candidate. Figure 12 shows a histogram of the quantity

pol ( pol >an10n <Vpol )neutral (39)

for the polarizable model developed here. The notation
(**Vanion @nd ** ) peurra indicates whether the dipoles are in-
duced using the electric field for the anionic or the neutral
cluster. As our database consists of anion geometries, the
quantity AVE/([)IIVI represents the change in the water-water po-
larization energy when an electron is added to a water cluster
that has already been assembled into its anion geometry.
Thus, Avﬁf}l‘d is a reflection of how the inducible dipoles
change in response to the electron, and for cavity states we
observe a significant increase in the water-water potential
upon electron attachment. This increase compensates for a
comparatively small repulsive potential.

Note that AVMl > () since the induced dipoles computed
for the neutral cluster minimize the potential energy of the
neutral system, so introduction of the electron must lead to
an increase in the water-water part of the potential. The re-
sults in Fig. 12 demonstrate that this increase is much larger
for cavity states than it is for either AA or surface states, a
point to which we shall return.
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FIG. 12. Histograms illustrating the change in the polarization energy of the
water molecules when an electron is added to a water cluster assembled in
its anion geometry, as defined in Eq. (39). Expectation values are binned
over a library of (H,0); isomers. Results are shown only for the polarizable
model.

The pairwise electron-water polarization potential V[T,f]
simulates the effect of the electron polarizing the water mol-
ecules, but omits explicit water-water polarization, which is
instead included implicitly by virtue of fixed SPC point
charges that are parametrized for bulk water. In our model,
polarization is a many-body effect, and in order to isolate
electron-water polarization we must separate out the water-
water contribution to the polarization energy. We therefore
define the electron-water polarization energy (for our model

only) as

lec-water lec
Egol = Epol - pol /neutral» (40)
where
lec lec
Epol = <V;ol Danion + Wle)ol (41)

is the total polarization energy, including the polarization
work. The quantity £, is simply the expectation value of the
polarization potential defined in Sec. III C, whereas the
quantity (Vgloelc)nemml that we subtract in Eq. (40) represents
the average of the electron—induced-dipole interaction,
evaluated using the anionic wave function but with dipoles
that are converged for the neutral cluster. Thus, E;l(flc'wa‘er i
the electronic reorganization energy for introducing an elec-
tron into the neutral system. Although E, is strictly negative

(since polarization is variational in our formalism), E;lff'water

J. Chem. Phys. 130, 124115 (2009)
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FIG. 13. Histogram of the total polarization energy, as defined in Eq. (41),
binned over a library of (H,0), isomers. Results are shown only for the
polarizable model developed here.

may have either sign, although in practice it is almost always
negative as well.

Figures 13 and 14 show the distribution of values for
E, and E;ﬁc'water, respectively, over our database of isomers.
The polarization energy is ill-defined for the TB model since
the SPC point charges are parametrized for bulk water and
therefore implicitly include the effects of water-water polar-
ization; as such, no TB results are presented in Fig. 13. The
electron-water polarization energy for the TB model, on the
other hand, is simply E;Lelc'wa‘er=(Vg§), so Fig. 14 does
present a comparison of electron-water polarization for the
two models.

Our model tends toward more negative values of the
total polarization energy for cavity states than for AA or
surface states (Fig. 13), indicating that polarization effects
are more important for cavity states. Comparison to Fig. 14
reveals that most of the polarization energy in the cavity
states is electron-water polarization, whereas a substantial
fraction of E, for the AA and surface states is water-water
polarization. Water networks that support surface-bound iso-
mers of (H,0), (including AA isomers) possess dipoles that
are oriented in essentially the same way in both the neutral
and the anionic cluster, since it is these dipoles that are ulti-
mately responsible for the fact that the electron is bound.
Polarization may certainly amplify electron binding in these
isomers, but it does not qualitatively change the electrostatic
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FIG. 14. (Color online) Histogram of the electron-water polarization energy
binned over a library of (H,0), isomers. For the TB model, EZ¢ e

ol
=(VEOBI), whereas for the polarizable model, E;loef’wa‘e‘ is defined in Eq. (40).

environment of the cluster. In cavity-type geometries, on the
other hand, the electrostatic environment changes qualita-
tively when an electron is introduced into the system, result-
ing in large (in magnitude) values of E;ﬁc'wa‘er

There is no way for the simple, distance-dependent po-
larization model ng] to capture this distinction. Although the
polarizable and nonpolarizable models predict quite compa-
rable values of E;Lﬁc'water for AA and surface states (Fig. 14),
in the case of cavity states, the polarizable model affords
values of ESC"4<" that are substantially more negative than
those obtained from the TB model. The more negative values
obtained with the polarizable model are a manifestation of
the compact nature of the wave function in cavity states,
which places a large electric field nearby a large number of
water molecules, as opposed to a diffuse, surface-bound
wave function. This electric field apparently induces dipoles
that, in turn, produce a much more attractive potential then
the simple —a/r* polarization potential of TB.

Figure 15 compares E;ﬁc’wam, the electron-water polar-
ization energy, to (V;l()ﬁc)nemml, the polarization energy in the
field of the neutral dipoles. [The sum of these two quantities
equals the total polarization energy, according to Eq. (41).]
For AA and surface states, the interaction of the electron
with the induced dipoles is nearly the same whether the di-
poles are converged self-consistently for the anion or simply
taken from a neutral cluster calculation at the same geometry.
For cavity states on the other hand, the electron-water polar-
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FIG. 15. (Color online) Histogram of the components of the electron-water
polarization energy for the polarizable model developed here, binned over a

library of (H,O), isomers. The quantities E;'jf’wz““ and (V;Lﬁ“)nemm] are the

total polarization energy and the polarization energy in the field of the neu-
tral dipoles, respectively.

ization energy (dipoles converged self-consistently for the
anion) is large in magnitude and negative in sign, whereas
(V;l(f’]c)neutm] is equally large but positive.

It is perhaps counterintuitive that the electron-water po-
larization energy should be so much more stabilizing in
cavity-type isomers than it is in AA isomers since the latter
are characterized by an unpaired electron that is strongly
localized around the AA water molecule, which is effectively
“buried” within the excess-electron wave function (see, for
example, figures in Refs. 43, 84, and 85). This observation is
rather revealing, however. Stable surface-bound isomers (in-
cluding AA isomers) owe their existence to the fact that the
water network can reorient to form structures with large di-
pole moments. In these isomers, the “permanent” (although
geometry-dependent) electrostatics, rather than electron-
induced polarization, determines the VEBE, as evidenced by
the fact that the electrostatic environment of the water cluster
is only mildly perturbed by introduction of the electron.
Cavity-type isomers, on the other hand, exhibit significant
repolarization due to the electron, which is likely a conse-
quence of the more diffuse nature of surface-bound elec-
trons. While permanent electrostatics may suffice to describe
surface states, a non-polarizable model may not be able to
offer a balanced description of both surface and cavity iso-
mers.

We should emphasize that the preceding discussion fo-
cuses on just one component of the total reorganization en-
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ergy associated with electron attachment, namely, the elec-
tronic or noninertial component. Because we employ cluster
geometries optimized on the anion potential surface (or ex-
tracted from a MD simulation on the anion potential sur-
face), we omit any discussion of orientational reorganization
or the dynamics of the electron attachment process. For sur-
face states, the orientational component clearly dominates
the electronic component, although the picture is less clear
for cavity states. While one might suspect orientational reor-
ganization to be adequately described using fixed-charge po-
tentials, geometry optimizations indicate that the SPC/TB
models tend to exaggerate the alignment of molecular di-
poles in anionic clusters, and may therefore overestimate ori-
entational reorganization. Because our model can describe
both stable neutral clusters and stable anionic clusters, it
would seem to be the appropriate tool to address this issue,
via direct simulation of the cluster dynamics following elec-
tron attachment. We hope to explore this in future simula-
tions.

VIl. CONCLUSIONS

We have developed a new electron-water pseudopoten-
tial, parametrized for use with the polarizable AMOEBA wa-
ter model. The result is a one-electron model Hamiltonian
from which an electron-water polarization potential arises
naturally, and need not be grafted onto the model a poste-
riori. Because we treat electron-water and water-water polar-
ization self-consistently, the model is fully variational and
analytic energy gradients are available.

We have constructed our electron-water pseudopotential
by following, as closely as possible, the prescription laid out
by Turi and co-workers,'™!" which is itself based partly on
earlier work by Schnitker and Rossky.4 The nonpolarizable
TB model'' has been used extensively in the most recent
generation of hydrated-electron simulations,"?*% and it is
therefore interesting to compare the performance of this
model to one in which the electron-water interaction poten-
tial has a very similar form, but where the underlying, polar-
izable water model is much more accurate. Whereas the TB
model is parametrized for the bulk aqueous electron, our
pseudopotential is parameterized using the VEBE of (H,0);.
The new model reproduces ab initio benchmarks, for both
VEBEs and relative conformational energies, across a di-
verse set of (H,0), cluster isomers. In particular, the accu-
racy of VEBEs appears to be fairly insensitive to cluster
geometry, leading us to conclude that the description of
VEBE:s is fairly uniform across the global (H,0); potential
surface.

The polarizable model incorporates the fact that intro-
duction of an excess electron must increase the water-water
potential energy (even for geometries that exhibit large
VEBESs), an effect that is absent in nonpolarizable models.
We find that polarization is especially important for cavity
states of the excess electron. This result sheds light upon an
earlier MP2 study of (H,0), clusters,*’ where it was found
that cavity states exhibit significantly larger correlation ener-
gies than surface states, for a given cluster size, even for
surface states that possess large VEBEs. Examination of
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these same cluster isomers using our polarizable model
Hamiltonian suggests that most of this additional correlation
energy is polarization rather than dispersion. While a QM
treatment of electron-water  dispersion (via Drude
oscillators'*"?) does provide more accurate VEBEs than
those obtained with our polarizable model Hamiltonian, such
an approach is also considerably more expensive than the
present one, and it is not yet clear whether such a treatment
is necessary for large, strongly bound cluster anions.

For bulk-like structures exhibiting VEBEs around
2.5 eV (the largest VEBEs in the ab initio database that we
use for benchmarking), the nonpolarizable TB model (which
was parameterized using bulk data'") appears to be slightly
more accurate than the new model for prediction of VEBEs.
Unfortunately, the paucity of ab initio data in this regime
makes it difficult to investigate this issue in detail at the
present time. In future studies, we shall investigate the prop-
erties of the bulk aqueous electron, as predicted by the new
model.
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