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We propose a Debye-Hückel-like screening model (DESMO) that generalizes the familiar conductor-
like screening model (COSMO) to solvents with non-zero ionic strength and furthermore provides
a numerical generalization of the Debye-Hückel model that is applicable to non-spherical solute
cavities. The numerical implementation of DESMO is based upon the switching/Gaussian (SWIG)
method for smooth cavity discretization, which we have recently introduced in the context of polar-
izable continuum models (PCMs). This approach guarantees that the potential energy is a smooth
function of the solute geometry and analytic gradients for DESMO are reported here. The SWIG
formalism also facilitates analytic implementation of two other PCMs that are based on a screened
Coulomb potential: the “integral equation formalism” (IEF-PCM) and the “surface and simulation of
volume polarization for electrostatics” [SS(V)PE] method. Fully analytic implementations of these
screened PCMs are reported here for the first time. Numerical results, for model systems where
an exact solution of the linearized Poisson-Boltzmann equation is available, demonstrate that these
screened PCMs are highly accurate. In realistic test cases, they are as accurate as the best avail-
able three-dimensional finite-difference methods. In polar solvents, DESMO is nearly as accurate as
more sophisticated screened PCMs, but is significantly simpler and more efficient. © 2011 American
Institute of Physics. [doi:10.1063/1.3592372]

I. INTRODUCTION

Implicit solvent models play an important role in
both biomolecular simulations1–14 and quantum chemistry
calculations.15–20 These models dramatically enhance confor-
mational sampling and also reduce the complexity of free
energy calculations, as compared to simulations using ex-
plicit, atomistic representations of the solvent. A wide va-
riety of implicit solvent models have been introduced over
the years, ranging from microscopic to semi-microscopic to
macroscopic7, 21, 22 and varying widely in their level of so-
phistication. The merits of—and problems associated with—
many of these approaches have been discussed in recent
reviews.4–13, 17, 19 The present work introduces a new implicit
solvent model for electrolyte solutions that allows for varia-
tion of the solute geometry and provides smooth forces for
molecular dynamics simulations, for arbitrary cavity shapes.

Specifically, we focus on solution of the classical elec-
trostatic continuum problem (Poisson’s equation) modified
by the presence of a thermal distribution of mobile ions.
The electrostatic interaction between two different dielectrics,
or the interaction between a dielectric continuum and an
atomistic region, is then described by the Poisson-Boltzmann
equation.6, 8, 9 Truncating Boltzmann factors at first order, one
obtains the linearized Poisson-Boltzmann equation (LPBE),23

(∇̂2 − κ2)U (�r ) = 0 , (1.1)

which is also known as the Debye-Hückel equation. The quan-
tity U (�r ) represents the electrostatic potential. Within the
LPBE, the solvent is characterized by a dielectric constant
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(relative permittivity), ε, and a Debye length λ = κ−1, where

κ = 1

λ
=

(
8πe2J

εkB T

)1/2

. (1.2)

The quantity λ characterizes the length scale on which the
mobile ions screen the Coulomb potential. This length scale
depends upon the ionic strength of the solution,

J = 1

2

∑
i

z2
i ci . (1.3)

The sum in this equation ranges over dissolved ionic species
with concentrations ci and dimensionless charge numbers zi .

Equation (1.1) forms the basis of the electrostatic solva-
tion effects that we wish to describe. We consider an atom-
istic representation of the solute molecule(s) and a contin-
uum description of the solvent, the latter parameterized by
ε and κ . In the present work, the solute is described by a
set of point charges located at atomic sites, although in prin-
ciple a more sophisticated description (such as the protein
dipoles/Langevin dipoles of Warshel and co-workers,21, 24, 25

a polarizable force field,26 or a quantum-mechanical charge
distribution) could be used to describe the solute. A “solute
cavity,” constructed from atom-centered spheres, will repre-
sent the interface between these two regions. Because we em-
ploy an atomistic description of the matter inside the cavity,
we set ε = 1 in this region.

An analytical solution of the LPBE [Eq. (1.1)] is avail-
able in the case of disjoint spherical cavities with no escaped
charge.27 (This analytical solution forms the basis of a new
semi-analytical model for arbitrary cavity shapes.14) More
often, however, the LPBE or its nonlinear precursor has been
solved numerically,28–36 but unfortunately these numerical
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approaches are vulnerable to discontinuities in the forces that
are required for molecular dynamics simulations. As such,
these numerical approaches are typically used in conjunction
with a frozen internal geometry for the solute molecule(s).
Although some progress has been made toward reducing
the magnitude of the discontinuities, in order to provide
energy-conserving forces,37 it is worth exploring alternative
numerical methods that are specifically constructed so that
the energy and its gradients are smooth functions of the
nuclear coordinates of the solute molecule(s) and which
are therefore immediately suitable for molecular dynamics
applications. Such methods are introduced here.

Specifically, we consider a family of boundary-element
approaches that is known in the quantum chemistry literature
as either “apparent surface charge” models, “reaction-field”
models, or (most often) “polarizable continuum” models
(PCMs).17 These models are easily incorporated into self-
consistent field procedures and are widely used in quantum
chemistry. A variety of different PCMs are available, in-
cluding the conductor-like screening model (COSMO);38

a slightly-modified variant known as generalized COSMO
(GCOSMO),39, 40 which has also been called the conductor-
like PCM (C-PCM);41 the “integral equation formalism”
(IEF-PCM);42–46 and the “surface and simulation of volume
polarization for electrostatics” [SS(V)PE] method.47 The
latter is formally equivalent to IEF-PCM at the level of inte-
gral equations,48 although some differences exist, relative to
IEF-PCM, in how SS(V)PE has typically been implemented
numerically.49–51

For J = 0, and provided that none of the solute’s charge
distribution “escapes” beyond the cavity that defines the so-
lute/continuum interface, the IEF-PCM/SS(V)PE method af-
fords the same electrostatic solvation energy as Poisson’s
equation, up to discretization errors.23 Furthermore, we have
recently shown how numerical IEF-PCM/SS(V)PE calcula-
tions can be performed in a manner that provides a contin-
uous potential energy surface for the solute and also avoids
spurious numerical fluctuations due to close approach of sur-
face discretization points.50, 52 These properties make the IEF-
PCM/SS(V)PE approach attractive for problems where forces
are required.

As compared to IEF-PCM/SS(V)PE, the GCOSMO/C-
PCM method is approximate but is formally and computa-
tionally simpler. Moreover, these methods are identical in
the limit ε → ∞.49, 51 In the absence of escaped charge,
GCOSMO solvation energies are essentially identical to IEF-
PCM results for ε � 10.51

In this work, we are concerned with electrolyte solu-
tions rather than neat liquid solvents. The IEF-PCM/SS(V)PE
method has been adapted for solution of the LPBE rather than
Poisson’s equation,23, 42, 43 and we will refer to these adapta-
tions as “screened PCMs” because they involve a screened
Coulomb operator (Yukawa potential), e−κr/r . To the best of
our knowledge, no analytic implementation of the screened
IEF-PCM or SS(V)PE models has yet been reported. Rather,
numerical quadrature has been used to evaluate integrals in-
volving the screened Coulomb potential,23, 42, 43 which is non-
trivial because the integrand is singular when these integrals
involve a single surface element. (This is actually a problem

in many different finite-element solvation models.9) In the
present work, we show that our recently-developed switch-
ing/Gaussian (SWIG) approach50, 52 to smooth surface inte-
gration has an additional advantage in the context of screened
PCMs, in that it leads to analytic expressions for the matrix
elements required in these models. These expressions greatly
simplify the computations and facilitate the development of
analytic gradient expressions.

While the generalization of IEF-PCM/SS(V)PE to elec-
trolyte solutions (within the Debye-Hückel limit) has been
known for some time,23, 42, 43 no analogous generalization of
the conductor-like models has been reported. The reason for
this is unclear to us, but we suspect that it may be due to the
ad hoc nature of traditional derivation of COSMO, which can
obscure the underlying physics of the model. In this work, we
present an alternative derivation for COSMO that we think
is more intuitive and which immediately suggests a screened
variant of this model. Because this new model extends the
“conductor-like screening model” (COSMO) to electrolytes
in the Debye-Hückel limit, we refer to it as the Debye-Hückel-
like screening model (DESMO).

The remainder of this work is organized as follows.
Section II presents a review of the relevant PCM theory, fol-
lowed by a derivation of DESMO and mathematical com-
parison to screened IEF-PCM/SS(V)PE. Section III provides
the details of the SWIG implementation of these models. In
Sec. IV, we present several numerical tests on molecular me-
chanics (MM) solutes, for which there is no escaped charge,
in order to evaluate the accuracy of DESMO as well as
our analytic implementation of screened IEF-PCM/SS(V)PE.
Finally, Sec. V presents a summary.

II. THEORY

A. The Debye-Hückel model problem

Debye-Hückel theory53, 54 is developed by considering
the electrostatics of a fixed spherical ion immersed in a con-
tinuum dielectric solvent, within which mobile ions of a dis-
sociated salt are present (see Fig. 1). The positions of the mo-
bile ions are governed by Boltzmann statistics at a specified
temperature and, in combination with the dielectric medium,
give rise to an average screened Coulomb potential that inter-
acts with the fixed ion, i.e., a screened reaction-field potential.
The solvent is thus characterized by a dielectric constant, ε,
and a Debye length λ = κ−1.

For later use, let us review the analytical solution to the
LPBE [Eq. (1.1)] for a single point charge, q, centered in a
spherical cavity of radius b (Fig. 1). The mobile ions are as-
sumed to be hard spheres of radius c that form a layer of width
c around the solute cavity. Mobile ions cannot penetrate into
this layer, which is therefore known as the ion exclusion layer
(IEL). Let a = b + c be the distance from the cavity-centered
point charge to the bulk solvent boundary. The interior of
the cavity (r < b) is assumed to have a dielectric constant of
unity, whereas the IEL and bulk solvent have dielectric con-
stant ε. Under these assumptions, Eq. (1.1) can be solved ex-
actly for all space.53–55 With the point charge q located at the
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FIG. 1. Schematic representation of the spherical Debye-Hückel model sys-
tem. The point charge q is contained within a sphere of radius b, and the
shaded region represents the ion exclusion layer.

origin, the solution is

U (r ) =

⎧⎪⎪⎨⎪⎪⎩
u0 for 0 < r < b

u1(r ) for b < r < a

u2(r ) for r > a

, (2.1)

where

u0 = q[1 + κ(a − b)]

εb(1 + κa)
(2.2a)

u1(r ) = q[1 + κ(a − r )]

εr (1 + κa)
(2.2b)

u2(r ) = qeκ(a−r )

εr (1 + κa)
. (2.2c)

For the region r > a, note in particular the presence of
the screened Coulomb potential, e−κr/r , and the factor

γ = eκa

1 + κa
, (2.3)

in Eq. (2.2c). The factor γ alone accounts for the finite radius
of the ions, and we therefore refer to γ as the IEL factor.
The total electrostatic energy of the Debye-Hückel model
system is55, 56

W = −q2

2b

[
1 − 1

ε
+ κb

ε(1 + κa)

]
. (2.4)

For κ = 0, this expression reduces to the Born ion model.57

In the remainder of this work, we assume that c = 0 (i.e.,
that the mobile solvent ions are point charges) so that the IEL
coincides with the solute cavity. (The IEL still functions to
prevent mobile solvent ions from penetrating the solute cavity
interior.) This assumption is tacitly adopted in the derivations
of the screened IEF-PCM and screened SS(V)PE models as
well.23 The simplification that this assumption provides, in
the context of PCMs, is that only one surface is present.

B. Boundary conditions and integral operators

Next, let us establish some notation and also briefly re-
view the boundary conditions and relevant integral operators
that appear in various PCMs. We use the notation in Ref. 23 as
much as possible. For more details on the integrals operators,
see Refs. 23 and 46.

The total electrostatic potential, U (�r ), of the so-
lute/solvent system can be separated into two parts,

U (�r ) = φ
ρ

0 (�r ) + U rxn(�r ) , (2.5)

where φ
ρ

0 (�r ) is the vacuum electrostatic potential produced by
the solute’s charge density, ρ(�r ), and U rxn(�r ) is the reaction-
field potential generated by the continuum, in response to
ρ(�r ). The solute is enclosed by a surface, 	, that constitutes a
boundary between the interior volume, V int (where the dielec-
tric constant is unity), and the exterior volume, V ext, which is
characterized by a dielectric constant, ε, and an inverse De-
bye length, κ . Points constrained to lie on 	 are denoted by �s,
whereas �r can range over all space.

The total electrostatic potential is continuous across 	. If
�s int and �s ext represent points that reside on the interior and
exterior faces of 	, respectively, then

U (�s int) = U (�s ext) . (2.6)

Given Eq. (2.5), this also implies that the reaction-field poten-
tial must be continuous across 	:

U rxn(�s int) = U rxn(�s ext) . (2.7)

The gradient of U , on the other hand, is subject to a “jump”
boundary condition. Specifically, the outward-pointing nor-
mal electric field generated by U is discontinuous across 	:

∂�s U (�s int) = ε ∂�s U (�s ext) . (2.8)

We use the symbol ∂�s as an abbreviation for the outward-
pointing normal derivative, ∂/∂ �n�s . Because ∂�s φ

ρ

0 (�r ) is con-
tinuous across 	, the reaction field is solely responsible for
the jump boundary condition,49 and we have

∂�s U rxn(�s ext) = −
(

ε − 1

ε

)
∂�s φ

ρ

0 (�s ) + 1

ε
∂�s U rxn(�s int) .

(2.9)

The screened electrostatic potential produced by a solute
charge density ρ is

φρ
κ (�r ) =

∫
ρ(�r ′)

e−κ|�r−�r ′|

|�r − �r ′| d3�r ′ . (2.10)

Similarly, the screened electrostatic potential produced by a
single-layer surface charge density, σ (�s ), is

χσ
κ (�r ) =

∫
σ (�s )

e−κ|�r−�s |

|�r − �s | d2�s . (2.11)

In the limit κ → 0, these potentials reduce to the correspond-
ing unscreened (vacuum) electrostatic potentials.

The self-adjoint integral operator Ŝκ is defined such that
the action of Ŝκ on σ (�s ) produces the screened potential at
the surface point �s:

Ŝκ σ (�s ) = χσ
κ (�s ) . (2.12)
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Note that χσ
κ (�s ), therefore, depends on the surface charge

across all of 	. The quantity ∂�s χσ
κ (�s ) represents the nega-

tive normal component of the screened electric field produced
by σ (�s ), evaluated at the point �s. The integral operator D̂†

κ is
defined such that it generates this screened negative normal
electric field, according to

D̂†
κσ (�s ) = ∂�s χσ

κ (�s ) . (2.13)

The discontinuity inherent in the jump boundary condition
can then be expressed as23[

D̂†
κ + 2π Î

]
σ (�s ) = ∂�s χσ

κ (�s int), (2.14a)

[
D̂†

κ − 2π Î
]
σ (�s ) = ∂�s χσ

κ (�s ext) . (2.14b)

The adjoint of D̂†
κ is D̂κ , and these operators obey the relation

D̂κ Ŝκ = ŜκD̂†
κ . Similar to the electrostatic potentials, these

integral operators reduce to their unscreened forms in the limit
that κ → 0.

The total energy of the solute/solvent supersystem is

W = E0 + Epol , (2.15)

where E0 is the energy of ρ(�r ) in vacuum. The second term,
Epol, is the reaction field energy (also known as the electro-
static solvation energy) that arises from polarization of the
dielectric continuum. This quantity is given by

Epol = 1

2

∫
ρ(�r ) U rxn(�r ) d3�r , (2.16)

where the factor of 1/2 accounts for polarization work. As
pointed out by Chipman,23 all of the PCMs considered here
invoke the ansatz

U rxn(�r ) = χσ
0 (�r ) , (2.17)

for all �r .

C. Conductor-like screening model

1. Traditional derivation

Conventional derivations of COSMO and the closely-
related GCOSMO/C-PCM method begin by assuming that the
solute resides completely inside a cavity that is embedded in
a conductor.38–41 This implies that U (�r ) vanishes at the cavity
surface, 	, and is zero beyond this boundary:

U (�r ) =
{

φ
ρ

0 (�r ) + χσ
0 (�r ) for �r ∈ V int

0 for �r ∈ V ext
. (2.18)

To ensure that the electrostatic potential is continuous across
the cavity surface [Eq. (2.6)], one must then have

Ŝ0 σ conductor(�s ) = −φ
ρ

0 (�s ) . (2.19)

To obtain a model that works for a continuum with a fi-
nite dielectric constant, rather than a conductor, the standard
approach is to scale σ conductor(�s ) by an ad hoc factor, fε. The
equation to be solved is then

Ŝ0 σ COSMO(�s ) = − fε φ
ρ

0 (�s ) . (2.20)

In the original derivation of COSMO,38 Klamt and
Schüürman propose the scaling factor fε = (ε − 1)/(ε
+ 0.5). The GCOSMO/C-PCM method also uses Eq. (2.20)
but with fε = (ε − 1)/ε. As compared to the original
COSMO, the latter choice more closely approximates Gauss’
Law for the surface charge density.39, 40

2. Alternative derivation

The difficulty with this derivation, in the context of elec-
trolyte solutions, is that the scaling factor fε is applicable only
for κ = 0. For κ > 0, no analogous scaling factor exists for
arbitrary cavity shapes. As such, the derivation of COSMO
presented above cannot be extended to electrolytic solvents.
Here, we reconsider the derivation of COSMO.

Rather than starting from the conductor limit and later
scaling the surface charge, one can derive COSMO starting
from an ansatz that actually resembles a cavity immersed in a
dielectric [cf. Eq. (2.18)]:

U (�r ) =
{

φ
ρ

0 (�r ) + χσ
0 (�r ) for �r ∈ V int

φ
ρ

0 (�r )/ε for �r ∈ V ext
. (2.21)

Enforcing the continuity condition [Eq. (2.6)] upon this
ansatz immediately affords Eq. (2.20), with fε = (ε − 1)/ε
as in GCOSMO/C-PCM. At no point do we appeal to
the conductor limit. In view of this result, the solution of
Eq. (2.20) can be interpreted as that particular surface charge
density, σ COSMO(�s ), that makes U (�r ) = φ

ρ

0 (�r )/ε for all
points �r ∈ V ext. This interpretation is not obvious from the
conventional derivation of COSMO.

Although the surface charge density σ COSMO(�s ) that is
obtained from Eq. (2.21) satisfies the continuity condition, it
does not exactly satisfy the jump boundary condition except
in special cases. This is immediately clear from the normal
derivative of U rxn(�s ext), within the ansatz of Eq. (2.21):

∂�s U rxn(�s ext) = −
(

ε − 1

ε

)
∂�s φ

ρ

0 (�s ) . (2.22)

This is not the correct jump boundary condition, as it lacks
the term ε−1∂�s U rxn(�s int) that appears in Eq. (2.9). The
GCOSMO/C-PCM method only approximately satisfies the
jump boundary condition, and Eq. (2.22) should be regarded
as the fundamental approximation in this model. On the other
hand, the missing term is proportional to ε−1, so Eq. (2.22)
is exact in the conductor limit, ε → ∞. It is also exact if
∂�s U rxn(�s int) = 0, in which case U rxn(�s int) is constant. Exam-
ples where the latter situation is realized include the trivial
case of ε = 1 (i.e., the gas phase), where U rxn(�s int) ≡ 0, or
for certain highly symmetrical systems, such as a uniform sur-
face charge distribution over a spherical cavity, as in the Born
ion model.

Equation (2.22) suggests an equivalent, auxiliary equa-
tion that could be solved to obtain σ COSMO(�s ). Using
Eq. (2.22) in conjunction with Eq. (2.14b), one obtains

( D̂†
0 − 2π Î) σ COSMO(�s ) = −

(
ε − 1

ε

)
∂�s φ

ρ

0 (�s ). (2.23)
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To illustrate that this equation is equivalent to Eq. (2.20),
we operate on Eq. (2.23) with Ŝ0 and then use the identity
D̂0Ŝ0 = Ŝ0D̂†

0 to arrive at

(D̂0 − 2π Î) Ŝ0 σ COSMO(�s ) = −
(

ε − 1

ε

)
Ŝ0∂�s φ

ρ

0 (�s ).

(2.24)

Next, we can make use of an identity derived by Chipman,23

− (D̂κ − 2π Î) φρ
κ (�s ) + Ŝκ∂�s φρ

κ (�s ) = 4π ϕρ
κ (�s ),

(2.25)

where ϕρ
κ (�s ) is the screened electrostatic potential due to that

portion of solute’s charge density, ρ(�r ), that penetrates be-
yond the solute cavity. For the salt-free case (κ = 0), and
when solute charge density is completely contained inside
the cavity [ϕρ

κ (�s ) ≡ 0], Eq. (2.25) can be substituted into
Eq. (2.24) to obtain Eq. (2.20). Indeed, we have confirmed
in numerical tests that the ASC, σ COSMO(�s ), that is obtained
from Eq. (2.23) is equivalent to that obtained from solution of
Eq. (2.20). However, Eq. (2.20) is much easier to solve
in practice because it does not involve surface normal
derivatives.

D. Debye-Hückel-like screening model

Following the logic of our alternative derivation of
GCOSMO/C-PCM, it is now clear how electrolytic screen-
ing effects can be incorporated within this model. We choose
an ansatz for U (�r ) such that any point outside the cavity has
a screened potential [cf. Eq. (2.21)]:

U (�r ) =
{

φ
ρ

0 (�r ) + χσ
0 (�r ) for �r ∈ V int

φρ
κ (�r )/ε for �r ∈ V ext

. (2.26)

Applying the continuity condition to this ansatz leads imme-
diately to an equation for the surface charge,

Ŝ0 σ DESMO(�s ) = 1

ε
φρ

κ (�s ) − φ
ρ

0 (�s ) . (2.27)

Equation (2.27) is the primary equation for our Debye-
Hückel-like screening model. This model involves the same
integral operator, Ŝ0, that is used in COSMO and therefore
retains a great deal of COSMO’s simplicity, relative to the
screened versions of SS(V)PE and IEF-PCM. In the limit
κ → 0, Eq. (2.27) reduces to the GCOSMO/C-PCM equation,
as expected.

Similar to GCOSMO/C-PCM, DESMO only approxi-
mately satisfies the jump boundary condition [Eq. (2.9)].
Starting from Eq. (2.25) with ϕρ

κ (�s ) = 0, and substituting
Eq. (2.27), we arrive at a secondary equation for σ DESMO(�s ):(

Î − 1

2π
D̂κ

)
Ŝ0σ

DESMO(�s )

= −
(
Î − 1

2π
D̂κ

)
φ

ρ

0 (�s ) − 1

2πε
Ŝκ∂�s φ

ρ

0 (�s ) . (2.28)

At this point, Eq. (2.28) is not a completely transparent result,
but its importance will become apparent below.

E. Screened SS(V)PE and screened IEF-PCM

It is useful to summarize Chipman’s derivation of the
screened SS(V)PE model,23 for comparison to DESMO. This
derivation begins by invoking a pair of separate surface charge
distributions, σ int and σ ext, which reside on the interior and
exterior faces of 	, respectively. The total electrostatic poten-
tial within this ansatz is

U (�r ) =
{

φ
ρ

0 (�r ) + χσ int

0 (�r ) for �r ∈ V int[
φρ

κ (�r ) + χσ ext

κ (�r )
]
/ε for �r ∈ V ext

. (2.29)

The continuity condition for this ansatz takes the form

Ŝ0σ
int(�s ) − 1

ε
Ŝκσ

ext(�s ) = 1

ε
φρ

κ (�s ) − φ
ρ

0 (�s ), (2.30)

whereas the jump boundary condition is(
Î + 1

2π
D̂†

0

)
σ int(�s ) +

(
Î − 1

2π
D̂†

κ

)
σ ext(�s )

= 1

2π

[
∂�s φρ

κ (�s ) − ∂�s φ
ρ

0 (�s )
]

. (2.31)

As written, Eqs. (2.30) and (2.31) are coupled, but they can
be manipulated so as to uncouple σ int and σ ext. The result is
the primary equation for screened SS(V)PE,23

[(
Î − 1

2π
D̂κ

)
Ŝ0 + 1

ε
Ŝκ

(
Î + 1

2π
D̂†

0

)]
σ int(�s )

=
(
Î − 1

2π
D̂κ

) [
1

ε
φρ

κ (�s ) − φ
ρ

0 (�s )

]
+ 1

2πε
Ŝκ

[
∂�s φρ

κ (�s ) − ∂�s φ
ρ

0 (�s )
]

. (2.32)

Chipman then sets σ int(�s ) = σ SS(V)PE(�s ), which is used in
Eq. (2.17) to obtain the reaction-field potential U rxn(�r ) that
is used to evaluate Epol.

The screened IEF-PCM method is derived using a some-
what similar approach,43 considering interior and exterior
faces of 	, but using only a single surface charge distribu-
tion, σ IEF−PCM(�s ). The resulting screened IEF-PCM equation
is43, 46[(

Î − 1

2π
D̂κ

)
Ŝ0 + 1

ε
Ŝκ

(
Î + 1

2π
D̂†

0

)]
σ IEF−PCM(�s )

= −
(
Î − 1

2π
D̂κ

)
φ

ρ

0 (�s ) − 1

2πε
Ŝκ∂�s φ

ρ

0 (�s ) . (2.33)

The identity in Eq. (2.25) can be rearranged to yield(
Î − 1

2π
D̂κ

)
φρ

κ (�s ) + 1

2π
Ŝκ∂�s φρ

κ (�s ) = 2 ϕρ
κ (�s ) .

(2.34)

Then, as noted in Ref. 23, Eq. (2.34) can be used to recast
the right side of Eq. (2.32) into a form analogous to that of
Eq. (2.33). Following this manipulation, the basic equation
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for screened SS(V)PE [Eq. (2.32)] can be written as[(
Î − 1

2π
D̂κ

)
Ŝ0 + 1

ε
Ŝκ

(
Î + 1

2π
D̂†

0

)]
σ SS(V)PE(�s )

= −
(
Î − 1

2π
D̂κ

)
φ

ρ

0 (�s )− 1

2πε
Ŝκ∂�s φ

ρ

0 (�s )+2

ε
ϕρ

κ (�s ) .

(2.35)

Comparing this to Eq. (2.33), it is apparent that the screened
versions of SS(V)PE and IEF-PCM are identical except for
the term involving ϕρ

κ (�s ), which is absent in the latter. As
such, these two models are equivalent in the absence of es-
caped charge. The two methods also become equivalent in the
limit ε → ∞.

Let us now compare DESMO to screened SS(V)PE and
IEF-PCM, continuing the discussion left off at the end of
Sec. II D. The secondary form of the DESMO equation,
Eq. (2.28), is remarkably similar to Eq. (2.33) but it lacks the
second term in square brackets in Eq. (2.33). However, this
missing term is proportional to ε−1, and Eq. (2.28) becomes
exact in the limit ε → ∞. DESMO is also exact if(

Î + 1

2π
D̂†

0

)
σ DESMO(�s ) = 1

2π

[
∂�sφρ

κ (�s ) − ∂�sφ
ρ

0 (�s )
]

,

(2.36)

which can be seen by substituting Eq. (2.36) into Eq. (2.32).
The left side of Eq. (2.36) is simply ∂�s χσ

κ (�s int) scaled by
a factor of 2π , and it expresses the screened version of the
limit in which GCOSMO/C-PCM is exact, ∂�s U rxn(�s int) = 0.
Clearly, Eq. (2.36) reduces to the condition ∂�s χσ

κ (�s int) = 0
[i.e. ∂�s U rxn(�s int) = 0] when κ = 0.

III. DISCRETIZATION

In this section, we discretize the integral equations that
define the DESMO, screened SS(V)PE, and screened IEF-
PCM methods, to obtain finite-dimensional matrix equations.
This discretization is accomplished using the SWIG proce-
dure that we have recently introduced for the unscreened
SS(V)PE/IEF-PCM and GCOSMO/C-PCM methods.50–52

Complete details of the SWIG procedure can be found in
Ref. 50; the essential aspects are summarized here.

A. Overview of the SWIG approach

The solute cavity surface is constructed from a union
of atom-centered spheres whose radii are parameters of
the model. Although this approach has occassionally been
criticized,58, 59 and more sophisticated approaches have been
explored,60–63 the use of parameterized atomic radii remains
ubiquitous in the PCM literature and provides a simple defini-
tion for the cavity surface that will facilitate comparison with
exact results.

Lebedev grids64 are used to discretize the surface of each
sphere into a finite set of points, {�si }. Each grid point is asso-
ciated with a surface area ãi = wi R2

I , where RI is the radius
of the atomic sphere on which the point �si resides, and wi is
the Lebedev quadrature weight associated with this grid point.

A straightforward way to discretize the integral equations in
Sec. II would be to place a point charge, qi , at each grid point
�si , thus replacing σ (�s ) with a vector of point charges, q.

The problem with such an approach is that surface grid
points may emerge from—or vanish into—the interior of
the cavity as the nuclei move, leading to discontinuities in
the potential energy surface. To avoid these, we introduce a
switching function, Fi , that smoothly attenuates �si ’s contribu-
tion to the PCM equations, as the point �si passes through a
buffer region surrounding the cavity surface. (Precisely how
Fi is incorporated into the matrix elements is discussed in
Sec. III C.) Insofar as Fi is a smooth function of the nuclear
coordinates, this guarantees a smooth potential energy sur-
face. Note also that the surface area associated with �si is52

ai = ãi Fi = wi Fi R2
I . (3.1)

We have observed that potential energy surfaces that are
rigorously smooth (in the mathematical sense of possessing
continuous derivatives) may still suffer from spurious oscilla-
tions in the energy or gradient, which arise due to the singu-
lar nature of the Coulomb potential between the surface point
charges.50–52 Introduction of a switching function actually ex-
acerbates this problem, as it allows grid points to approach
one another more closely than would be the case if we simply
discarded all interior grid points. This problem can be over-
come via “Gaussian blurring” of the point charges qi .50, 52, 65

To wit, we introduce a set of spherical Gaussian functions,
{gi }, that are centered at the points �si :

gi (�r ) = qi

(
ζ 2

i

π

)3/2

e−ζ 2
i |�r−�si |2 . (3.2)

The exponent ζi , which controls the width of gi , depends
upon the number of Lebedev grid points used to discretize
the spheres. Values of ζi were taken from Ref. 66, where they
were optimized to obtain accurate solvation energies for the
Born ion model across a range of dielectric constants. The
Coulomb interaction between gi (�r ) and g j (�r ) is finite even
as |�si − �s j | → 0 and in our experience this is sufficient to re-
move spurious fluctuations in the energy and gradient.50–52

B. Electrostatic solvation energy and gradient

Upon discretization, the electrostatic potential φρ
κ and the

normal electric field ∂�s φρ
κ are replaced by vectors vκ and v⊥

κ ,
respectively, whose elements are

vκ,i = φρ
κ (�si ), (3.3a)

v⊥
κ,i = ∂�s φρ

κ (�si ) . (3.3b)

Note that the unscreened electrostatic potential, v0, can be
viewed as a special case of vκ . The point charges qi are col-
lected in a vector q that, together with the surface areas ai ,
represent the discretization of σ (�s ).

For consistency with the general PCM framework,49, 50

we wish to cast the integral equations of Sec. II into finite-
dimensional matrix equations of the form

Kq = Rv0, (3.4)

Downloaded 26 May 2011 to 128.146.235.3. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions



204110-7 Polarizable continuum model for electrolytes J. Chem. Phys. 134, 204110 (2011)

TABLE I. Definitions of K and R for screened PCMs.

Method Matrix K Matrix R
DESMO S0 − (

I − 1
ε M

)
IEF-PCM

(
I − 1

2π DκA
)

S0 + 1
ε Sκ

(
I + 1

2π AD†
0

) (
I − 1

2π DκA
)

− 1
2πε S′

κL

SS(V)PE
(

I − 1
2π DκA

)
S0 + 1

ε Sκ

(
I + 1

2π AD†
0

) (
I − 1

2π DκA
) ( 1

ε M − I
) + 1

2πε S′
κ (N − L)

whose formal solution is

q = Qv0 , (3.5)

where Q = K−1R is known as the solvent response
matrix. Table I defines the K and R matrices for DESMO and
screened SS(V)PE in terms of Sκ and Dκ , which are the dis-
cretized forms of the operators Ŝκ and D̂κ from Sec. II. In
addition, we have introduced a diagonal matrix A that con-
tains the surface element areas, Ai j = ai δi j , as well as auxil-
iary matrices L, M, and N. The latter are each diagonal, with
matrix elements

Li j = δi j v⊥
0,i/v0,i , (3.6a)

Mi j = δi j vκ,i/v0,i , (3.6b)

Ni j = δi j v⊥
κ,i/v0,i . (3.6c)

Following discretization, the reaction-field energy can be
written in a variety of equivalent forms:

Epol = 1

2
v†0q = 1

2
q†Q−1q = 1

2
v†0Qv0 . (3.7)

Although Q is generally not symmetric, it is easily shown that
Epol is invariant to symmetrization of Q, i.e., we could replace
Q in Eq. (3.7) with the symmetric matrix Q̃ = (Q + Q†)/2.
For solutes described using quantum mechanics (at the self-
consistent field level), this symmetrization is important be-
cause if Q = Q†, then one can evaluate the analytic gradi-
ent of Epol without solving the coupled-perturbed equations.67

In practice, symmetrization of Q requires solving Eq. (3.5)
twice, the second time with Q replaced by Q†, as discussed in
Ref. 50. This technique will be exploited in Sec. III E, when
we introduce the DESMO analytic gradient.

So long as Q is symmetric, we can write the derivative of
Epol with respect to a perturbation x as

E x
pol = 1

2
v†0Qx v0 + q†vx

0 . (3.8)

Expanding the first term,

v†0Qx v0 = v†0K−1
(
Rx − Kx K−1R

)
v0 , (3.9)

we have a general expression for the derivative of the reaction-
field energy. The matrices Kx and Rx are given in Table II.

C. Matrix elements for SWIG discretization

Let us first introduce the matrix elements of the un-
screened operators Ŝ0 and D̂0, which are the same as in our
previous work.50 Off-diagonal elements of S0, S0,i j , are equal
to the unscreened Coulomb interaction between the functions
gi (�r ) and g j (�r ). The appropriate Coulomb integral can be
written in terms of the error function,

S0,i j = erf(ζi j si j )

si j
, (3.10)

where si j = |�si − �s j | and ζi j = ζiζ j/(ζ 2
i + ζ 2

j )1/2. The off-
diagonal element D0,i j is related to S0,i j according to the
relation17

D0,i j = �n j ·∂S0,i j

∂�s j
, (3.11)

where �n j represents the outward pointing unit vector normal
to the cavity surface at the point �s j . Using Eqs. (3.10) and
(3.11), one obtains

D0,i j =
(

erf(ζi j si j ) − 2ζi j si j√
π

e−ζ 2
i j s

2
i j

) �n j ·�si j

s3
i j

. (3.12)

TABLE II. Definitions of Kx and Rx for screened PCMs.

Method Matrix Kx Matrix Rx

DESMO Sx
0

1
ε Mx

IEF-PCM − 1
2π

(
Dx

κA + DκAx
)

S0 +
(

I − 1
2π DκA

)
Sx

0

+ 1
ε Sx

κ

(
I + 1

2π AD†
0

)
+ 1

2πε Sκ

[
Ax D†

0 + A
(

D†
0

)x] − 1
2π

(
Dx

κA + DκAx
) − 1

2πε

(
S′x

κ L + S′
κLx

)
SS(V)PE − 1

2π

(
Dx

κA + DκAx
)

S0 +
(

I − 1
2π DκA

)
Sx

0 − 1
2π

(
Dx

κA + DκAx
) ( 1

ε M − I
) + 1

ε

(
I − 1

2π D0A
)

Mx

+ 1
ε Sx

κ

(
I + 1

2π AD†
0

)
+ 1

2πε Sκ

[
Ax D†

0 + A
(

D†
0

)x] − 1
2πε S′x

κ (N − L) − 1
2πε S′

κ (Nx − Lx )
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In the SWIG approach, diagonal matrix elements S0,i i are
obtained by taking the limit si j → 0 in Eq. (3.10), and fur-
thermore introducing a switching function in the denominator.
The resulting definition is

S0,i i = ζi
√

2/π

Fi
. (3.13)

The precise form of the function Fi can be found in Ref. 50,
along with a proof that placing Fi in the denominator guaran-
tees that the potential energy surface will be smooth, provided
that the function Fi is smooth. The diagonal elements D0,i i in
SWIG are defined by

D0,i i = − S0,i i Fi

2RI
, (3.14)

where RI is the radius of the sphere that contains the point �si .
Ten-no68, 69 has discussed the evaluation of Gaussian in-

tegrals over Yukawa-type potentials and his formulas can be
used to evaluate the screened Coulomb interaction between
gi (�r ) and g j (�r ). First, we introduce some definitions:

Ti j = ζi j si j , (3.15a)

Ui j = κ

2ζi j
, (3.15b)

αi j = e−κsi j erfc(Ui j − Ti j ), (3.15c)

βi j = eκsi j erfc(Ui j + Ti j ), (3.15d)

α′
i j = −καi j + e−κsi j

(
2ζi j√

π
e−(Ui j −Ti j )2

)
, (3.15e)

β ′
i j = κβi j − eκsi j

(
2ζi j√

π
e−(Ui j +Ti j )2

)
. (3.15f)

Note that erfc(x) = 1 − erf(x). The notation in
Eq. (3.15) facilitates a succinct expression for the off-
diagonal matrix elements of Sκ ,

Sκ,i j = eU 2
i j

2si j
(αi j − βi j ) . (3.16)

We can use a relation analogous to Eq. (3.11), but replacing
S0,i j with Sκ,i j and D0,i j with Dκ,i j , to obtain the off-diagonal
elements of Dκ . The result is

Dκ,i j =
[

eU 2
i j

2

(
α′

i j − β ′
i j

si j

)
− Sκ,i j

si j

]
�n j · �si j

s3
i j

. (3.17)

Analogous to the salt-free case, diagonal elements of Sκ are
derived from Sκ,i j by taking the limit si j → 0 and introducing
Fi in the denominator:

Sκ,i i = F−1
i

[
ζi

√
2/π − κerfc(Uii ) exp

(
U 2

i i

)]
. (3.18)

For Dκ,i i , we use a definition analogous to Eq. (3.14):

Dκ,i i = − Sκ,i i Fi

2RI
. (3.19)

Finally, we note that the diagonal elements of R should
not be scaled by Fi , because this would cancel the factors of
Fi contained in the K matrix. Thus, we define an alternative
version of Sκ , denoted S′

κ , where the switching function is
absent. We can express this as

S′
κ,i j =

{
Sκ,i j for i �= j

Sκ,i i Fi for i = j
. (3.20)

The matrix S′
κ is used in place of Sκ in constructing the R

matrix (see Tables I and II).

D. Electrostatic potentials and electric fields

To complete the implementation of the screened PCMs,
we need to be able to evaluate the screened and unscreened
electrostatic potentials and normal electric fields, at each dis-
cretization point �si . For solutes described using quantum me-
chanics, evaluation of the screened electrostatic potential, vκ ,
requires evaluation of Gaussian integrals over a Yukawa-type
potential. We have not implemented such integrals in gen-
eral, owing to the complexity of the formulas involved.68, 69

Therefore, we confine our attention to solutes described at the
MM level, for which ρ(�r ) consists of a set of atom-centered
point charges, {ρJ }. In this case, only s-type Gaussian inte-
grals are required. Analogous to Eq. (3.15), we make the fol-
lowing definitions related to the screened interaction between
the point charge ρJ (located at position �rJ ) and the i th surface
Gaussian, gi (�r ):

Ti J = ζi ri J , (3.21a)

Ui = κ

2ζi
, (3.21b)

αi J = e−κri J erfc(Ui − Ti J ), (3.21c)

βi J = eκri J erfc(Ui + Ti J ), (3.21d)

α′
i J = −καi J + e−κri J

(
2ζi√

π
e−(Ui −Ti J )2

)
, (3.21e)

β ′
i J = κβi J − eκri J

(
2ζi√

π
e−(Ui +Ti J )2

)
. (3.21f)

Here, ri J = |�si − �rJ |.
The unscreened electrostatic potential due to the point

charges {ρJ }, evaluated at the point �si , is

v0,i =
∑

J

ρJ
erf(Ti J )

ri J
. (3.22)

The corresponding electric field at �si is

�E0,i = −
∑

J

ρJ

(
erf(Ti J ) − 2Ti J√

π
e−T 2

i J

) �ri J

r3
i J

(3.23)

and the normal component of this field is

v⊥
0,i = �ni · �E0,i . (3.24)
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We next consider how to evaluate the screened electro-
static potential, vκ , in practical calculations. Unlike Sκ,i j (the
interaction between surface charges, subject to the screened
Coulomb potential), the screened potential vκ,i should ac-
count for the existence of an IEL. For the Debye-Hückel
model system, the IEL factor [γ , in Eq. (2.3)] fulfills this
role, but a simple scaling factor of this type does not ex-
ist for an arbitrary cavity shape and distribution of point
charges. Therefore, we must make an approximation when
computing vκ .

Our approach is based upon two observations: that the
solute cavity is constructed from a union of atom-centered
spheres, and that the MM solute consists of point charges lo-
cated at the centers of these spheres. For an arbitrary MM
solute, a crude approximation to φρ

κ (�s ) could be constructed
by supposing that the MM charge ρJ only makes a contri-
bution to φρ

κ (�s ) for discretization points that lie on the J th
atomic sphere. Under this assumption, φρ

κ (�si ) can always be
expressed using Eq. (2.1), for each discretization point �si and
in effect each atom gets its own IEL factor.

In reality, of course, all of the solute charges should con-
tribute to φρ

κ at each discretization point, but then it is un-
clear how to account for the IEL. In the spirit of simplicity,
we therefore use atomic IEL factors, yet we allow all solute
charges to contribute to φρ

κ across the entire cavity surface.
We refer to this as the “local IEL approximation,” and this
approximation can be expressed mathematically as

φρ
κ (�si ) ≈ eκ RI

1 + κ RI

∫
ρ(�r )

e−κ|�si −�r |

|�si − �r | d3�r , (3.25)

for all points �si located on the I th atomic sphere.
When ρ(�r ) consists of a set of point charges {ρJ }, the

local IEL approximation affords

vκ,i = γi
eU 2

i

2

∑
J

ρJ
αi J − βi J

ri J
, (3.26)

for the screened electrostatic potential at �si . In this equation,
we have defined a “local IEL factor” for the i th grid point
[cf. Eq. (2.3)],

γi = eκ RI

1 + κ RI
. (3.27)

The screened electric field at �si can now be evaluated,

�Eκ,i = −γi
eU 2

i

2

∑
J

ρJ [(α′
i J − β ′

i J )ri J − (αi J − βi J )]
�ri J

r3
i J

,

(3.28)

and its normal component is

v⊥
κ,i = �ni · �Eκ,i . (3.29)

At this point, the accuracy of the local IEL approxima-
tion is unclear, but a number of physical arguments can be
made in favor of it. In terms of its physical interpretation, the
factor γi approximately removes the screening effects in the
electrostatic potential, vκ,i , due to mobile solvent ions over a
distance of RI . That is, mobile solvent ions are not allowed
to penetrate between surface point �si and the source charge

at �rJ for a portion RI of the total distance ri J . Obviously,
this is exact for a single point charge centered in a spherical
cavity (i.e., the Debye-Hückel model system), and it makes
some sense that the nearest and most significant contribution
to φρ

κ (�si ) would come from the point charge ρI at the center
of the sphere on which the point �si is located, for which γi is
accurate given the above physical interpretation. Furthermore,
the expression for φρ

κ (�si ) in Eq. (3.25), while approximate for
κ > 0, has the correct limit [namely, φρ

0 (�si )] as κ → 0. More-
over, if κ RI 
 1 for all atomic spheres, then the integrand in
Eq. (3.25) will have significant magnitude only on sphere I ,
owing to the factor of exp(−κ|�si − �r |) in the integrand.

On the other hand, if κ RI � 1 then γi ≈ 1. Since the use
of the LPBE is most appropriate when κ is small, one might
question whether these local IEL factors make any difference
at all. Numerical tests in Sec. IV will demonstrate not only
that the IEL approximation is satisfactory (at least for MM
solutes), but also that setting γi = 1 for each i affords results
that are much less satisfactory.

E. DESMO analytic gradient

In Sec. III B we presented generic expressions for the
PCM gradient, in terms of the matrix derivatives Kx and
Rx . At present, we have only implemented these expres-
sions in the DESMO case, so in the interest of brevity we
will not present detailed formulas for the the screened IEF-
PCM/SS(V)PE analytic gradients. [It should be clear from
Table II that the IEF-PCM/SS(V)PE gradient is considerably
more complicated than is the DESMO gradient.] Detailed for-
mulas for the DESMO gradient are presented below.

According to Eq. (3.8) and Table II, the necessary com-
ponents for the DESMO gradient are Sx

0 and Mx as well as
the electrostatic potential gradients vx

0 and vx
κ . We will use the

symbol ∇̂J to denote the derivative with respect to displace-
ment of atom J . Then ∇̂J v0,i is essentially just the negative
of the electric field in Eq. (3.23):

∇̂J v0,i = ρJ

(
erf(Ti J ) − 2Ti J√

π
e−T 2

i J

) �ri J

r3
i J

θi J . (3.30)

Here, �ri J = �ri − �rJ and

θi J =
{

0 if i ∈ J

1 if i /∈ J
. (3.31)

Similarly, from the electric field in Eq. (3.28) we obtain

∇̂J vκ,i = γi
eU 2

i

2
ρJ [(α′

i J − β ′
i J )ri J − (αi J − βi J )]

�ri J

r3
i J

θi J .

(3.32)

The gradient Sx
0 , for off-diagonal elements i �= j is

∇̂J Si j = −
(

erf(Ti j ) − 2Ti j√
π

e−T 2
i j

) �si j

s3
i j

(θi J − θ j J ) ,

(3.33)

and for diagonal elements it is

∇̂J Sii = − Sii

Fi
∇̂J Fi . (3.34)
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The gradient of the switching function, ∇̂J Fi , has been re-
ported previously.50 Notice also that the area derivatives, Ax

(see Table II) depend only on the switching function gradi-
ent, according to Eq. (3.1). Finally, we do not compute Mx

in practice but instead compute Mx v0, owing to the simple
formula

(∇̂J Mii ) v0,i = ∇̂J vκ,i − Mii ∇̂J vx
0,i . (3.35)

The symmetrization of Q as well as the gradient for
DESMO can be simplified by defining several sets of charges.
First, we define a set of conductor charges

q∞ = −S−1
0 v0, (3.36)

that constitute a discretized solution to Eq. (2.19). We also
define

q′ = S−1
0

(
1

ε
M − I

)
v0 (3.37)

and

q′′ =
(

I − 1

ε
M

)
q∞ . (3.38)

Using surface charges q = (q′ + q′′)/2 is then equivalent to
solving Eq. (3.5) with a symmetrized Q matrix. In practice,
one can obtain the charges q∞, q′, and q′′ either by explicitly
constructing S−1

0 , or else by solving Eqs. (3.36) and (3.37)
separately, using some sort of iterative algorithm. Once q∞ is
determined, it is trivial to compute q′′.

Given the above charges, one can simplify E x
pol for the

DESMO case to afford

E x
pol = 1

2

(
q†

∞Sx
0q′ − 1

ε
q†

∞Mx v0

)
+ q†vx

0 . (3.39)

For MM solutes, there is no reason to symmetrize Q, and the
charges q′ from Eq. (3.37) can be used in place of q to com-
pute both Epol and E x

pol. This somewhat reduces the computa-
tional effort. Similarly, if only the energy (but not the gradi-
ent) is required for a DESMO calculation, then it suffices to
compute only q′′, since Epol = v†0q/2 = v†0q′′/2.

IV. NUMERICAL TESTS

We have implemented the DESMO and screened IEF-
PCM/SS(V)PE models, for MM solutes only, within a locally-
modified version of the Q-Chem software package.70 This
implementation builds upon our recent implementation of
smooth PCMs50–52 and hybrid quantum mechanics/molecular
mechanics methods,71 within this same software. In this sec-
tion, we present numerical tests of these screened PCMs, both
for some simple test cases where an exact analytical solu-
tion of the LPBE is available, but also for more realistic MM
solutes, where three-dimensional numerical solution of the
LPBE provides a benchmark.

For these tests, we employ three different values of the di-
electric constant (ε = 4, 20, and 80) and four different Debye
lengths (λ/Å = 3, 5, 25, and ∞). The dielectric constants are
chosen to represent three common categories of solvents in
chemical applications: ε = 4 for non-polar organic solvents,

TABLE III. Ionic strengths (in mol/L) for each pair of parameters ε and λ

explored here, assuming T = 298 K. Note that physiological ionic strengths
are ∼0.1–0.2 mol/L.72

λ/Å

ε 3 5 25
4 0.0524 0.0189 7.54 × 10−4

20 0.261 0.0943 3.77 × 10−3

80 1.05 0.377 1.51 × 10−2

(benzene, alkanes, ethers), ε = 20 for polar organic solvents
(alcohols, ketones), and ε = 80 for water. The three Debye
lengths are chosen to sample a variety of ionic strengths and
to test the local IEL approximation. If the ratio RI /λ is small,
for all atomic spheres, then we expect the local IEL approx-
imation to be satisfactory, but if RI /λ ∼ 1, as it is when
λ = 3 Å, then one might expect the local IEL approximation
to break down. Note that when λ = ∞, DESMO reduces to
GCOSMO/C-PCM and screened IEF-PCM/SS(V)PE reduces
to its unscreened form. In Table III, we provide the molar
ionic strengths that correspond to each pair of ε and λ val-
ues used in these tests, at T = 298 K. For λ = ∞, the ionic
strength is zero.

For MM solutes, the screened IEF-PCM and screened
SS(V)PE methods are equivalent, at the level of integral
equations, and we choose to discretize Eq. (2.32) for IEF-
PCM/SS(V)PE. We also test a variant of DESMO that we call
DESMO-0, which is identical except that we set γi = 1 in
Eq. (3.27), for each i . In effect, DESMO-0 ignores the IEL
and allows mobile solvent ions to penetrate the interior of the
solute cavity. Setting γi = 1 in IEF-PCM/SS(V)PE calcula-
tions should not have a significant effect, because vκ is ab-
sent in this method. More precisely, although φρ

κ appears (for-
mally) in Eqs. (2.32) and (2.33), the quantity ϕρ

κ ≡ 0 for MM
solutes, hence the terms in these equations that involve φρ

κ

cancel, by virtue of the identity in Eq. (2.34). This explains
why, in previous work on screened IEF-PCM and screened
SS(V)PE, relatively little attention has been paid to the treat-
ment of the IEL. We will see that this issue is more important
in the context of DESMO.

Unless otherwise stated, the solute cavity is con-
structed using SWIG discretization with 110 Lebedev
grid points per atomic sphere. This is sufficient to
converge GCOSMO/C-PCM solvation energies to within
∼0.1 kcal/mol, relative to results obtained using much denser
grids.50

A. Comparison to the Kirkwood model

An analytical solution to the LPBE, for an arbitrary elec-
trostatic multipole centered in a spherical solute cavity, was
derived long ago by Kirkwood,56 and this model can be re-
garded as a generalization of the Debye-Hückel model prob-
lem presented in Sec. II A. Here, we compare exact results for
the Kirkwood model to numerical results for various PCMs.

In our first example, we take ρ(�r ) to consist of a single
point charge centered in a spherical cavity of radius a, equiv-
alent to the model in Sec. II A with c = 0. Numerical results
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TABLE IV. Reaction-field energies, Epol, for a +e point charge centered
in a cavity of radius 2 Å, along with errors in various PCMs.

Error (kcal/mol)

λ Epol IEF-PCM/
ε (Å) (kcal/mol) DESMO DESMO-0 SS(V)PE
4 ∞ –62.262 0.000 0.000 0.000
20 ∞ –78.865 0.000 0.000 0.000
80 ∞ –81.978 0.000 0.000 0.000

4 25 –63.799 0.000 –0.058 0.000
20 25 –79.173 0.000 –0.012 0.000
80 25 –82.055 0.000 –0.003 0.000

4 5 –68.192 0.003 –0.910 0.000
20 5 –80.051 0.001 –0.182 0.000
80 5 –82.275 0.000 –0.046 0.000

4 3 –76.098 0.007 –1.791 0.000
20 3 –81.632 0.001 –0.358 0.000
80 3 –82.670 0.000 –0.090 0.000

for this model are shown in Tables IV and V for an ion charge
of +e and a cavity radius a = 2 Å. The DESMO and IEF-
PCM/SS(V)PE methods are essentially exact for all ε and λ,
but the same cannot be said for DESMO-0. Although the latter
model is accurate λ = ∞ (the salt-free limit), its accuracy de-
teriorates as λ decreases, most notably when ε is low. Already,
this indicates the importance of accounting for the IEL within
DESMO. In fact, the same trends observed for this simplest
of models will be seen in many of our subsequent tests.

We next consider a simple model of a highly polar solute.
The model consists of two point charges, +2e and −2e, sep-
arated by a distance of 1 Å, resulting in a dipole moment of
μ = 9.6 debye. We place this system inside a spherical cavity
of radius 3.0 Å. The exact energy of this system can be cal-
culated via a multipole expansion of the charge distribution,
using Kirkwood’s exact formulas for each multipole order.56

For this example, an expansion up to � = 7 is sufficient to
converge the energy to within 10−6 kcal/mol. Exact results,
and errors for various PCMs, are listed in Table VI.

As in the previous example, the screened IEF-
PCM/SS(V)PE method is extremely accurate for all values
of ε and λ. (The ≈ 0.02 kcal/mol errors that are listed in
Table VI are eliminated if we use 590 Lebedev points to dis-

TABLE V. Salt shifts, Epol(κ) − Epol(κ = 0), for a +e point charge cen-
tered in a cavity of radius 2 Å.

Salt shift (kcal/mol)

λ Kirkwood IEF-PCM/
ε (Å) (exact) DESMO DESMO-0 SS(V)PE
4 25 –1.54 –1.54 –1.60 –1.54
20 25 –0.31 –0.31 –0.32 –0.31
80 25 –0.08 –0.08 –0.08 –0.08

4 5 –5.93 –5.93 –6.84 –5.93
20 5 –1.19 –1.19 –1.37 –1.19
80 5 –0.30 –0.30 –0.34 –0.30

4 3 –8.30 –8.30 –10.09 –8.30
20 3 –1.66 –1.66 –2.02 –1.66
80 3 –0.42 –0.42 –0.51 –0.42

TABLE VI. Reaction-field energies, Epol, for a Kirkwood model of a dipo-
lar solute (μ = 9.6 debye inside a cavity of radius 3 Å), along with errors in
various PCMs.

Error (kcal/mol)

λ Epol IEF-PCM/
ε (Å) (kcal/mol) DESMO DESMO-0 SS(V)PE
4 ∞ –16.41 –2.03 –2.03 0.02
20 ∞ –22.81 –0.55 –0.55 0.02
80 ∞ –24.16 –0.12 –0.12 0.03

4 25 –16.46 –1.98 –2.03 0.02
20 25 –22.83 –0.53 –0.54 0.02
80 25 –24.16 –0.12 –0.12 0.03

4 5 –17.16 –1.28 –2.03 0.02
20 5 –22.99 –0.37 –0.52 0.03
80 5 –24.20 –0.08 –0.12 0.03

4 3 –17.90 –0.52 –2.15 0.02
20 3 –23.17 –0.19 –0.51 0.03
80 3 –24.25 –0.03 –0.11 0.03

cretize each atomic sphere.) DESMO is less accurate than in
the previous test, although the largest errors are for ε = 4, and
for ε = 80 the errors are ≤ 0.12 kcal/mol. However, DESMO
does not afford an accurate trend for the “salt shift”, i.e., the
difference Epol(κ) − Epol(κ = 0) at fixed ε (see Table VII). In
fact, DESMO fails to predict a significant change in Epol as
the ionic strength changes. In contrast, DESMO-0 affords a
correct trend in the salt shift, despite the fact that the errors
in Epol, relative to exact Kirkwood results, are larger for this
method than they are for DESMO.

The failure of DESMO to predict the salt shift in this ex-
ample indicates that the local IEL approximation may be de-
ficient in cases where solute charges are not located at the
centers of the spheres that are used to construct the cavity
surface. On the other hand, the salt shifts in this example are
quite small (< 0.4 kcal/mol in polar solvents) and are compa-
rable to the errors in the solvation energies themselves. Abso-
lute errors in Epol are no larger than 0.6 kcal/mol for ε = 20,
and the errors in Epol are even smaller for test problems with
smaller dipole moments. These results seem to indicate that
DESMO (and GCOSMO, for κ = 0) is slightly less accurate
than IEF-PCM/SS(V)PE when the atomic charge distribution

TABLE VII. Salt shifts, Epol(κ) − Epol(κ = 0), for a Kirkwood model of
a dipolar solute (μ = 9.6 debye inside a cavity of radius 3 Å).

Salt shift (kcal/mol)

λ Kirkwood IEF-PCM/
ε (Å) (exact) DESMO DESMO-0 SS(V)PE

4 25 –0.05 0.00 –0.04 –0.05
20 25 –0.01 0.00 –0.01 –0.01
80 25 0.00 0.00 0.00 0.00

4 5 –0.70 0.01 –0.70 –0.69
20 5 –0.18 0.00 –0.15 –0.18
80 5 –0.05 0.00 –0.04 –0.05

4 3 –1.49 0.03 –1.61 –1.49
20 3 –0.35 0.01 –0.32 –0.35
80 3 –0.09 0.00 –0.08 –0.09
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is not spherically symmetric. As expected, however, the dif-
ference between these methods vanishes as ε increases.

B. Comparison to the model of Lotan and
Head-Gordon

The second analytical model to which we compare the
screened PCMs is the one derived by Lotan and Head-Gordon
(LHG).27 The LHG model generalizes the Kirkwood model
and provides an analytic solution to the LPBE for any num-
ber of non-overlapping spherical cavities, each of which con-
tains an arbitrary charge density so long as there is no es-
caped charge. The analytical solution for the solvation energy
is lengthy to explicate, and we refer the reader to Ref. 27 for
details.

Here, we consider a set of 20 disjoint spherical cavities
whose locations are chosen at random within a 30 Å radius
of the coordinate origin. The radius of each sphere is selected
at random within the range 1.5–2.5 Å, and at the center of
each sphere we place a single point charge, selected at ran-
dom from between −e and +e. (All the parameters neces-
sary to define this test system are provided in the supple-
mentary material.73) We calculate the electrostatic energy of
this system using the formulas in Ref. 27 (with ε = 1 inside
each sphere), and compare electrostatic solvation energies
(Table VIII) and salt shifts (Table IX) to results computed us-
ing various PCMs.

Somewhat surprisingly, we find differences of up to
1.0 kcal/mol between IEF-PCM/SS(V)PE solvation energies
and analytic LHG results. (Recall that in the case of the
Kirkwood model problems, the IEF-PCM solvation energy
differed by no more than 0.03 kcal/mol from the analyti-
cal result, and this difference provides a measure of the dis-
cretization error.) For the multi-sphere LHG problem, this dis-
agreement persists even when very dense integration grids
(up to 5294 points per sphere) are employed. For κ = 0, it
is possible to turn off both the switching function and the

TABLE VIII. Reaction-field energies, Epol, obtained from the LHG
model,27 for a set of twenty randomly-positioned charges in spherical cav-
ities (see the text for details). PCM results are given in terms of the error
relative to the LHG result.

Error (kcal/mol)

λ Epol IEF-PCM/
ε (Å) (kcal/mol) DESMO DESMO-0 SS(V)PE
4 ∞ –2899.49 –0.01 –0.01 0.98
20 ∞ –3672.69 0.00 0.00 0.27
80 ∞ –3817.67 0.00 0.00 0.07

4 25 –2914.09 –0.26 –1.39 0.70
20 25 –3675.61 –0.05 –0.28 0.21
80 25 –3818.40 –0.01 –0.07 0.06

4 5 –3035.50 –0.41 –20.92 0.37
20 5 –3699.90 –0.08 –4.18 0.13
80 5 –3824.47 –0.02 –1.04 0.04

4 3 –3122.65 –0.22 –44.47 0.30
20 3 –3717.32 –0.05 –8.90 0.09
80 3 –3828.83 –0.01 –2.22 0.03

TABLE IX. Salt shifts, Epol(κ) − Epol(κ = 0), obtained from the LHG
model27 and from various PCMs, for a set of twenty randomly-positioned
charges in spherical cavities (see the text for details).

Salt shift (kcal/mol)

λ IEF-PCM/
ε (Å) LHG DESMO DESMO-0 SS(V)PE
4 25 –14.60 –14.85 –15.99 –14.88
20 25 –2.92 –2.97 –3.20 –2.98
80 25 –0.73 –0.74 –0.80 –0.75

4 5 –136.01 –136.41 –156.93 –136.63
20 5 –27.21 –27.28 –31.39 –27.35
80 5 –6.80 –6.82 –7.85 –6.84

4 3 –223.16 –223.36 –267.62 –223.85
20 3 –44.63 –44.68 –53.52 –44.81
80 3 –11.16 –11.17 –13.38 –11.21

Gaussian blurring in IEF-PCM calculations, but neither of
these changes eliminates the discrepancies between IEF-PCM
and LHG results. Transposition or symmetrization of the K
matrix in Table I, as is done in some implementations of IEF-
PCM,51 also fails to eliminate the discrepancies with respect
to LHG results.

These results indicate that it is the IEF-PCM/SS(V)PE
ansatz for the reaction-field potential [Eq. (2.17)] rather than
any numerical issue, that is responsible for the diminished ac-
curacy in cases where the cavity consists of disjoint spheres.
Chipman has noted that the IEF-PCM/SS(V)PE reaction field
is incorrect outside the cavity, if some of the solute charge lies
outside the cavity.23 It follows that when the solute cavity is
disjoint, the mutual polarization of the various surface charge
distributions may not be described correctly.

To explore this issue further, we consider a system com-
posed of two spheres, one with a radius of 1.29 Å and a point
charge of −2e located at its center, and another with a radius
of 1.70 Å and a point charge of +1.5e located at its center.
We take ε = 4 and κ = 0 for this calculation, and discretize
the two spheres using 194 Lebedev points per sphere, with the
SWIG switching function turned off. Figure 2 plots the differ-
ence between the IEF-PCM solvation energy and the exact
LHG result, as a function of the center-to-center distance be-
tween the two spheres. The difference between the two solva-
tion energies disappears quite slowly as a function of distance
and exceeds 0.01 kcal/mol even at 10 Å separation. At the
same time, this disagreement is typically two or more orders
of magnitude smaller than the total reaction-field energy and
from a pragmatic chemical standpoint this difference is fairly
negligible.

As compared to IEF-PCM/SS(V)PE results, DESMO
solvation energies are in much better agreement with analyti-
cal LHG results (see Table VIII), and differ by < 0.5 kcal/mol
for all values of ε and λ. When κ = 0, DESMO is equivalent
to GCOSMO, and this model reproduces the LHG results (for
κ = 0) to within 0.01 kcal/mol for all values of ε. Moreover,
for the two-sphere example in Fig. 2, the GCOSMO/C-PCM
result is virtually identical to the LHG result at all ion–ion dis-
tances. Only when the two spheres are nearly in contact with
one another does the difference exceed 0.01 kcal/mol.
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FIG. 2. Difference between the PCM solvation energy and that predicted by
the analytic LHG formulas, for two point charges centered in spherical cav-
ities with ε = 4 and κ = 0. The energy difference is plotted as a function of
the center-to-center distance between the two spheres, the sum of whose radii
is 2.99 Å. (Note that both the horizontal and vertical scales are logarithmic.)

The accuracy of the DESMO-0 model, in contrast, dete-
riorates as λ decreases, and for ε = 4 the errors are quite large
(see Table VIII). This underscores the need to account for the
IEL in DESMO calculations, but also indicates that the local
IEL approximation appears to be accurate even for cavities
composed of disjoint spheres.

C. Comparison to results from the adaptive
Poisson-Boltzmann solver

We next consider more realistic MM solutes and cav-
ity shapes, for which no analytic solution is available.
PCM results here will be compared to results obtained by
three-dimensional numerical solution of the LPBE, using
the so-called adaptive Poisson-Boltzmann solver (APBS),74

a numerical finite-difference code that performs three-
dimensional volumetric integration of the LPBE. Two differ-
ent solutes are considered: alanine dipeptide and thymine din-
ucleotide. Atomic charges and radii (i.e., Lennard-Jones “σ”
parameters) are taken from the AMBER99 force field.75 For
the dipeptide example, we construct the cavity using unmod-
ified Lennard-Jones radii, but for the dinucleotide we add a
solvent probe radius of 1.4 Å to each Lennard-Jones radius, so
that the cavity corresponds to a “solvent accessible surface.”76

The geometries of the solutes were obtained from the TINKER

program77 and are provided in the supplementary material,
along with the atomic charges and radii.73

The APBS calculation should provide an accurate result,
provided that the integration grid is very dense, and we use a
193 × 193 × 193 grid, with a grid spacing of 0.05 Å for the
dipeptide and 0.10 Å for the dinucleotide. For the Kirkwood
model problems in Sec. IV A, these specifications reproduce
the total energies to within 0.1 kcal/mol. However, we can-
not expect perfect agreement between APBS and the PCM
results, even if the latter were exact, because the discretiza-
tion of the solute cavity is inherently different in these two
approaches.

The results of these tests are shown in Tables X–XIII
and reflect the same trends seen in the previous tests. The
agreement between APBS and the PCMs is remarkably good

TABLE X. Reaction-field energies, Epol, for alanine dipeptide, obtained
using the APBS software. PCM results are given in terms of the error relative
to the APBS result.

Relative energy (kcal/mol)

λ Epol IEF-PCM/
ε (Å) (kcal/mol) DESMO DESMO-0 SS(V)PE
4 ∞ –66.98 –2.53 –2.53 1.56
20 ∞ –87.93 –0.12 –0.12 1.03
80 ∞ –92.18 0.66 0.66 0.96

4 25 –67.16 –2.50 –2.56 1.53
20 25 –87.96 –0.11 –0.12 1.02
80 25 –92.19 0.66 0.66 0.96

4 5 –69.59 –2.20 –3.22 1.30
20 5 –88.47 –0.03 –0.24 0.94
80 5 –92.32 0.68 0.63 0.94

4 3 –71.98 –1.91 –4.10 1.14
20 3 –88.97 0.05 –0.39 0.89
80 3 –92.44 0.71 0.60 0.93

TABLE XI. Salt shifts, Epol(κ) − Epol(κ = 0), for alanine dipeptide, ob-
tained using the APBS software and various PCMs.

Salt shift (kcal/mol)

λ IEF-PCM/
ε (Å) APBS DESMO DESMO-0 SS(V)PE

4 25 –0.18 –0.15 –0.21 –0.20
20 25 –0.04 –0.03 –0.04 –0.04
80 25 –0.01 –0.01 –0.01 –0.01

4 5 –2.61 –2.28 –3.30 –2.87
20 5 –0.54 –0.46 –0.66 –0.63
80 5 –0.14 –0.11 –0.17 –0.16

4 3 –5.00 –4.38 –6.58 –5.42
20 3 –1.05 –0.88 –1.32 –1.18
80 3 –0.27 –0.22 –0.33 –0.30

TABLE XII. Reaction-field energies, Epol, for thymine dinucleotide, ob-
tained using the APBS software. PCM results are given in terms of the error
relative to the APBS result.

Relative energy (kcal/mol)

λ Epol IEF-PCM/
ε (Å) (kcal/mol) DESMO DESMO-0 SS(V)PE
4 ∞ –27.88 –0.91 –0.91 0.40
20 ∞ –36.64 0.17 0.17 0.55
80 ∞ –38.41 0.51 0.51 0.60

4 25 –29.25 –0.95 –1.00 0.42
20 25 –36.92 0.17 0.16 0.55
80 25 –38.48 0.51 0.50 0.61

4 5 –32.00 –1.11 –1.77 0.37
20 5 –37.48 0.15 0.02 0.54
80 5 –38.62 0.50 0.47 0.60

4 3 –33.19 –0.98 –2.13 0.33
20 3 –37.74 0.20 0.03 0.53
80 3 –38.69 0.52 0.46 0.60
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TABLE XIII. Salt shifts, Epol(κ) − Epol(κ = 0), for thymine dinucleotide,
obtained using the APBS software and various PCMs.

Salt shift (kcal/mol)

λ IEF-PCM/
ε (Å) APBS DESMO DESMO-0 SS(V)PE
4 25 –1.37 –1.41 –1.46 –1.35
20 25 –0.27 –0.28 –0.29 –0.27
80 25 –0.07 –0.07 –0.07 –0.07

4 5 –4.12 –4.31 –4.98 –4.15
20 5 –0.84 –0.86 –1.00 –0.85
80 5 –0.21 –0.22 –0.25 –0.21

4 3 –5.31 –5.39 –6.53 –5.39
20 3 –1.10 –1.08 –1.31 –1.12
80 3 –0.28 –0.27 –0.33 –0.28

(∼1 kcal/mol or better) considering that they are significantly
different approaches. For ε = 4, the DESMO results for Epol

differ from APBS by 1–2 kcal/mol, but the differences are
much smaller in the higher-dielectric environments. This in-
dicates that the local IEL approximation fares well even for
complicated cavity shapes and non-trivial solute charge dis-
tributions. Curiously, for ε = 80, the DESMO and DESMO-0
models are in excellent agreement here, which was not the
case in previous tests.

V. SUMMARY

We have formulated a new boundary-element PCM
for electrolytic solvents that we call the Debye-Hückel-
like screening model, or DESMO. This model general-
izes COSMO to solutions with non-zero ionic strength,
within the Debye-Hückel (linearized Poisson-Boltzmann)
limit. DESMO is closely related to “screened” versions of the
PCMs known as IEF-PCM and SS(V)PE that have previously
been developed for electrolytes.23, 42, 43 Similar to COSMO in
the salt-free case, however, DESMO is significantly simpler to
implement and much less expensive to evaluate, as compared
to these alternative PCMs.

We have also presented the first fully analytic im-
plementation of the screened IEF-PCM/SS(V)PE model.
This implementation builds upon our “SWIG” method for
smooth discretization of the integral equations that appear
in boundary-element PCMs,50, 52 and our implementation of
these screened PCMs is the first that is amenable to analytic
gradient techniques. For single-cavity problems, the IEF-
PCM/SS(V)PE approach affords the same solvation energy
as does the LPBE, but for systems composed of disjoint cav-
ities, we observe small discrepancies between the screened
IEF-PCM/SS(V)PE solvation energy and that obtained by
exact solution of the LPBE. We ascribe these differences to a
fundamental limitation of the PCM reaction-field ansatz.

For solutes described by molecular mechanics point
charges, we have shown that DESMO accurately approxi-
mates the exact solution of the LPBE, in cases where the ex-
act solution is available, and accurately approximates other
numerical solutions in cases where no analytic solution is
available. For polar solvents (modeled here using ε = 20

and 80), the total energies predicted by DESMO lie within
∼0.5 kcal/mol of benchmark results, across a broad range
of ionic strengths. To obtain this level of accuracy, an ap-
proximate treatment of the ion exclusion layer appears to be
mandatory, and use of the “DESMO-0” model (which ne-
glects the IEL and was introduced here solely for compar-
ative purposes) is not recommended. Further refinements to
the treatment of the IEL, beyond the “local IEL approxima-
tion” that is introduced here, may improve the accuracy of
DESMO.

Given the accuracy, simplicity, and computational effi-
ciency of DESMO, we think that this model represents an im-
portant addition to the PCM toolbox.
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