
THE JOURNAL OF CHEMICAL PHYSICS 134, 094118 (2011)

An efficient, fragment-based electronic structure method for molecular
systems: Self-consistent polarization with perturbative two-body
exchange and dispersion
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We report a fragment-based electronic structure method, intended for the study of clusters and molec-
ular liquids, that incorporates electronic polarization (induction) in a self-consistent fashion but treats
intermolecular exchange and dispersion interactions perturbatively, as post-self-consistent field cor-
rections, using a form of pairwise symmetry-adapted perturbation theory. The computational cost
of the method scales quadratically as a function of the number of fragments (monomers), but could
be made to scale linearly by exploiting distance-dependent thresholds. Extensive benchmark cal-
culations are reported using the S22 database of high-level ab initio binding energies for dimers,
and we find that average errors can be reduced to <1 kcal/mol with a suitable choice of basis set.
Comparison to ab initio benchmarks for water clusters as large as (H2O)20 demonstrates that the
method recovers �90% of the binding energy in these systems, at a tiny fraction of the computa-
tional cost. As such, this approach represents a promising path toward accurate, systematically im-
provable, and parameter-free simulation of molecular liquids. © 2011 American Institute of Physics.
[doi:10.1063/1.3560026]

I. INTRODUCTION

It is well-established that wavefunction-based quantum
chemistry using Gaussian basis sets can provide accurate
ground-state properties for molecular systems. Application
of these same robust methods to condensed-phase systems—
be they periodic (crystalline solids) or nonperiodic (liquids
or amorphous solids)—represents a tremendous challenge,
given that the cost of wavefunction methods scales incredibly
poorly with system size. In fact, such methods scale unphys-
ically with system size,1 as a result of the use of delocalized
molecular orbitals, and the distance dependence of different
intermolecular interactions must be exploited if we are to ap-
ply these methods to condensed phases.2 From this point of
view, Gaussian basis sets possess an inherent advantage over
plane-wave basis sets, in that the basis functions are highly lo-
calized and the length scale between different basis functions
can be assigned in a straightforward way.3 At present, how-
ever, most condensed-phase electronic structure calculations
are performed using delocalized plane-wave basis sets, which
is appealing for periodic systems because the basis functions
are periodic, but may be less advantageous for nonperiodic
systems. Moreover, despite many advances in the develop-
ment of “linear scaling” electronic structure methods,4, 5 rou-
tine application of wavefunction-based quantum chemistry re-
mains limited to systems not larger than ∼100 atoms.6

In the past decade, a variety of fragment-based meth-
ods have been introduced, whose goal is to reduce the
cost of quantum chemistry calculations in large systems.
Such techniques include methods based upon a many-
body expansion of the supersystem energy,7–13 the most
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sophisticated of which is the “fragment molecular or-
bital” (FMO) method;14–16 divide-and-conquer approaches;17

the “self-consistent field for molecular interactions” (SCF-
MI) technique;18, 19 the “natural linear scaling” coupled-
cluster approach;20, 21 the effective fragment potential
(EFP) method;22–24 and the “explicit polarization” (XPol)
method.25–28 A complete discussion of the strengths and
weaknesses of each of these methods is beyond the scope of
the present article. Here, it suffices to note that each one—
save for EFP, which is an automated way to parameterize po-
larizable force fields using ab initio calculations—requires
iterative construction of Fock matrices for dimers of frag-
ments, or sometimes the supersystem itself, or else requires
additional, empirical parameters. The present article reports a
method that avoids these requirements.

For maximum versatility, a fragment-based quantum
chemistry method should allow for the possibility of frag-
menting the system across covalent bonds, and several of the
aforementioned methods do facilitate this possibility.28–31 In
the present work, however, we exclude fragmentation across
covalent bonds, with the aim of developing an accurate and ef-
ficient method for molecular clusters, liquids, and solids that
are composed of relatively small monomers, each of which
constitutes one fragment.

To construct a low-scaling quantum chemistry method,
one can imagine at least two (rather disparate) strategies. One
strategy is to make well-defined approximations to an exist-
ing ab initio method, then examine the extent to which the
approximate method is faithful to the original one. Exam-
ples of this approach include local correlation methods,4, 32–39

dual basis procedures,40, 41 and density fitting or resolution-of-
identity techniques.42–46 Alternatively, one might construct a
method that is promising in its efficiency, and is based upon
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either well-defined approximations or else some observations
about the physical nature of interactions. The latter approach,
which is the one pursued here, does not seek to reproduce or
approximate the energetics of any existing quantum chemistry
method.

The method that we propose herein was motivated in
part by the electrostatically-embedded, many-body expan-
sion method introduced recently by Dahlke and Truhlar.7–10

In a simple many-body expansion, the energy of N inter-
acting molecules is decomposed into a sum of one-body
terms, two-body terms, etc., V = V1 + V2 + V3 + · · ·. For
example, V2 is the sum of the energies of all N (N − 1)/2
dimers, minus the sum of the N monomer energies to avoid
double-counting. Application to water clusters at the level
of second-order Møller–Plesset perturbation theory (MP2)
demonstrates that four-body terms must be retained in order to
obtain accurate results.47, 48 However, Dahlke and Truhlar7–10

demonstrated that convergence of the many-body expansion is
greatly accelerated if low-order n-body calculations are com-
puted in the presence of a set of point charges that approx-
imate the electrostatic potential due to the other monomers.
The best results, as compared to supersystem MP2, were ob-
tained using a supersystem Hartree–Fock (HF) calculation
followed by a two-body expansion of the MP2 correlation
energy.7, 8 Alternatively, accurate results for hydrogen-bonded
clusters have been obtained by computing V1 and V2 at the
MP2 level while using a polarizable force field to evaluate
V3 and V4, without the need to perform a supersystem HF
calculation.11–13

We glean two important conclusions from these obser-
vations. First, it is crucial to include the electrostatic effects
of the environment in the one-body (monomer) calculations.
Second, although polarization (induction) is an inherently
many-body phenomenon, intermolecular electron correlation
is largely a two-body effect. These observations suggest that
if one can efficiently incorporate many-body induction in a
fragment-based scheme, then it may be possible to approxi-
mate intermolecular electron correlation in a pairwise fashion,
without resorting to supersystem calculations or high-order
terms in the many-body expansion.

To accomplish this, we will use the XPol method of Xie
et al.26 to perform electrostatically embedded one-body cal-
culations in a variational, self-consistent manner. The XPol
method, which is detailed in Sec. II, involves solving single-
fragment SCF equations in the presence of point charges that
represent the electrostatic potential due to the other fragments.
These point charges are derived from the fragment wavefunc-
tions, but unlike both the FMO method49, 50 and the electro-
static embedding method of Dahlke and Truhlar,7–10 variation
of the point charges is included (exactly) within the single-
fragment Fock matrices. Operationally, the method is a “dual
SCF” procedure, with an outer loop over fragments and an
inner loop to solve the single-fragment Roothaan equations.
As such, the XPol method incorporates many-body induc-
tion (albeit in an approximate way), but ignores electron ex-
change between fragments. The original XPol method devel-
oped by Xie et al.25–28 accounts for dispersion and exchange-
repulsion interactions using empirical Lennard-Jones poten-
tials. Our goal is to replace these empirical corrections with

ab initio, post-XPol corrections based on a two-body form of
symmetry-adapted perturbation theory (SAPT).51, 52

Traditionally, SAPT has been used as a benchmark
method for computing dimer binding energies and for decom-
posing intermolecular interactions into induction, exchange-
repulsion, dispersion, and other components.51, 52 SAPT
calculations can be quite expensive, although reduced-cost
variants based on density functional theory (DFT) have re-
cently shown great promise.53–58 Here, we use the vari-
ant known as SAPT(0), which employs HF orbitals for the
monomers and does not include monomer electron correla-
tion. We also explore SAPT(KS),53 which is analogous to
SAPT(0) but substitutes Kohn–Sham (KS) orbitals in place
of HF orbitals.

Our proposed method incorporates self-consistent many-
body induction, but assumes that other interactions, such
as exchange-repulsion and dispersion, are pairwise additive.
Calculation of nonadditive three-body interactions within the
SAPT formalism requires computationally expensive triple
excitations,59–61 but SAPT results for OH−(H2O)2 indicate
that the two-body terms are about an order of magnitude
larger than the three-body terms. Furthermore, the three-body
terms are dominated by the induction correction,62 that is,
by the change in electrostatics due to the presence of other
molecules. In addition, energy decomposition analysis of
(H2O)6 isomers reveals that electrostatic, exchange-repulsion,
and dispersion interactions are pairwise additive (or nearly
so), whereas polarization exhibits many-body effects of ∼10
kcal/mol.63 In our proposed scheme, many-body polarization
is mostly captured within the zeroth-order wavefunctions gen-
erated by the XPol procedure, and electrostatic embedding
serves to reduce the magnitude of the intermolecular perturba-
tion. The fact that the MP2 correlation energy is approximated
to high accuracy with only a two-body expansion8 suggests
that we need only extend SAPT to pairwise fragment interac-
tions, which will make the method highly efficient for appli-
cations to molecular liquids.

II. THEORY

The method introduced here is essentially an amalgam of
two existing methods, XPol and SAPT, so we call the new
method XPol/SAPT or XPS. In what follows, we will use in-
dices A and B to label fragments; i and j to label electrons;
a ∈ A and b ∈ B to label occupied MOs belonging to frag-
ments A and B, respectively; r ∈ A and s ∈ B to label vir-
tual orbitals; Greek letters (μ, ν, λ, σ ) to label atomic orbital
(AO) basis functions; and I, J, K , . . . to label nuclei. We re-
strict our attention to closed-shell spin-restricted calculations.
Atomic units are used throughout this section.

A. XPol

XPol is an approximate, fragment-based molecular or-
bital method that was developed to be a “next-generation”
force field.25, 28 This method starts from an ansatz in which
the supersystem wavefunction is written as a direct product of
fragment wavefunctions,26, 64
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|�〉 =
Nfrag∏

A

|�A〉, (1)

where Nfrag is the number of fragments. We assume here that
the fragments are molecules and that covalent bonds remain
intact, although XPol has been extended to fragmentation of
the system across covalent bonds.26, 28 The fragment wave-
functions are antisymmetric with respect to exchange of elec-
trons within a fragment, but not to exchange between frag-
ments. As such, exchange interactions between fragments are
neglected. In the original version of XPol, Lennard-Jones po-
tentials are used to model exchange-repulsion and dispersion
interactions,26 but our aim is to replace these empirical in-
teraction terms with perturbation theory. Very recently, Gao
and co-workers extended XPol to include interfragment ex-
change within the SCF iterations,65 in a manner highly analo-
gous to the SCF-MI approach.19 In contrast, our method treats
exchange as a post-SCF correction.

For closed-shell fragments, the XPol energy is26

EXPol =
∑

A

[
2
∑

a

c†a
(
hA + JA− 1

2 KA
)

ca + E A
nuc

]
+Eembed.

(2)

The term in square brackets is the ordinary HF energy
expression,66 for fragment A. Thus, ca is a vector of occupied
MO expansion coefficients (in the AO basis) for the occupied
MO a ∈ A; hA consists of the one-electron integrals; and JA

and KA are the Coulomb and exchange matrices, respectively,
constructed from the density matrix for fragment A. The ad-
ditional terms in Eq. (2),

Eembed = 1

2

∑
A

∑
B �=A

∑
J∈B

(
−2

∑
a

c†aIJ ca +
∑
I∈A

L I J

)
qJ ,

(3)

arise from the electrostatic embedding. The matrix IJ is de-
fined by its AO matrix elements,

(IJ )μν = 〈μ| 1∣∣�r − �RJ

∣∣ |ν〉, (4)

and L I J is given by

L I J = Z I∣∣ �RI − �RJ

∣∣ . (5)

According to Eqs. (2) and (3), each fragment is embedded in
the electrostatic potential arising from a set of point charges,
{qJ }, on all of the other fragments; the factor of 1/2 in Eq.
(3) avoids double-counting. Exchange interactions between
fragments are ignored, and the electrostatic interactions be-
tween fragments are approximated by interactions between
the charge density of one fragment and point charges on the
other fragments.

Crucially, the vectors ca are constructed within the ab-
solutely localized MO (ALMO) ansatz,19 meaning that the
MOs for each fragment are represented in terms of only
those AOs that are centered on atoms in the same fragment.
This partition of the AO basis leads to significant computa-

tional savings, and affords a method whose cost grows lin-
early with respect to Nfrag. The ALMO ansatz also excludes
basis set superposition error (BSSE) by construction, and in
compact basis sets it excludes interfragment charge transfer as
well.19

The original XPol method of Xie et al.25–28 uses Mulliken
charges for the qJ in Eq. (3), though other charge schemes
could be envisaged. In addition to Mulliken charges, we will
examine Löwdin charges66 and charges derived from the elec-
trostatic potential (CHELPG).67 This aspect of the method is
discussed in Sec. II B, with additional details given in the sup-
plementary material.68

Derivation of the XPol working equations follows closely
that of the HF equations. We require the energy expression
in Eq. (2) to be stationary with respect to variation of the
MO coefficients, subject to the constraint that MOs within
each fragment are orthonormal. This leads to the XPol SCF
equations,26

FACA = SACAεA. (6)

Here, FA, CA, SA, and εA are the fragment Fock matrix, MO
coefficient matrix, AO overlap matrix, and Lagrange multi-
plier matrix, respectively. The dimension of these matrices
equals the number of AOs centered on fragment A. Upon di-
agonalizing εA = (

CA
)†

FACA, the diagonal elements of εA

are the eigenvalues of the fragment Fock matrix, FA. In the
AO basis, FA has matrix elements

F A
μν = f A

μν − 1

2

∑
J /∈A

(IJ )μνqJ +
∑
J∈A

MJ (�J )μν, (7)

where fA = hA + 2JA − KA is the Fock matrix for fragment
A in isolation. The additional XPol terms consist of an “M-
vector” defined by

MJ = ∂ Eembed

∂qJ

= 1

2

∑
B

(J /∈B)

(
−2

∑
b

c†bIJ cb +
∑
I∈B

L I J

)
, (8)

and also

(�J )μν = ∂qJ

∂ Pμν

. (9)

Here, P represents the one-electron density matrix, which is
block diagonal in the fragment index.

Our notation differs slightly from that used by Xie
et al.,26 though we believe that ours is more transparent. We
have written Eq. (7) in a general form that is valid for any
charge scheme, and explicit formulas for the charge deriva-
tives, (�J )μν , will be presented below. As pointed out by Xie
et al.,26 Eq. (7) indicates that each fragment is polarized by
the rest of the system, with half of this polarization stemming
from point charges on the other fragments and half from the
true charge density of the rest of the system, which is con-
tained in the M-vector. In principle, the electrostatic embed-
ding could be systematically improved, by using higher order
multipoles or the fragment densities themselves, but we will
not explore this possibility here.

Solution of the XPol equations requires a dual SCF pro-
cedure, since each fragment Fock matrix depends upon the
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electron density of the other fragments. Implementation of the
dual SCF is straightforward and will be discussed only briefly,
in Sec. III.

B. Charge schemes

We investigate three different charge schemes: Mulliken,
Löwdin, and CHELPG. In this section we will derive formu-
las necessary to incorporate Mulliken charges into the XPS
method. Details pertaining to the use of Löwdin and CHELPG
charges are given in the supplementary material.68

The Mulliken charges stem from a simple partitioning of
the electron density,66

qMull
J = Z J −

∑
μ∈J
ν

Sμν Pνμ. (10)

The derivative with respect to a density matrix element is
quite simple and can be written as

(
�Mull

J

)
μν

= −1

2
(Sμνδμ∈J + Sνμδν∈J ), (11)

where δμ∈J = 1 if the basis function μ is centered on atom J ,
and δμ∈J = 0 otherwise.

In what follows, we will require an operator, �̂J , whose
matrix elements are equal to (�J )μν as given by Eq. (11). It
can be verified that a reasonable choice is

�̂Mull
J = −1

2

∑
μ,ν∈J

(|μ〉(
S−1

J

)
μν

〈
ν| + |ν〉(

S−1
J

)
νμ

〈
μ|). (12)

The quantity S−1
J in this equation refers to the inverse of the

fragment overlap matrix, for the fragment that contains atom
J . At no point it is necessary to invert the supersystem’s over-
lap matrix.

C. Symmetry-adapted perturbation theory

Two issues prevent us from applying perturbation theory
to the XPol wavefunction, Eq. (1), in a straightforward man-
ner. First, the fragment wavefunctions (and ALMOs) are not
mutually orthogonal amongst the fragments. Second, while
the fragment wavefunctions are properly antisymmetric with
respect to exchange of electrons within a fragment, the direct
product ansatz in Eq. (1) is not antisymmetric with respect
to exchanges between fragments. Symmetry-adapted pertur-
bation theory was developed to overcome precisely these two
problems. Here, we review only the most relevant details of
SAPT; see Refs. 51 and 52 for a complete introduction to the
method.

In SAPT, the Hamiltonian for the A · · · B dimer is written
as51, 69

Ĥ = F̂ A + F̂ B + ξ Ŵ A + ηŴ B + ζ V̂ , (13)

where Ŵ A and Ŵ B are Møller–Plesset fluctuation operators
for fragments A and B, and the intermolecular perturbation,
V̂ , is conveniently written as

V̂ =
∑
i∈A

∑
j∈B

v̂(i j) (14)

with

v̂(i j) = 1∣∣�ri − �r j

∣∣ + v̂ A( j)

NA
+ v̂B(i)

NB
+ V0

NA NB
. (15)

The quantity V0 is the nuclear interaction energy between the
two fragments, and

v̂ A( j) = −
∑
I∈A

Z I∣∣�r j − �RI

∣∣ (16)

describes the interaction of electron j ∈ B with nuclei I ∈ A.
In what one might call “traditional” SAPT, the interaction en-
ergy is expanded in a triple perturbation series in the parame-
ters ξ , η, and ζ .51, 70

Here, we expand only with respect to ζ . When the zeroth-
order monomer wavefunctions come from HF theory, this
is usually termed SAPT(0), where the “(0)” means zeroth-
order in the monomer fluctuation potentials.51 Within this
formalism, the interaction energy is given by a symmetrized
Rayleigh–Schrödinger perturbation expansion,52, 70–72

Eint(ζ ) = 〈�0|ζ V̂ ÂAB |�(ζ )〉
〈�0|ÂAB |�(ζ )〉 , (17)

where ÂAB is an antisymmetrizer for the A · · · B supersystem
that projects out the Pauli-forbidden components of the super-
system wavefunction, |�(ζ )〉. The zeroth-order wavefunction,
|�0〉, is taken to be a direct product of the monomer wave-
functions, and the interaction energy is expanded with respect
to ζ . At every order in the perturbative expansion of Eq. (17),
there is a polarization term analogous to what would be ob-
tained in ordinary Rayleigh–Schrödinger perturbation theory,
along with an exchange term.52 Here, we consider the expan-
sion through second order, in which case the interaction en-
ergy can be decomposed as53

Eint = E (1)
elst + E (1)

exch + E (2)
pol + E (2)

exch. (18)

The various terms in this expression are discussed below.
The antisymmetrizer in Eq. (17) can be written as51, 70

ÂAB = NA!NB!

(NA + NB)!
ÂAÂB(1̂ + P̂ AB + P̂ ′), (19)

where ÂA and ÂB are antisymmetrizers for the two
monomers, and P̂ AB is a sum of all one-electron exchange
operators between the two monomers. The operator P̂ ′ in Eq.
(19) denotes all of the three-electron and higher order ex-
changes. This operator is neglected in what is known as the
“single-exchange” approximation.51, 52, 60 This approximation
is expected to be quite accurate at typical van der Waals
distances,52 and we invoke it here.

The electrostatic part of the first-order energy correction
is denoted E (1)

elst in Eq. (18), and represents the Coulomb in-
teraction between the two monomer electron densities.52 The
quantity E (1)

exch in Eq. (18) is the corresponding first-order
(Hartree–Fock) exchange correction. Explicit formulas for
these corrections can be found in the literature.51, 52, 70, 73

The second-order polarization correction in Eq. (18) can
be further decomposed into induction and dispersion contri-
butions, E (2)

pol = E2
ind + E2

disp. The induction correction can be
written as
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E (2)
ind = E (2)

ind(A ← B) + E (2)
ind(B ← A), (20)

where the notation (A ← B) indicates that the frozen charge
density of B polarizes the density of A. In detail,51

E (2)
ind(A ← B) = 2

∑
ar

tar (w B)ar, (21)

where

(w B)ar = (v̂B)ar +
∑

b

(ar |bb) (22)

and tar = (w B)ar/(εa − εr ). The second term in Eq. (20), in
which A polarizes B, is obtained from Eqs. (21) and (22) by
interchanging the following labels: A ↔ B, a ↔ b, and r ↔
s.51 Finally, the dispersion correction is

E (2)
disp = 4

∑
abrs

(ar |bs)(ra|sb)

εa + εb − εr − εs
. (23)

The induction and dispersion corrections both have accompa-
nying exchange corrections (termed exchange-induction and
exchange-dispersion, E2

exch-ind and E2
exch-disp). Expressions for

these corrections are quite lengthy and can be found in the
literature.51, 58

Although an exact first-order exchange correction that
avoids the single-exchange approximation has been derived,74

to the best of our knowledge the exchange-induction
and exchange-dispersion formulas have only been de-
rived within the single-exchange approximation. We have
tested this exact formula for E (1)

exch, and we find that
the single-exchange approximation is quite robust. More-
over, the single-exchange approximation does not re-
quire inversion of the dimer overlap matrix, which is re-
quired in the exact formula for E (1)

exch. For this reason,
and in the interest of consistency, we invoke the single-
exchange approximation for all of the exchange interaction
terms.

It is quite common to replace E (2)
ind and E (2)

exch-ind with
their “response” analogues, E (2)

ind,resp and E (2)
exch-ind,resp, which

afford the infinite-order correction for polarization arising
from a frozen partner density.51 Operationally, this substi-
tution involves replacing the second-order induction ampli-
tudes, tar in Eq. (21), with amplitudes obtained from solu-
tion of the coupled-perturbed Hartree–Fock equations.75 (The
perturbation is simply the electrostatic potential of the other
monomer.) In addition, it is common to correct the SAPT(0)
binding energy for “higher order” polarization effects, by
adding a correction term

δEHF
int = EHF

int − (
E (1)

elst + E (1)
exch + E (2)

ind,resp + E (2)
exch-ind,resp

)
(24)

to the interaction energy.51 Here, EHF
int is the counterpoise-

corrected HF binding energy for A · · · B.
If one simply replaces the MOs and eigenvalues of

the SAPT(0) corrections with KS MOs and eigenvalues,
then the energy expressions above define the method known
as SAPT(KS).53 [This approach was originally termed
SAPT(DFT),53 but this terminology is now reserved for
an alternative DFT-based SAPT method.55–58] Initially, the
SAPT(KS) approach was not deemed very successful, as the

electrostatic and induction energies failed to reproduce (tradi-
tional) benchmark SAPT values.54 However, these discrepan-
cies were ultimately determined to result from the incorrect
asymptotic behavior of common exchange-correlation (XC)
functionals used in DFT. Applying an asymptotic correction
to the XC potential improved the agreement with benchmark
values,54 though the dispersion correction was still poor. This
led to the development of the method that is nowadays called
SAPT(DFT),55–58 in which the sum-over-states formula for
the dispersion interaction [Eq. (23)] is replaced with a gen-
eralized Casimir–Polder-type expression based on frequency-
dependent density susceptibilities for the monomers, which
are calculated by solving time-dependent coupled HF or KS
equations.55–58 We have not yet implemented SAPT(DFT),
but the SAPT(KS) approach will be considered here, in ad-
dition to SAPT(0).

D. XPol/SAPT

There are two difficulties in combining XPol with SAPT.
First, the perturbation in SAPT is not appropriate when XPol
is used to obtain zeroth-order wavefunctions and energies, due
to the fact that some intermolecular interactions have already
been included, albeit approximately, by means of electrostatic
embedding. In addition, SAPT(0) must be extended to incor-
porate an arbitrary number of monomers.

Taking the zeroth-order Hamiltonian to be the sum of the
fragment Fock operators defined in Eq. (7), we can write

Ĥ0 =
∑

A

∑
i∈A

f̂ A(i)−
∑

A

∑
i∈A

[
1

2

∑
J /∈A

qJ ÎJ (i)−
∑
J∈A

MJ �̂J (i)

]
,

(25)

where f̂ A(i) is the gas-phase (isolated fragment) Fock opera-
tor for electron i in fragment A. Equation (25) can be rewrit-
ten as

Ĥ0 =
∑

A

∑
i∈A

f̂ A(i)

−
∑

A

∑
B>A

[∑
i∈A

(
1

2

∑
J∈B

qJ ÎJ (i) −
∑
I∈A

M B
I �̂I (i)

)

+
∑
j∈B

(
1

2

∑
I∈A

ÎI ( j)qI −
∑
J∈B

M A
J �̂J ( j)

)]
, (26)

where M A
J is the J th element of an M-vector that contains

only contributions from fragment A. This partitioning of Ĥ0

suggests that we replace v̂ A and v̂B in Eq. (15) with

v̂ A( j) = −
∑
I∈A

(
Z I − 1

2
qI

)
Î I ( j) −

∑
J∈B

M A
J �̂J ( j), (27a)

v̂B(i) = −
∑
J∈B

(
Z J − 1

2
qJ

)
Î J (i) −

∑
I∈A

M B
I �̂I (i). (27b)

Once these substitutions have been made, we use the standard
SAPT(0) corrections, in a pairwise manner, to calculate all
dimer interaction energies, E AB

int , using Eq. (18) in conjunction
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with the perturbation defined in Eq. (27). The total energy
within the XPS ansatz is then given by

EXPS =
∑

A

(∑
a

[
2 εA

a − c†a(JA − 1
2 KA)ca

]

+E A
nuc +

∑
B>A

E AB
int

)
. (28)

In this expression, we have removed the over-counting of two-
electron interactions present in HF theory, effectively tak-
ing the intrafragment perturbation to first order. The gener-
alization from a HF to a KS description of the monomers is
straightforward.

To better understand what we have just done, let us first
generalize the SAPT Hamiltonian, Eq. (13), to an arbitrary
number of fragments by writing

Ĥ =
∑

A

(F̂ A + ξAŴ A) +
∑

A

∑
B>A

ζAB V̂AB . (29)

In this expression, there are Nfrag intramolecular perturbations
(ξAŴ A) and Ndimer = Nfrag(Nfrag − 1)/2 intermolecular per-
turbations (ζAB V̂AB). In principle, one should therefore em-
ploy a (Nfrag × Ndimer)-tuple perturbative expansion for this
Hamiltonian, analogous to the triple perturbation expansion
that is applied to Eq. (13). However, we neglect intrafragment
electron correlation, analogous to SAPT(0) for dimers. In ad-
dition, we neglect second-order terms arising from coupling
between first-order perturbations on different dimers.

We have also made a third (and somewhat more sub-
tle) approximation. Neglecting monomer electron correlation
(Ŵ A) in the Hamiltonian of Eq. (29), the first-order (inter-
molecular) energy correction is [cf. Eq. (17)]

E (1) =
〈
�0

∣∣(∑
A

∑
B>A V̂AB

)
Â

∣∣�0
〉

〈�0|Â|�0〉
. (30)

Here, |�0〉 is the zeroth-order, direct-product wavefunction
for the supersystem. Note that Â is a supersystem antisym-
metrizer and is not pairwise additive. This operator can be
expressed as

Â =
(∏

A NA!ÂA
)

(∑
A NA

)
!

(
1 +

∑
A

∑
B>A

P̂ AB + P̂ ′
)

, (31)

where the operator P̂ AB generates all pairwise electron ex-
changes between fragments A and B. Higher order ex-
change terms contained in P̂ ′ are neglected within the
single-exchange SAPT approximation that was introduced in
Sec. II C. In XPS, however, there are multiple dimers of frag-
ments, and in developing this method we have tacitly intro-
duced a further approximation in which only “diagonal” terms
such as 〈�0|V̂AB(1̂ + P̂ AB)|�0〉 are retained in the numer-
ator of Eq. (30). This approximation neglects some single-
exchange terms involving three or more fragments. For ex-
ample, in trimers A · · · B · · · C , fragments A and B can be
coupled by P̂ AB while B and C are coupled by V̂BC , but such
terms are neglected in the present formulation of XPS. The
impact of neglecting these terms is unclear, although such
terms are only likely to be important when all three fragments

are in very close proximity. In future work, we plan to refor-
mulate our XPS procedure in a more rigorous and systematic
manner based on Eqs. (29)–(31), which includes coupling be-
tween first-order perturbations and also all single-exchange
terms.

At present, we have provided an ad hoc physical mo-
tivation for the XPS method, rather than a rigorous deriva-
tion starting from Eq. (29). For this reason, we refer to XPS
as a parameter-free quantum-chemical model, rather than an
ab initio model. Our aim for the time being is to replace the
Lennard-Jones terms used in the XPol calculations of Xie
et al.25–28 with pairwise SAPT corrections. To this end, we
have assumed that the leading many-body effect is induction,
and we incorporate this effect within the zeroth-order Hamil-
tonian in an efficient (albeit approximate) manner. We assume
that the remaining induction corrections, as well as all inter-
molecular exchange and dispersion interactions, can be de-
scribed in a pairwise fashion. To the extent that the method is
successful, it succeeds by reducing the size of the many-body
perturbation, to the point where low-order, pairwise perturba-
tion theory provides sufficient accuracy.

The inclusion of many-body induction within the zeroth-
order Hamiltonian makes the subsequent SAPT corrections
less meaningful in terms of energy decomposition analysis.
For instance, the first-order electrostatic correction in XPS is
not the total electrostatic energy, since the former corrects for
errors in the approximate electrostatic treatment at zeroth or-
der (i.e., the electrostatic embedding). The dispersion correc-
tion may be less contaminated, since all of the XPS modifi-
cations to the traditional SAPT perturbation are one-electron
operators [see Eq. (27)], and therefore the pairwise dispersion
correction differs from its traditional SAPT analogue only in-
sofar as the MOs are perturbed by the electrostatic embed-
ding. As such, we will continue to interpret this as a true dis-
persion correction.

Finally, some discussion of basis sets is warranted. Typ-
ically, SAPT calculations are performed in the so-called
dimer-centered basis set (DCBS),76 which means that the
combined A + B basis set is used to calculate the zeroth-order
wavefunctions for both A and B. This leads to the unusual situ-
ation that there are more MOs than basis functions: one set of
occupied and virtual MOs for each monomer, both expanded
in the same (dimer) AO basis. As an alternative to the DCBS,
one might calculate |�A〉 using only A’s basis functions (sim-
ilarly for B), in which case the SAPT calculation is said to
employ the monomer-centered basis set (MCBS).76 Because
XPol derives its efficiency by restricting MOs on fragment A
to be built from AOs on fragment A, we consider only the
MCBS for the purpose of converging the fragment wavefunc-
tions. (In Sec. IV B, however, we will introduce a post-XPol
pseudocanonicalization in the DCBS, in order to recover in-
termolecular charge transfer.) Use of the MCBS means that
our SAPT(0) corrections are most likely not converged with
respect to basis-set expansion,76 and thus rely on a cancella-
tion of errors to provide meaningful results. As stated above,
we intend XPS not as a benchmark method but rather as an
efficient, parameter-free method to study molecular clusters
and liquids. As such, we see no problem with relying on er-
ror cancellation, provided that the accuracy and robustness
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of the cancellation are established by thorough comparisons
to benchmark calculations. Such comparisons are reported in
Secs. IV and V.

III. COMPUTATIONAL DETAILS

We have implemented the XPol, SAPT(0), and XPS
methods within a locally modified version of the Q-CHEM

software package.77 The XPol SCF equations are solved by
means of a dual SCF procedure similar to that described by
Xie et al.26 In brief, we iterate Eq. (6) to convergence for each
fragment A, using a fixed set of point charges derived from the
previous SCF solutions for the other fragments. Once all Nfrag

sets of SCF equations have been converged in this manner,
we evaluate the supersystem SCF error as the average of frag-
ment errors, each of which is defined as the root mean square
of the off-diagonal Fock matrix elements in the ALMO basis.
The dual SCF is considered to be converged when this error
is <10−8 a.u. The integral threshold is set to 10−14 a.u. for all
calculations reported here, and all SAPT calculations employ
Cartesian Gaussian basis functions.

To generate the CHELPG charges, we evaluate the elec-
trostatic potential on a cubic grid, with a grid spacing of 1.0
Å. We discard grid points that lie within the van der Waals
radius of any nucleus, using the van der Waals radii suggested
by Bondi.78, 79 The grid edges extend 3.0 Å from the nearest
atomic surface, as defined by these radii.

As we have not yet implemented the analytic gradient
for the XPS method, geometry optimizations are performed
using a three-point finite difference of the total energy, with
atomic displacements of 10−3 bohr. For calculations using
CHELPG charges,67 the number of grid points used to eval-
uate the electrostatic potential may change as the nuclei are
displaced. To avoid discontinuities in the potential energy sur-
face, we therefore use a modified CHELPG procedure based
upon a weighted least-squares fit to the electrostatic potential.
Details of this procedure can be found in the supplementary
material.68

In this report, we use the standard density functionals
B3LYP,80, 81 BOP,82 and PBE0.83–85 We also employ several
“long-range corrected” (LRC) functionals including LRC-
ωPBEh86, 87 and LRC-μBOP.88, 89 The LRC-μBOP functional
uses the Coulomb attenuation parameter μ = 0.47 bohr−1

recommended in Ref. 89, while the LRC-ωPBEh functional
uses the parameters recommended in Ref. 87 (ω = 0.2 bohr−1

and 20% short-range HF exchange).

IV. DIMER BENCHMARKS

In this section, we evaluate dimer binding energies pre-
dicted by the XPS method, in comparison to benchmark val-
ues. Cembran et al.65 note that the XPol method is not in-
tended to reproduce HF or DFT energies, but is instead in-
tended as an efficient way to obtain energies and forces for
simulations of macromolecules and liquids. Similarly, our
XPS method is not intended to reproduce any particular
model chemistry but rather to allow efficient, accurate, and
parameter-free simulations of molecular systems. As such, we
compare to dimer SAPT(0) results not with the expectation of

reproducing SAPT(0) binding energies exactly, but simply to
demonstrate that our procedure does not significantly degrade
the results of a method that is known to perform reasonably
well for dimer binding energies. We also compare to complete
basis set (CBS) extrapolations of binding energies computed
at the MP2 level, and at the coupled-cluster level with single,
double, and perturbative triple excitations [CCSD(T)].

The use of large basis sets is not consistent with our
goal of fast quantum chemistry, so for XPS we consider only
double-ζ and a few Pople-type triple-ζ basis sets. In a sense,
one may think of the basis set and point-charge embedding
scheme as parameters of the method.

A. S22 database

The S22 database of dimer binding energies was assem-
bled in Ref. 90, although we use the revised binding energies
from Ref. 91 in this work. The dataset contains 22 biologically
relevant molecular dimers, including seven hydrogen-bonded
dimers, eight dispersion-dominated complexes, and seven
complexes where both dispersion and hydrogen-bonding con-
tribute significantly to the binding energy. The benchmark
binding energies for these complexes range from ∼0.5–20.0
kcal/mol, and are estimates of CCSD(T)/CBS binding ener-
gies. (See Ref. 91 for details of the CBS extrapolation proce-
dure.)

We will compare SAPT(0) and SAPT(KS) binding en-
ergies with and without inclusion of the XPol procedure.
When XPol is used to obtain the zeroth-order wavefunction,
and the perturbation is therefore modified according to Eq.
(27), we will refer to these methods as XPS(0) and XPS(KS).
We have neglected the δEHF

int correction, as the need for
a counterpoise-corrected supersystem binding energy makes
this an unattractive option for large systems. We will use
the notation SAPT(PBE0)/6-31G*, for example, to indicate a
SAPT(KS) calculation using the PBE0 density functional and
the 6-31G* basis set, and the notation XPS(PBE0)/6-31G*
to denote the corresponding XPS(KS) method. For XPS cal-
culations, the additional symbol “resp” will be used to indi-
cate that we have replaced the second-order induction ampli-
tudes with amplitudes obtained from the solution of coupled-
perturbed HF or KS equations.51, 75

Table I shows errors for the SAPT(0), SAPT(KS),
XPS(0), and XPS(KS) methods, using Mulliken charges for
the XPS calculations. (Additional results, for a wider va-
riety of basis sets and density functionals, can be found
in the supplementary data.68) We note that XPS(0) gener-
ally outperforms XPS(KS), and among variants of the lat-
ter, the LRC functionals generally outperform their uncor-
rected counterparts. The XPS(0) procedure typically results in
slightly smaller errors than SAPT(0), but this is not always the
case. The inclusion of infinite-order induction (resp) univer-
sally improves the results when using XPS(0) and SAPT(0),
but sometimes degrades the results of SAPT(KS) calculations,
especially for the non-LRC functionals.

The fact that traditional generalized gradient approxi-
mations (GGAs), such as BOP, and global hybrid function-
als, such as B3LYP and PBE0, fare poorly in SAPT(KS)

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



094118-8 L. D. Jacobson and J. M. Herbert J. Chem. Phys. 134, 094118 (2011)

TABLE I. Mean absolute errors and (in parentheses) maximum absolute errors for the S22 database,
in kcal/mol. A variety of SAPT(X ) and XPS(X ) variants are considered; note that SAPT(HF) is equiv-
alent to the method that is traditionally called SAPT(0). All XPS methods use Mulliken charges for the
electrostatic embedding.

SCF method, X=

Method HF BOP PBE0 LRC-μBOP LRC-ωPBEh

SAPT(X )/6-31G* 0.79 (3.27) 2.02 (9.55) 1.52 (6.47) 1.56 (7.31) 1.45 (6.75)
SAPT(X )-resp/6-31G* 0.65 (2.48) 2.50 (9.21) 1.73 (6.50) 1.52 (7.33) 1.51 (7.36)
XPS(X )/6-31G* 0.56 (1.46) 2.00 (9.66) 1.33 (6.24) 1.10 (3.79) 0.99 (3.57)
XPS(X )-resp/6-31G* 0.90 (3.16) 1.87 (9.01) 1.28 (5.99) 0.80 (3.14) 0.82 (3.11)
SAPT(X )/cc-pVDZ 1.06 (4.45) 2.45 (9.58) 1.83 (6.27) 1.89 (8.30) 1.81 (7.76)
SAPT(X )-resp/cc-pVDZ 0.91 (3.72) 2.92 (9.41) 2.06 (7.46) 1.87 (8.34) 1.88 (8.37)
XPS(X )/cc-pVDZ 0.71 (1.94) 2.58 (10.11) 1.73 (6.81) 1.62 (5.93) 1.59 (5.83)
XPS(X )-resp/cc-pVDZ 0.50 (1.81) 2.52 (9.00) 1.66 (5.90) 1.38 (5.43) 1.42 (5.45)

calculations is well-documented.53, 54, 56–58 In particular,
SAPT(KS) has been shown to overestimate dispersion en-
ergies, owing to highest occupied/lowest unoccupied MO
(HOMO/LUMO) gaps that are too small.53 Figure 1 shows
the S22 database errors for SAPT(KS) and XPS(KS) methods
in more detail, and the same trend is evident among tradi-
tional (i.e., non-LRC) density functionals. LRC functionals,
however, widen the HOMO/LUMO gap,88 leading to larger
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FIG. 1. Binding energy errors (in kcal/mol) across the S22 database, as com-
puted at (a) the SAPT(X )/cc-pVDZ level and (b) the XPS(X )/cc-pVDZ level
(with Mulliken embedding charges), for a variety of different SCF methods,
X . A few difficult cases are highlighted in panel (b). Starting at the top and
moving clockwise around panel (b), these are formic acid dimer, an indole–
benzene π stack, and an adenine–thymine π stack.

energy denominators in Eq. (23), and therefore smaller disper-
sion energies. Although the LRC procedure appears to elim-
inate the strong overestimation of the dispersion energy, all
of the density functionals tend to underbind the hydrogen-
bonded complexes, often to a considerable extent.

The LRC correction scheme that is employed here dif-
fers from the asymptotic correction92, 93 (AC) that is typi-
cally used in SAPT(DFT) and SAPT(KS) calculations.54, 58

Although the traditional AC guarantees that the KS poten-
tial has the correct asymptotic behavior,92, 93 it has two ma-
jor drawbacks that, in our view, make it unappealing for XPS
calculations. First, construction of the AC requires an accurate
ionization potential as input, and second, the AC-KS potential
does not correspond to the functional derivative of any known
energy functional.92, 93 (In practice, the AC is applied to cor-
rect the asymptotic behavior of the potential, but the energy
functional is not modified.) These may not be serious prob-
lems for SAPT(KS) calculations, where the binding energy is
obtained directly and the total system energy is not needed.
However, in XPS some of the interaction energy is wrapped
up in the zeroth-order XPol energy. We aim to use this method
as an efficient way to perform ab initio molecular dynamics
simulations in clusters and condensed-phase systems, where
the total supersystem energy is obviously an important and
meaningful quantity. That said, in the context of SAPT(KS)
or SAPT(DFT) calculations, it is unclear to us whether the
use of LRC functionals is superior to the AC procedure.

Looking carefully at the errors listed in Table I, it may
seem strange that the SAPT(0) and XPS(0) approaches are not
equivalent for hydrogen-bonded complexes when the infinite-
order induction correction is applied. In fact, XPS(0) outper-
forms SAPT(0) in many of these cases. This is because the
response correction is an infinite-order (nonperturbative) cor-
rection for induction in the presence of a frozen partner den-
sity, whereas XPS treats polarization self-consistently, if not
exactly. This means that the XPS procedure attempts to in-
clude higher order induction effects into the zeroth-order en-
ergy. In SAPT(0) calculations, such terms are typically incor-
porated by means of the δEHF

int correction, which is omitted
here.

Although these initial tests of XPS appear promising, we
are generally unable to converge the XPol procedure when
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TABLE II. Mean absolute errors and (in parentheses) maximum absolute errors for the S22 database, in kcal/mol. A variety of XPS(X ) variants are considered,
using either Löwdin or CHELPG embedding charges. For several of the basis sets, the corresponding response (resp) result is also listed. The primed and
projected (“proj”) basis sets are defined in the text (Sec. IV B). MP2 results, with and without counterpoise correction, are also listed for comparison.

XPS-Löwdin XPS-CHELPG

Basis HF LRC-μBOP LRC-ωPBEh HF LRC-μBOP LRC-ωPBEh MP2 MP2 (counterpoise)

6-31G* 0.73 (2.31) 0.91 (3.91) 0.93 (3.86) 0.87 (2.47) 0.87 (3.56) 0.90 (3.53) 1.44 (3.34) 2.09 (4.47)
6-31G*, resp 0.75 (2.40) 0.90 (3.88) 0.93 (3.88) 0.87 (2.55) 0.87 (3.54) 0.91 (3.55) ... ...
6-311G* 0.57 (2.76) 1.20 (6.52) 1.38 (6.92) 0.56 (2.32) 1.21 (6.20) 1.40 (6.67) 1.54 (4.86) 1.82 (5.81)
6-311G*, resp 0.54 (2.55) 1.18 (6.41) 1.37 (6.88) 0.54 (2.18) 1.20 (6.15) 1.40 (6.65) ... ...
cc-pVDZ 0.55 (2.04) 1.46 (6.39) 1.48 (6.30) 0.39 (1.12) 1.35 (5.72) 1.39 (5.68) 1.68 (4.75) 1.98 (4.73)
cc-pVDZ, resp 0.51 (1.75) 1.44 (6.26) 1.47 (6.27) 0.38 (1.02) 1.35 (5.70) 1.39 (5.69) ... ...
aug-cc-pVDZ 1.52 (4.48) 2.46 (10.24) 2.71 (9.63) 1.26 (3.38) 2.21 (8.43) 2.49 (7.91) 3.15 (11.15) 1.00 (2.80)
aug-cc-pVDZ, resp 1.40 (3.80) 2.39 (9.91) 2.67 (9.52) 1.25 (3.39) 2.23 (8.40) 2.49 (7.91) ... ...
aug-cc-pVDZ′ ... ... ... 1.31 (3.86) ... ... 1.76 (2.64) 1.02 (2.96)
aug-cc-pVDZ-proj ... ... ... 1.31 (4.42) 1.66 (4.36) 2.05 (6.51) ... ...
aug-cc-pVDZ′-proj ... ... ... 0.75 (3.38) ... ... ... ...

Mulliken embedding charges are used in conjunction with dif-
fuse basis functions. This is perhaps not entirely surprising,
given the well-known instability of Mulliken charges with
respect to basis-set expansion. (In their work on XPol, Xie
et al.25–28 use Mulliken charges exclusively, but have only re-
ported calculations in small basis sets.) For small, compact
basis sets, we find that Mulliken, Löwdin, and CHELPG em-
bedding charges all perform similarly, and henceforth we dis-
continue the use of Mulliken charges in favor of these other
two charge schemes.

Having demonstrated that the LRC functionals are su-
perior to traditional GGAs and global hybrid functionals for
use with XPS, all remaining calculations focus on HF, LRC-
μBOP, and LRC-ωPBEh. Table II displays XPS statistical er-
rors, evaluated over the S22 database, for a larger range of
basis sets and charge schemes. (Results for some additional
basis sets can be found in the supplementary material.68) Also
listed in Table II are statistical errors for binding energies
computed using standard supersystem MP2 calculations, both
with and without counterpoise correction.

The XPS methods are generally more accurate than
MP2 in the smaller basis sets, whereas counterpoise-corrected
MP2/aug-cc-pVDZ and MP2/aug-cc-pVDZ′ results both ex-
hibit mean errors of 1.0 kcal/mol, versus a mean error of
1.3 kcal/mol for XPS(0)-CHELPG calculations in the same
basis sets. For the MP2 calculations, however, counterpoise
correction is essential in order to obtain errors this low,
whereas this correction is unnecessary in XPS calculations.
This represents a significant advantage in the context of larger
clusters.

As in the case of Mulliken embedding charges, XPS(0)
outperforms XPS(KS) for the S22 database. Oddly, inclusion
of diffuse basis functions slightly degrades the performance
of XPS(0) results but greatly degrades XPS(KS) results. The
compact basis sets perform quite well, and the smallest er-
rors are obtained using the cc-pVDZ basis set, CHELPG
charges, and HF orbitals. This combination affords a mean
unsigned error of only 0.4 kcal/mol and a maximum error of
1.0 kcal/mol. It is interesting to note that the infinite-order

induction correction has very little effect on the errors when
CHELPG embedding charges are used. We take this as an in-
dication that these charges better reproduce the electrostatic
potential outside of the molecular core, which is precisely
what CHELPG charges are designed to do.

The large errors observed at the XPS(KS) level, partic-
ularly where diffuse basis sets are employed, result from an
underestimation of the binding energies in strongly H-bonded
complexes. (The S22 dataset contains five H-bonded com-
plexes whose binding energies exceed 15 kcal/mol in mag-
nitude.) In particular, the XPS binding energy of formic acid
dimer is almost always underestimated, and often this species
affords the largest error. This was also observed by Hohen-
stein and Sherrill,94 in both SAPT(0) calculations as well as
SAPT calculations that include intramonomer electron corre-
lation. These authors suggest that it is “imperative” to include
the δEHF

int correction for H-bonded complexes. However, it ap-
pears that the XPol procedure recovers some of the higher or-
der induction effects that the δEHF

int correction is intended to
incorporate. In fact, the errors reported here are competitive
with those reported in Ref. 94, where intramonomer electron
correlation was included and the aug-cc-pVDZ DCBS was
used.

Hohenstein and Sherrill94 report that intramonomer cor-
relation is especially important in the formic acid dimer. It is
therefore curious that the XPS(KS) errors are much larger for
this species than are the XPS(0) errors, given that XPS(KS)
includes some intramolecular electron correlation whereas
XPS(0) does not. Where does XPS(KS) go wrong? Rephras-
ing this question: if we assume that XPS(0) is doing some-
thing right, then what is so different about XPS(KS)?

To answer this question, we define the total Coulomb and
exchange energies for the A · · · B dimer according to

ECoul = E AB
0 + E (1)

elst + E (2)
ind − E A

0 − E B
0 (32)

and

Eexch = E (1)
exch + E (2)

exch-ind, (33)
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FIG. 2. Comparison of (a) the total Coulomb and (b) the total exchange in-
teraction energies computed at the XPS(0) and XPS(KS) levels, for the S22
database. CHELPG charges are used in each case. The insets present the data
for the five strongly H-bonded complexes whose binding energies exceed 15
kcal/mol.

respectively, where E AB
0 , E A

0 , and E B
0 are the zeroth-order en-

ergies of the dimer and the two monomers. Figure 2 shows
that the XPS(0) and XPS(KS) methods predict nearly iden-
tical Coulomb energies, but that the XPS(KS) methods pre-
dict much larger exchange energies, especially for dimers that
exhibit strong hydrogen bonding. The net result is a less fa-
vorable cancellation of errors, and therefore an underestima-
tion of the binding energies, when XPS(KS) methods are ap-
plied to these complexes. As the quality of the basis set in-
creases, we expect the total electrostatic energy to become
more negative while the exchange energy will become more
positive (since an increasingly diffuse basis set will allow the
monomer wavefunctions to overlap to a larger extent). When
HF orbitals are used, errors in the Coulomb and exchange
energies due to basis incompleteness must cancel, approxi-
mately, as relatively accurate binding energies are obtained.
This is not the case when KS orbitals are used. It is tempt-
ing to attribute this to the well-known “delocalization error”
in DFT,95 which might exaggerate the degree of overlap and
therefore the exchange energy. This artifact would tend to
cancel out in SAPT(DFT) calculations, if the δEHF

int correc-
tion were used. For this reason, it may come as no surprise
that the HF variant of XPS outperforms KS variants.
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FIG. 3. Binding energy curves for the parallel-displaced benzene dimer,
computed at the XPS(0) level using CHELPG charges. CCSD(T)/CBS bench-
marks are taken from Ref. 96.

B. Potential energy curves

The results of Sec. IV A demonstrate that XPS(0) calcu-
lations, with a suitable choice of basis set and point-charge
embedding scheme, can approach the accuracy of complete-
basis CCSD(T) benchmarks for the S22 database of dimers.
The best results are obtained using the cc-pVDZ basis set,
which is far from complete, hence our method must bene-
fit from some cancellation of errors. It is important to un-
derstand whether that cancellation is robust across potential
energy surfaces. In this section, we examine some potential
energy curves for (H2O)2 and (C6H6)2. The benzene dimer
was selected because it is a stringent test of the accuracy of
dispersion interactions, and because CCSD(T)/CBS potential
energy curves are available.96 The water dimer was chosen be-
cause in Sec. V we will examine the performance of XPS(0)
for binding energies in larger water clusters.

Figure 3 shows binding energy curves for the “parallel-
displaced” benzene dimer at three different values of R1,
the distance between the two C6H6 planes. For nonpolar
molecules, Löwdin and CHELPG charges produce nearly
identical results, so only the latter are used here. We observe
that 6-311G*, cc-pVDZ, and aug-cc-pVDZ qualitatively cap-
ture the profile of the binding energy curves (Fig. 3), but the
3-21G* and 6-31G* basis sets do not (see the supplementary
material68). The latter basis sets exhibit too small of a barrier
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FIG. 4. Binding energy curves for (a) the T-shaped and (b) the sandwich
isomer of the benzene dimer. Benchmark CCSD(T)/CBS values are taken
from Ref. 96. The distance coordinate in both panels is the center-to-center
distance between the benzene rings.

at R2 = 0. In our view, the cc-pVDZ and 6-311G* basis sets
exhibit acceptable errors (∼1 kcal/mol).

The largest basis set that we examine, aug-cc-pVDZ,
overbinds the benzene dimer, which is not surprising given
that XPS employs an MP2-like dispersion formula, and the
MP2 method is known to overestimate the interaction en-
ergy of dispersion-bound complexes.96 The dispersion en-
ergy in SAPT(0) generally increases as the size of the ba-
sis increases,76 leading to a fortuitous cancellation of errors
in small- to medium-sized basis sets, particularly ones that
lack diffuse basis functions. For MP2-like methods, Hohen-
stein and Sherrill94, 97 recommend a modified form of aug-cc-
pVDZ that they call aug-cc-pVDZ′, wherein the diffuse func-
tions on hydrogen atoms are removed along with the diffuse d
functions on the carbon atoms. For the parallel-displaced ben-
zene dimer, we find that this basis leads to a remarkably good
cancellation of errors, such that for R1 = 3.6 Å the XPS(0)
curve is indistinguishable from the benchmark.

A comparison of the potential energy curves for the three
different values of R1 shown in Fig. 3 suggests that the XPS
exchange repulsion energy decays too rapidly with respect to
monomer separation. This is more obvious in the case of the
“T-shaped” and “sandwich” isomers of (C6H6)2, potential en-
ergy curves for which are shown in Fig. 4. The aug-cc-pVDZ
basis substantially overbinds these isomers at their minimum-
energy geometries, although the cc-pVDZ and 6-311G*

C2Ci

C2v Cs

FIG. 5. (H2O)2 structures consider in this work.

basis sets perform fairly well, affording errors of the order
of ∼1 kcal/mol at the minimum. The aug-cc-pVDZ′ basis set
performs extremely well for the sandwich dimer but slightly
worse for the T-shaped dimer. For the sandwich configuration
all of the basis sets afford a minimum at shorter separations
than the benchmark result, except for aug-cc-pVDZ′, where
the entire potential curve is quite accurate. With the exception
of XPS(0)/aug-cc-pVDZ′, all of the XPS(0) methods perform
better for the T-shaped isomer than they do for the sandwich
conformation, which probably results from underestimating
the induction interactions while simultaneously overestimat-
ing the dispersion energy.

To explore the (H2O)2 potential surface, we follow Burn-
ham and Xantheas98 in examining four different (H2O)2 iso-
mers with distinct point-group symmetries. These are pictured
in Fig. 5. We investigate minimum energy paths (MEPs) along
the oxygen–oxygen distance coordinate, relaxing the other
degrees of freedom subject to the constraint that point-group
symmetry is maintained. To obtain benchmark MEPs, we op-
timized the geometries at the MP2/aug-cc-pVTZ level and
then used counterpoise-corrected MP2/aug-cc-pVXZ calcu-
lations (X = D, T, Q) to estimate the MP2/CBS binding en-
ergy. The HF energy was extrapolated using the three-point
ansatz

E(X ) = E(∞) + ae−bX , (34)

where a and b are fitting parameters.99 The correlation energy
was extrapolated using a two-point formula (X = T, Q),

E(∞) = E(X ) + cX−3, (35)

where c is a fitting parameter.100

Figure 6 compares these MP2/CBS benchmark MEPs to
XPS(0)-CHELPG results, using a variety of basis sets. The
salient features of the MP2 benchmarks that we would like to
capture with XPS are

(i) the global minimum along the Cs curve at RO−O

≈ 2.9 Å;
(ii) a C2v curve with a minimum at the same value of

RO−O but higher in energy by ≈2 kcal/mol;
(iii) C2 and Ci curves having minima at RO−O ≈ 2.75 Å

located about 1 kcal/mol above the Cs minimum; and
(iv) C2 and Ci curves that coalesce at RO−O ≈ 2.5 Å,

which results from a collapse to C2h symmetry.98

Panels (b)–(e) of Fig. 6 show that it is relatively easy to
obtain features (i), (iii), and (iv), even if the binding ener-
gies are not in agreement with the benchmark values. How-
ever, feature (ii) is reproduced only if we use an augmented
basis set. With the aug-cc-pVDZ basis, the XPS(0) method
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FIG. 6. Binding energy curves for the symmetry-distinct (H2O)2 isomers shown in Fig. 5: (a) MP2/CBS benchmarks and (b)–(f) XPS(0) results using a variety
of basis sets. Löwdin and CHELPG embedding charges afford essentially identical potential curves, so only the latter are shown.

reproduces the relative energetics of the four MEPs quite well
but the curves are slightly (≈0.5 kcal/mol) underbound at the
Cs minimum, which is pushed out to about 3.0 Å. While the
0.5 kcal/mol underbinding represents only about a 10% error
at the minimum, this will add up to fairly significant errors
when applied to large water clusters.

Our XPS calculations use the MCBS, in which the MOs
of fragment A are expanded in terms of only those AOs that
are centered on atoms in fragment A. For this reason, one
could argue that we have neglected charge-transfer interac-
tions. (However, some charge-transfer-like interaction must
certainly be present, since the basis functions on fragment A
do extend over fragment B.) It would be useful to have a basis
that mimics the DCBS that is often used in SAPT calculations
for dimers,76 but it is not clear how to generalize this idea to
the case of more than two fragments.

As an alternative, we have utilized what we call the pro-
jected (proj) basis set, borrowing an idea from dual-basis MP2
calculations.41, 101 We first solve the XPol SCF equations and
then, for a particular pairwise SAPT(0) correction, we con-
struct the XPol Fock matrices for fragments A and B in the
dimer (A + B) basis set. We then separately diagonalize the
occupied–occupied and virtual–virtual blocks of these ma-
trices, which is sometimes called “pseudocanonicalization”.
This procedure leaves the fragment densities and zeroth-order
fragment energies unchanged, but provides a larger set of vir-
tual orbitals that extend over the partner fragment. We use
this larger virtual space to perform the perturbative correc-
tion. Because the occupied–virtual block of the Fock ma-
trix is nonzero, the pseudocanonical MOs are not rigorous
eigenfunctions of the fragment Fock matrices. In principle,
we could include a perturbative correction to the zeroth-order
energies, of the form

∑
ar F A

ar/(εa − εr ) for fragment A. (In
the context of MP2-like methods, this is sometimes called the

“non-Brillouin singles” term.19) We decline to do so, however,
as this would have the effect of reintroducing BSSE. Instead,
our aim is to enlarge the virtual space in a manner that can
account for interfragment charge transfer.

As compared to SAPT(0) calculations performed with
the DCBS, we find that the use of this “projected” basis
set (aug-cc-pVDZ-proj) results in about a 10% error in the
(H2O)2 binding energy. However, most of this error is con-
tained in the E (1)

exch correction, and the components involving
virtual orbitals carry an error of <1%. Therefore, if the aim
is to increase the virtual space without changing the zeroth-
order density, then this is a successful strategy. If the first-
order corrections are converged in the MCBS, then this pro-
cedure should incur very little additional error.

XPS(0) binding energy curves for (H2O)2, using the pro-
jected basis, are shown in Fig. 6(f). They are qualitatively
similar to those in the aug-cc-pVDZ basis but now the bind-
ing energies are in a good agreement with MP2/CBS results.
Interestingly, if we take the difference in the binding ener-
gies computed in the aug-cc-pVDZ MCBS and in the cor-
responding projected basis set as an estimate of the charge-
transfer interaction energy, then charge transfer accounts for
only about 10% of the (H2O)2 interaction energy, a figure
that is substantially smaller than that estimated by energy de-
composition analysis in the ALMO basis.102 In Ref. 102, it
was also reported that the charge-transfer component of the
interaction energy is significantly larger when DFT is used
to compute the ALMOs. In the context of the present work,
this observation may indicate that the strong underbinding of
hydrogen-bound complexes by XPS(KS) may be an artifact
of the use of the MCBS. Use of the projected basis signif-
icantly decreases the XPS(KS) errors for the S22 database
(see Table II). We plan to explore this issue further in future
work.
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V. WATER CLUSTERS

We have demonstrated that our method does not degrade
the results of SAPT(0) for the S22 database, and furthermore
that we can describe binding energy curves of benzene dimer
with reasonable accuracy, and those of water dimer with high
accuracy. Our ultimate goal, however, is application to larger
clusters and molecular liquids. In this section, we evaluate the
binding energies predicted by our method for a set of water
clusters, in order to determine whether many-body effects are
accurately reproduced by XPS.

We have assembled a database of 19 (H2O)n isomers
ranging from n = 2 to n = 20. Structures and benchmark
binding energies for these clusters are taken from the work
of Xantheas and co-workers.103–108 The dataset includes
MP2/CBS binding energies for the dimer; the cyclic trimer,
tetramer, and pentamer; the ring, book, cage, and prism iso-
mers of the hexamer; and the S4 and D2d isomers of the
octamer. In addition, it includes binding energies for five
different (H2O)11 isomers, computed at the MP2/aug-cc-
pVQZ//MP2/aug-cc-pVTZ level. (Following Ref. 107, these
isomers are labeled 43′4, 44′3′, 515, 551, and 44′12.) Fi-
nally, we include MP2/CBS binding energies for four (H2O)20

isomers,106 one from each of the four families of low-lying
minima (dodecahedron, fused cubes, face-sharing pentagonal
prisms, and edge-sharing pentagonal prisms) exhibited by the
20-mer. Binding energies for all of the benchmarks are com-
puted relative to relaxed monomers.

In larger clusters, a meaningful comparison of binding
energies between different levels of theory should employ ge-
ometries that are optimized, separately, at either level of the-
ory. For XPS calculations, geometries were optimized using
a three-point finite-difference algorithm in Cartesian coordi-
nates, and were considered to be converged when the change
in energy dropped below 10−6 hartree. This procedure is quite
demanding, computationally, and for the (H2O)20 clusters
with the larger basis sets (aug-cc-pVDZ and aug-cc-pVDZ-
proj), it was necessary to reduce the convergence threshold
to 10−4 hartree. Tighter optimization would necessarily in-
crease the binding energies, which (as will become clear in
what follows) would improve the agreement between XPS re-
sults and benchmark binding energies. However, we expect
that the binding energies would increase by not more than a
few kcal/mol, for clusters whose binding energies are ∼200
kcal/mol. As such, we believe that these (H2O)20 tests are still
meaningful.

Figure 7(a) shows the correlation between the XPS(0)
and the benchmark binding energies. In general, the basis
sets that were overbinding for (H2O)2 are also overbinding in
larger clusters. In addition, Löwdin embedding tends to afford
lower binding energies than CHELPG embedding, indicating
that the Löwdin charge scheme underestimates the dipole mo-
ments of the H2O monomers. As was the case for the S22
benchmarks, the cc-pVDZ basis set affords a superb cancella-
tion of errors and yields results in a good agreement with the
benchmark values.

Figure 7(b) plots the binding energy errors per hydro-
gen bond as a function of the number of hydrogen bonds. In
all cases, this error grows rapidly from one to five hydrogen
bonds, but beyond this it is nearly a constant with respect to
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FIG. 7. (a) Correlation between XPS(0) binding energies and MP2 bench-
marks. (b) XPS(0) error per hydrogen bond, as a function of the number of
hydrogen bonds.

the number of hydrogen bonds. We interpret this as evidence
that XPS(0) recovers a constant fraction of the many-body in-
teraction energy in large water clusters.

Binding energies computed at the XPS(0)-CHELPG
level, as well as percentage errors relative to MP2 bench-
marks, are listed in Table III. The best results are obtained
using the cc-pVDZ and aug-cc-pVDZ-proj basis sets. The cc-
pVDZ, aug-cc-pVDZ, and aug-cc-pVDZ-proj basis sets all re-
produce the correct energetic ordering of the (H2O)6 isomers,
even though the error in the binding energy is greater than the
energetic difference between these isomers. The same is not
true for the octamers and endecamers, although the energy
differences among these isomers amount to only about 1% of
the total binding energies. It is difficult to compare the relative
energies of the (H2O)20 isomers since our geometries are not
fully relaxed, but in all cases the dodecahedron is correctly
identified as the highest energy isomer.

As can be seen in Table III, the water dimer is overbound
by 14% using the cc-pVDZ basis while the larger water clus-
ters are overbound by ∼2%. In contrast, the aug-cc-pVDZ-
proj basis accurately reproduces the dimer binding energy
but underestimates the (H2O)20 binding energies by about
10%. Using the aug-cc-pVDZ basis set, the error grows from
8% at n = 2 to 20% at n = 20. We interpret these findings
as an indication that, for a fixed pairwise error, our method
recovers ∼90% of the interaction energy when used with

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



094118-14 L. D. Jacobson and J. M. Herbert J. Chem. Phys. 134, 094118 (2011)

TABLE III. Negative binding energies for (H2O)n cluster isomers, in kcal/mol. Percent errors in the XPS bind-
ing energies, relative to the benchmarks, are listed in parentheses.

XPS(0)-CHELPG

n Isomer 6-311G* cc-pVDZ aug-cc-pVDZ aug-cc-pVDZ-proj Benchmark

2 6.9 (39.4) 5.6 (13.7) 4.6 (7.8) 5.1 (2.5) 4.97
3 20.2 (27.6) 16.6 (5.3) 14.0 (11.7) 15.6 (1.6) 15.82
4 34.8 (25.8) 28.4 (2.7) 23.5 (14.9) 26.5 (4.1) 27.63
5 46.5 (28.1) 37.7 (3.8) 31.0 (14.7) 34.9 (3.9) 36.31
6 Book 57.9 (27.0) 47.6 (4.4) 38.8 (15.0) 43.8 (4.0) 45.61
6 Cage 58.0 (26.7) 48.4 (5.8) 38.8 (15.2) 43.8 (4.2) 45.79
6 Cyclic 58.1 (29.6) 47.0 (4.7) 38.4 (14.3) 43.2 (3.7) 44.86
6 Prism 59.4 (29.4) 50.4 (9.8) 39.3 (14.2) 44.5 (3.1) 45.86
8 D2d 90.1 (23.6) 75.5 (3.5) 60.5 (17.0) 68.6 (5.9) 72.88
8 S4 90.0 (23.6) 75.4 (3.5) 60.6 (16.8) 68.7 (5.6) 72.83
11 43′4 126.8 (20.6) 105.8 (0.6) 84.8 (19.4) 96.2 (8.5) 105.16
11 44′3′ 128.0 (22.2) 107.1 (2.2) 85.3 (18.6) 96.6 (7.8) 104.76
11 515 127.4 (21.2) 106.1 (1.0) 85.4 (18.8) 96.7 (8.0) 105.09
11 551 128.0 (22.0) 106.4 (1.4) 85.5 (18.5) 96.8 (7.8) 104.95
11 44′12 127.2 (22.4) 106.0 (2.0) 85.0 (18.3) 96.2 (7.5) 103.97
20 Dodecahedron 247.0 (23.4) 205.0 (2.5) 165.5 (17.3) 184.6 (7.7) 200.10
20 Edge-sharing 261.8 (20.1) 220.3 (1.1) 174.3 (20.0) 194.9 (10.6) 217.90
20 Face-sharing 259.4 (20.6) 219.1 (1.9) 172.2 (19.9) 192.9 (10.3) 215.00
20 Fused cubes 259.7 (22.1) 220.4 (3.6) 172.2 (19.0) 192.8 (9.3) 212.60

CHELPG embedding charges. A smaller fraction of the inter-
action energy is recovered using Löwdin charges, as shown in
Table IV, and by a similar argument we conclude that the
XPS(0)-Löwdin method recovers ∼80% of the interaction en-
ergy. By performing single-point energy calculations on the
(H2O)20 isomers at the optimized XPS(0)-CHELPG geome-
tries, we find that traditional pairwise SAPT(0) in the aug-cc-
pVDZ-proj basis recovers ∼70% of the binding energy. This
indicates that roughly 30% of the binding energy in these clus-
ters comes from many-body effects, and we recover about 2/3
of this using XPS(0) with CHELPG embedding charges.

VI. COMPUTATIONAL EXPENSE

We intend XPS as a method for large systems, so let us
comment on its computational scaling. The first step in an
XPS calculation, solving the XPol SCF equations, scales lin-
early with Nfrag, assuming that construction and diagonaliza-
tion of the fragment Fock matrices is much more demand-
ing than formation of the one-electron integrals needed to
compute the electrostatic interactions between the fragment
densities and the embedding charges. (Even the latter step
can ultimately be made to scale linearly by exploiting fast-
multipole techniques.3) Increasing the size of the basis set

formally scales as O(N 4
basis) for Fock matrix construction and

O(N 3
basis) for diagonalization.
In the second step of XPS, we perform Nfrag(Nfrag − 1)/2

independent, pairwise SAPT(0) corrections, so this step scales
as O(N 2

frag) and dominates the total cost in our present, se-
rial implementation. Figure 8 shows actual timings for water
clusters, as compared to timings for supersystem HF and MP2
calculations. Already in its present implementation, XPS can
be scaled up to quite large water clusters.

Each pairwise correction in SAPT(0) and XPS(0) re-
quires integrals of the form (aX |bY ), where a ∈ A and b ∈ B
are occupied MOs, whereas X and Y range over all occupied
and virtual MOs on both fragments. We compute these in-
tegrals by first computing all N 4

basis AO integrals (μν|λσ ),
which represents some unnecessary overhead in the MCBS.
The AO integrals are transformed in four steps that scale
as O(N A

o N 4
basis), O(N A

o N B
o N 3

basis), O(N A
o N B

o N AB
M O N 2

basis), and
O[N A

o N B
o (N AB

M O )2 Nbasis], where N A
o is the number of occu-

pied MOs on fragment A and N AB
MO is the total number of MOs

(occupied + virtual) on fragments A and B. The most time-
consuming contraction step in the SAPT(0) correction is the
accumulation of E (2)

exch-disp, the bottleneck of which scales as
O[(N A

o )2 N B
o N A

v N B
v ], where N A

v is the number of virtual MOs

TABLE IV. Negative binding energies for (H2O)20 clusters, in kcal/mol. Percent errors in the XPS binding energies, relative to the
benchmarks, are listed in parentheses.

XPS(0)-Löwdin XPS(0)-CHELPG

Isomer cc-pVDZ aug-cc-pVDZ-proj cc-pVDZ aug-cc-pVDZ-proj Benchmark

Dodecahedron 184.2 (7.9) 154.3 (22.9) 220.4 (3.6) 184.6 (7.7) 200.10
Edge-sharing 198.1 (9.1) 164.2 (24.7) 220.3 (1.1) 192.8 (9.3) 217.90
Face-sharing 197.8 (8.0) 160.7 (25.3) 219.1 (1.9) 192.9 (10.3) 215.00
Fused cubes 199.8 (6.0) 164.0 (22.9) 220.4 (3.6) 192.8 (9.3) 212.60
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associated with fragment A. [As such, the scaling of this step
is usually reported as O(o3v2).56, 58, 97] We find that the inte-
gral transformation is at least one order of magnitude more
expensive than the contractions.

In practice, the SAPT(0) corrections that we use in XPS
exhibit a scaling similar to that of dimer MP2 calculations,
with respect to either the size of the fragments or the size
of the basis set. Stand-alone dimer SAPT(0) calculations are
in general less expensive than supersystem MP2 calculations,
since the occupied and virtual spaces in SAPT(0) are par-
titioned into components from fragments A and B, lead-
ing to an overall computational expense of O(N A

o N 4
basis) for

SAPT(0) versus O[(N A
o + N B

o )N 4
basis] for MP2.97

The exchange interactions in SAPT(0) decay rapidly as a
function of interfragment distance, which could be exploited
to reduce the cost of large XPS calculations by introducing
cutoff schemes, such that the exchange corrections are eval-
uated only for nearby fragments. Thresholds could also be
used to avoid accumulating dispersion and induction correc-
tions for distant pairs. At very long range, the electrostatic
interactions included at the XPol level may be sufficiently ac-
curate to avoid computing E (1)

elst altogether. Parallelization of
the Nfrag(Nfrag − 1)/2 independent SAPT(0) corrections is an-
other obvious way to reduce the cost. We plan to explore such
cost-reduction techniques in the future.

VII. SUMMARY AND OUTLOOK

We have introduced a new quantum chemistry method
for studying intermolecular interactions, which we call
XPol/SAPT, or XPS. This method incorporates electronic
induction, intermolecular electrostatic interactions, and in-
tramolecular interactions at the SCF level, using a charge
embedding scheme whose computational cost grows lin-
early with the number of monomers. Dispersion, exchange-
repulsion, and intermolecular charge-transfer effects, along
with corrections to the electrostatic charge embedding, are in-

troduced by means of a pairwise, perturbative post-SCF cor-
rection. The monomers are allowed to be fully flexible.

In developing this method, our intention was to re-
place the need for Lennard-Jones parameters in the XPol
procedure,26 while preserving the favorable scaling of that
method with respect to system size. We have demonstrated
that the XPS method does not degrade, and in many cases im-
proves upon, the results of traditional SAPT(0) calculations
for molecular dimers. Given an appropriate choice of basis set
and electrostatic embedding, XPS recovers ∼90% of the bind-
ing energy of large water clusters, as compared to MP2/CBS
benchmarks, whereas traditional pairwise SAPT(0) recovers
∼70%. In our present implementation, the cost of the post-
XPol corrections scales quadratically with the number of
monomers. The computational cost is already quite low for
large clusters, if the monomers are small, and can ultimately
be made to scale linearly with the number of monomers,
by introducing appropriate distance-dependent cutoffs. Work
along these lines, including an implementation using periodic
boundary conditions, is currently in progress.

While the XPS method is promising with respect to
both accuracy and efficiency, many future improvements
must be explored. The poor scaling [O(N 5)] of the SAPT
corrections with respect to fragment size can be im-
proved by using density-fitting techniques that have previ-
ously been introduced in the context of traditional SAPT
calculations.56, 58, 94, 97 A method for fragmenting the system
across covalent bonds, such as that used in the original XPol
method25, 28 or in the fragment MO method,29–31 will be
needed in order to handle large monomers. These develop-
ments are currently being explored in our group.

The XPS method is systematically improvable, which
may help to further improve the accuracy. In particular, a more
rigorous formulation of the method—which goes beyond the
pairwise approximation—is possible, as outlined in Sec. II D,
and work along these lines is in progress. It may also be pos-
sible to incorporate Casimir–Polder-type dispersion formulas,
as currently used in SAPT(DFT),56, 58 in order to obtain bet-
ter results when DFT is used to describe the monomers. At
present, XPS results using KS orbitals are notably inferior to
those obtained using HF orbitals.
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