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Fragment-based quantum chemistry methods are a promising route towards massively parallel elec-
tronic structure calculations in large systems. Unfortunately, the literature on this topic consists of a
bewildering array of different methods, with no clear guiding principles to choose amongst them.
Here, we introduce a conceptual framework that unifies many of these ostensibly disparate ap-
proaches. The common framework is based upon an approximate supersystem energy formula for
a collection of intersecting (i.e., overlapping) fragments. This formula generalizes the traditional
many-body expansion to cases where the “bodies” (fragments) share some nuclei in common, and
reduces to the traditional many-body expansion for non-overlapping fragments. We illustrate how
numerous fragment-based methods fit within this framework. Preliminary applications to molecu-
lar and ionic clusters suggest that two-body methods in which dimers are constructed from inter-
secting fragments may be a route to achieve very high accuracy in fragment-based calculations.
© 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4742816]

I. INTRODUCTION

The cost of ab initio electronic structure calculations in-
creases steeply as a function of both system size (number
of atoms, NA) and also one-particle basis size (number of
basis functions per atom, NB). The cost can be character-
ized as O(Na

ANb
B), where typically b = 2–4 and a ≥ 3, de-

pending upon the ab initio method in question. Fragment-
based methods1 represent a promising path toward reducing
the computational scaling with respect to NA. In such meth-
ods, the energy of a large molecule or cluster is decomposed
in terms of the energies of a collection of smaller subsystems,
each of which is assumed to be representative of the local
electronic environment. This idea has an undeniable intuitive
appeal, as chemists are accustomed to reasoning in terms of
functional groups, localized orbitals, and electron pairs, and
is consistent with Kohn’s notion of the “nearsightedness” of
electronic matter.2, 3 If the NA-atom system can be decom-
posed into NF smaller fragments (each of size nA, say), then
the computational scaling for a fixed basis set is reduced from
O(Na

A ) to NF × O(na
A). This is potentially a huge speedup,

even more so because the NF smaller calculations are com-
pletely independent and therefore qualify as “embarrassingly
parallelizable.”

Of course, the proverbial devil lies in the as-yet-
unspecified details. While these ideas have been around for
a long time,4–6 the past decade has seen a flurry of activity
resulting in a tremendous variety of fragment-based quantum
chemistry methods that seek better approximations to the to-
tal system energy. (See Ref. 1 for a lengthy review, albeit one
that still falls short of an exhaustive list of fragment-based
methods.) Relationships between these methods are not al-
ways clear,7 and one aim of the present work is to develop

a)Electronic mail: herbert@chemistry.ohio-state.edu.

a common theoretical framework to describe this plethora of
methods.

Several recent papers have attempted to classify extant
fragment methods within a systematic framework.1, 7, 8 A re-
cent review1 categorizes these approaches as either “one-step”
methods, in which the property of interest (almost always the
energy) is computed directly from fragment calculations; or
else “two-step” methods, wherein the fragment calculations
are first used to construct the supersystem density matrix,
which is then used to compute supersystem properties. (For
one-step methods, properties other than the total energy must
be cast as energy derivatives.9) Two-step methods are not con-
sidered here. Gordon et al.1 further distinguish between three
different types of fragmentation schemes:

� those in which only monomers are used;
� those in which unions of two or more fragments are

used; and
� those in which monomers intersect with one another.

One result of the present work is the recognition that non-
intersecting fragments can be handled as a special case of in-
tersecting fragments.

Mayhall and Raghavachari8 recently provided an impor-
tant step toward unifying (or at least, classifying) existing
fragment methods, by showing how one can specify such
methods in an elemental manner. According to their classi-
fication scheme, one must specify:

(1) a method for defining “groups” of atoms,
(2) a method for fragmenting the supersystem, and
(3) selection of an appropriate energy expression in terms of

the fragment energies.

These authors furthermore proposed what they termed a
“molecules-in-molecules” approach, in which the supersys-
tem energy is expressed using an ONIOM-like equation,10, 11
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FIG. 1. An illustrated example of the nomenclature used in this study. Panel (a) defines groups for a particular molecule. Panel (b) illustrates fragmentation of
the molecule and dimer formation, using fragments that are allowed to intersect. Panel (c) depicts a particular fragmentation using non-intersecting monomers.
Panel (d) illustrates the use of auxiliary monomers. Consult the text for further explanation.

such that different fragments may be described at different
levels of theory. Although fragment-based methods, by their
very definition, will probably never satisfy Pople’s definition
of a theoretical model chemistry,12 the elemental approach
in Ref. 8 brings us much closer to a systematic hierarchy of
fragment-based methods.

Restricting our attention to one-step methods in which
the supersystem energy is computed directly from subsystem
(fragment) energy calculations, our own survey of the litera-
ture suggests two distinct paradigms for decomposing a sys-
tem into fragments. The first—and more common—approach
is to construct fragments by partitioning the nuclei into dis-
joint subsets. The total system energy can be determined
from the subsystem energies by means of a many-body ex-
pansion (MBE),1, 13, 14 truncated at some finite order. Higher-
order terms are sometimes included by performing a full su-
persystem calculation at a lower level of theory,15–23 which
might be a force field.14–17 (Hybrid methods of this sort fit
within the ONIOM-type formalism mentioned above.) As an
alternative to using disjoint fragments, one might allow in-
tersections between the subsets of nuclei, such that a given
nucleus might belong to more than one fragment. The latter

approach precludes a straightforward summation of the frag-
ment energies, and a variety of energy formulas have been
suggested in the case of intersecting fragments.24–26

The purpose of this work is to unify these two seemingly
disparate notions under a common energy formula, such that
various fragment methods can be viewed as different trunca-
tions of—or approximations to—a “master” energy expres-
sion. This simplifies element (3) in the prescription above, by
providing a universal formula to which approximations can
be made. We will then compare the results of several different
truncation schemes, some of which correspond to previously
proposed fragment methods but some of which are new.

II. THEORY

A. Nomenclature

The goal of this work is to systematize numerous
fragment-based methods, thus we require a systematic no-
tation. Figure 1 introduces this notation by means of a
specific example. We define the entire (super)system to be
the molecule, irrespective of whether it is actually a sin-
gle large molecule or a cluster of smaller molecules. Most
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fragmentation algorithms then partition the molecule into a
set of groups. We define a group to be collection of nuclei
that are never separated, perhaps because they represent some
chemical moiety characterized by significant electron delo-
calization. Often, groups are created by severing all single
covalent bonds between heavy atoms,8, 24 which is the pro-
cedure that is followed in the example of Fig. 1(a). One then
selects a fragmentation method to assign groups to fragments.
Each fragment consists of a specified set of groups. These
fragments, which will also be called monomers (for reasons
that should become clear later on) represent the basic build-
ing blocks of the calculation.

It was suggested by Suárez et al.7 that all fragment-
based approaches could be classified according to whether
they employ intersecting or non-intersecting fragments, a dis-
tinction that is paramount to the forthcoming discussion. Two
fragments are said to intersect if they contain a common
group, that is, if their intersection as sets is not empty. The
first diagram in Fig. 1(b) illustrates one particular way in
which a set of intersecting fragments might be formed, and
the intersections are labeled using the notation of set theory.
Figure 1(c) depicts an alternative fragmentation scheme in
which the fragments do not intersect. (Automated criteria for
constructing fragments will be discussed in Sec. II E; the
choices in Fig. 1 are intended purely for illustrative purposes.)

In both Figs. 1(b) and 1(c), fragmentation severs covalent
bonds; in order to restore the correct valencies, these severed
bonds must be capped. We define a capping method as an al-
gorithm to determine the cap and its properties, such as its
charge and position relative to the valence that it is intended
to saturate. Most often the cap is a hydrogen atom and is sim-
ply placed at the location of the “missing” atom involved in
the covalent bond. (One might worry about an anomalously
long bond length to the hydrogen atom. This point has been
addressed in the literature,24 and is discussed in Sec. II E.) The
sum of the fragment energies constitutes the “one-body” en-
ergy that represents the first approximation to the ground-state
energy. Note that if fragments A and B intersect (A ∩ B �= Ø),
then it will be necessary to cap the fragment A ∩ B, as the en-
ergy of A ∩ B will appear in the generalized many-body ex-
pansion (GMBE) that is introduced in Sec. II D.

B. Many-body expansion

Having introduced the notation (if not the algorithms) for
elements (1) and (2) in the classification scheme8 discussed
in Sec. I, we next consider element (3), the energy formula.
For non-intersecting fragments that do not cut across cova-
lent bonds, it has long been recognized that the exact ground-
state energy, E, can be expressed in terms of the energies of
monomers, dimers, trimers, etc., by means of the MBE. The
most conceptually straightforward way to write the MBE is13

E =
N∑

I=1

E
(1)
I +

N∑
I, J

(I < J )

(
E

(2)
IJ − E

(1)
I − E

(1)
J

)

+
N∑

I, J, K

(I < J < K)

[
E

(3)
IJK − E

(1)
I − E

(1)
J − E

(1)
K

− (
E

(2)
IJ − E

(1)
I − E

(1)
J

) − (
E

(2)
IK − E

(1)
I − E

(1)
K

)
− (

E
(2)
JK − E

(1)
J − E

(1)
K

)] + · · · . (1)

Here, E
(1)
I is the energy of the Ith monomer and E

(2)
IJ repre-

sents the energy of the dimer constructed from monomers I
and J, etc.

At each order in the MBE, one subtracts out lower-order
interactions to avoid overcounting, and for our purposes it will
be more convenient to rewrite Eq. (1) in terms of two-body
and higher-order energy corrections,15 such as

�E
(2)
IJ = E

(2)
IJ − E

(1)
I − E

(1)
J . (2)

The various energy corrections E
(1)
I , �E

(2)
IJ , �E

(3)
IJK, . . . may

be computed at different levels of theory.14–19, 27

For brevity, we will forgo the “IJ” notation in
Eqs. (1) and (2) in favor of a single index that runs over all

NCn = N !

n!(N − n)!
(3)

combinations of n fragments, and rewrite the MBE in Eq. (1)
as

E =
N∑

α=1

E(1)
α +

NC2∑
α=1

�E(2)
α +

NC3∑
α=1

�E(3)
α + · · · . (4)

We define E(n)
α to be the energy of the αth “n-mer” constructed

from a union of n different fragments, where α = 1, 2, . . . ,
NCn indexes the unique combinations of n fragments. Then
�E(n)

α is analogous to Eq. (2) and subtracts out the appro-
priate lower-order interactions involving these fragments. A
recursive expression for these energy corrections is

�E(n)
α = E(n)

α −
nCn−1∑
β=1

�E
(n−1)
β

−
nCn−2∑
γ=1

�E(n−2)
γ − · · · −

n∑
ω=1

E(1)
ω . (5)

The summations in this equation extend only over the frag-
ments that constitute the αth n-mer. For example, if n = 3
and we consider the trimer consisting of fragments a, b, and
c, then the index β in Eq. (5) runs over the 3C2 dimers a ∪ b,
a ∪ c, and b ∪ c.

The recursive definition in Eq. (5) suggests that �E(1)
α

= E(1)
α . This makes sense, in the context of Eq. (4), given that

the sum of one-body energies constitutes a first approximation
to the supersystem energy, E. More generally, we can rewrite
Eq. (4) as

E =
N∑

n=1

(
NCn∑
α=1

�E(n)
α

)
. (6)

This represents a very concise expression of the MBE, which
we will attempt to generalize (in Sec. II D) to cases where
the fragments intersect. For non-intersecting fragments,
Eq. (6) is a formally exact expression that in practice would
be truncated at some value of n < N. Neglecting terms in
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Eq. (6) for which n > m affords an m-body approximation,
E(m), to the total energy. A formula for E(m) can be expressed
recursively, in terms of the lower-order k-body energy expres-
sions, E(k):28

E(m) =
NCm∑
α=1

E(m)
α −

m−1∑
k=1

[
(N − k)!

(N − m)!(m − k)!

]
E(k). (7)

Note that E(1) equals the sum of the monomer energies, hence
Eq. (7) ultimately does provide a closed formula for E(m) in
terms of the energies of k-mers of fragments (with k ≤ m).
The sum E(1) + E(2) + E(3) + ··· is precisely the form of the
MBE that is given in Eq. (1).

C. Intersecting fragments

Our goal is to develop a formula analogous to Eq. (7) that
is valid in the case of intersecting fragments. To the best of
our knowledge, it was recognized only recently8 that existing
fragment-based methods that employ intersecting fragments
are essentially invoking the approximation

E ≈
N∑

α=1

E (1)
α , (8)

where E (1)
α will be called the intersection-corrected energy for

fragment α, and is defined by

E (1)
α = E(1)

α −
∑

β

(β > α)

E
(1)
α∩β

+
∑
β, γ

(γ > β > α)

E
(1)
α∩β∩γ − · · · . (9)

In this expression, E
(1)
α∩β denotes the energy of the subsys-

tem constructed from the intersection of fragments α and β,
and E

(1)
α∩β∩γ denotes the energy of a system construction from

the intersection of three different fragments. (If construction
of these intersections requires severing covalent bonds, then
a method for capping severed valencies is required. This is
discussed in Sec. II E.) Equation (9) has its origin in the set-
theoretical principle of inclusion/exclusion (PIE), and we will
argue in Sec. II D that the “intersection” terms (E(1)

α∩β , etc.)
prevent the overcounting of electron–electron and electron–
nucleus interactions. As discussed below, the expansion nat-
urally terminates when all of the intersections α ∩ β ∩ ··· ∩ ω

are empty.
The approximation defined in Eqs. (8) and (9) is equiva-

lent to the energy expression used in the cardinality-guided
molecular tailoring approach (CG-MTA).25, 29, 30, 60 Only re-
cently was it recognized8 that precisely the same expres-
sion is utilized in the generalized energy-based fragmentation
(GEBF) approach,26, 31, 32 another method that exploits inter-
secting fragments. This energy expression is also reminiscent
of the formulas that are obtained by following the system-
atic molecular fragmentation (SMF) procedure.24, 33–35 How-
ever, we have implemented the SMF procedure and thereby
confirmed that it generates only a limited subset of the in-
tersections in Eq. (9) that are suggested by PIE. Rather than

using set theory, the GEBF and SMF methods instead con-
struct elaborate rules to avoid overcounting and thereby ob-
tain the ±1 coefficients that appear in Eq. (9), which may ac-
count for the delayed recognition of the similarities between
these methods. In contrast, PIE provides a conceptually sim-
ple means to obtain the energy formula, once the molecular
fragmentation scheme has been specified.

Unlike the traditional MBE for non-intersecting frag-
ments, which is formally exact, Eq. (8) is fundamentally ap-
proximate, which begs the question of why one might wish
to consider approaches based on intersecting fragments at all.
Both approaches have potential strengths and weaknesses. For
the traditional MBE in Eq. (6), one expects the corrections
�E(n)

α to become smaller as n increases, so that the expan-
sion might reasonably be truncated at fairly low order. Three-
body expansions tend to be about an order-of-magnitude bet-
ter approximations to E than are two-body expansions,13

although this need not be the case in general. (See Ref. 22
for an example where a higher-order many-body approxi-
mation affords less accurate results. This particular example
was analyzed in Ref. 15, where it is shown that error can-
cellation plays a pivotal role in the accuracy of these meth-
ods.) In any case, the potentially exact nature of MBE fa-
cilitates systematic convergence tests, which is an appealing
characteristic that is lost in the intersecting-fragment expres-
sion of Eq. (8). On the other hand, Eq. (8) has a potential
advantage in that it may include certain inter-monomer inter-
actions already at the one-body level, depending on the na-
ture of the fragmentation method, whereas such interactions
do not appear in the conventional MBE until the two-body
level.

As an example, consider the fragmentation scheme illus-
trated in Fig. 1(b), specifically, the fragments labeled 1, 2, and
3. All four groups contained within these three fragments are
actually contained within the union 1 ∪ 3, and therefore ap-
plication of the MBE does not require the existence of frag-
ment 2 at all. In the absence of fragment 2, however, the in-
teraction between groups 2 and 3 appears for the first time at
the level of dimers (specifically, the dimer formed from the
union of fragments 1 and 3). By including fragment 2, the in-
teraction of groups 2 and 3 appears already at the one-body
level. Although this requires an additional one-body calcula-
tion (on fragment 2), the benefit might conceivably outweigh
the cost, given the steep scaling of quantum chemistry cal-
culations with system size. In other words, a larger number
of low-order n-body calculations, involving intersecting frag-
ments, might be preferable to a smaller number of calcula-
tions where n is larger, if comparable accuracy can be ob-
tained at reduced cost.

With these considerations in mind, it would be useful to
have a means to include these inter-group interactions already
in the one-body terms (by means of intersecting fragments),
yet still have a systematic means of converging to the exact
ground-state energy. To obtain such a method, we will gener-
alize Eq. (8) by including two-body and higher-order terms,
ultimately obtaining an approximation reminiscent of Eq. (7).
This is taken up in Sec. II D, where we attempt to generalize
the traditional MBE, Eq. (6), to encompass both intersecting
and non-intersecting fragments.
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D. Generalized many-body expansion

In this section we present a GMBE in the spirit of Eq. (7),
except that it applies to both intersecting and non-intersecting
monomers. For a collection of N monomers, we note that the
MBE truncated at the n-body level is not exact except in the
trivial case that n = N. The GMBE presented below has the
same feature, but the logic behind this generalized expression
is different.

1. Basic idea

The motivation for the GMBE is rooted in PIE, which is
a theorem about the cardinality of sets. Let S1, S2, . . . , SN be
subsets of some set S; these subsets need not be disjoint. PIE
states that the cardinality of S can be expressed as

|S|=
N∑

i=1

|Si |−
N∑
i, j

(i < j )

|Si ∩ Sj |+
N∑

i, j, k

(i < j < k)

|Si ∩ Sj ∩ Sk|

− · · · + (−1)N−1|S1 ∩ S2 ∩ · · · ∩ SN |

=
N∑

n=1

(−1)n+1
n∑

i1, i2, . . . , in
(i1 < i2 < · · · < in)

|Si1 ∩ Si1 ∩ · · · ∩ Sin |. (10)

This expression is immediately reminiscent of the
intersection-corrected energy defined in Eq. (9), but the
connection between that equation and set theory is not
obvious. The connection is the following: let S be the set
of nuclei in the supersystem, and let S1, S2, . . . SN be the
subsets consisting of the nuclei contained in each fragment.
We exploit the nuclei as means to keep track of the various
Coulomb interactions that appear in the supersystem’s
electronic Hamiltonian. PIE, applied to the set of nuclei,
exactly prevents us from overcounting (or undercounting)
the nucleus–nucleus interactions, and we conjecture that this
principle will approximately eliminate overcounting of the
other interactions, insofar as the electrons are largely bound
to the nuclei and any counting argument that are applicable
to the nuclei may therefore be approximately applicable to
the electrons.

The gist of this argument is that we will obtain the GMBE
simply by replacing the cardinalities appearing in Eq. (10)
with the energies of the corresponding subsystems. As such,
the GMBE presented below will not be derived based on any
systematic approximations to the supersystem Hamiltonian,
but merely motivated. It is left to the numerical calculations
in Sec. III to validate these arguments.

From this point of view, a fragmentation algorithm is
simply a prescription for partitioning the nuclei into N sub-
sets (some of which may intersect) that we denote Fα ≡ F (1)

α ,
where α = 1, . . . , N. More generally, the notation F

(n)
β , where

β = 1, . . . , NCn, will indicate an n-mer constructed from
the union of n distinct fragments. Dimers are constructed as
unions of monomers, which we might variously indicate as

F
(2)
Fα∪Fβ

= Fα ∪ Fβ = F
(2)
α∪β. (11)

We emphasize that this dimer contains only one copy of each
nucleus, even in the case of intersecting fragments, which is
consistent with the set-theoretical notation that we employ. In
some cases a more compact notation will be used, in which
a dimer is denoted simply as F (2)

γ , where γ = 1, . . . , NC2

indexes the unique choices of α and β in Eq. (11). A similar
notation will be used for higher-order n-mers.

As an example of this notation, consider the fragmenta-
tion scheme suggested in Fig. 1(c), and let the kth group be
denoted as Gk. The first fragment in this diagram is a union
of three different groups, F

(1)
1 = F

(1)
G1∪G2∪G3

. The first dimer

consists of a union of fragments 1 and 2: F
(2)
1 = F1 ∪ F2.

In the case of intersecting fragments, one may encounter
n-mers that are subsets of other n-mers. As an example, con-
sider why F1 ∪ F2 is not listed amongst the possible dimers
in Fig. 1(b). The dimer F1 ∪ F2 includes the nuclei in groups
G1, G2, and G3, however, this is subset of the groups that
are included in the dimer F

(2)
1 , which is labeled as “dimer 1”

in Fig. 1(b). Consider the system constructed from the union
of F1 ∪ F2 and F

(2)
1 . An intersection-corrected energy for this

system is obtained by computing the energies of F1 ∪ F2 and
of F

(2)
1 , separately, and then subtracting the energy of their

mutual intersection. The resulting intersection-corrected en-
ergy is

E = E
(2)
F1∪F2

+ E
(2)
F1

− E
(2)
(F1∪F2)∩F1

= E
(2)
F1∪F2

+ E
(2)
F1

− E
(2)
F1∪F2

= E
(2)
F1

. (12)

This example demonstrates that, computationally speaking,
we need not consider any n-mer that is a subset of another
n-mer, because PIE, as we apply it here, will lead to cancella-
tion. From the standpoint of formal theory, inclusion of these
subset n-mers poses no problem, because the net effect is to
add zero.

2. Energy expression

To obtain the GMBE energy expression, let us proceed
by means of an example based on Fig. 1(c). This panel illus-
trates a case of the m-body energy expression in Eq. (7) with
m = 2 and N = 3. As such, we may immediately write down
an approximation for the ground-state energy:

E ≈ E
(2)
F1∪F2

+ E
(2)
F1∪F3

+ E
(2)
F2∪F3

− E
(1)
F1

− E
(1)
F2

− E
(1)
F3

. (13)

However, because the fragments do not intersect in this par-
ticular case [see Fig. 1(c)], we have (for example)

E
(1)
F1

= E
(2)
(F1∪F2)∩(F1∪F3). (14)

Furthermore, since F1 ∩ F2 ∩ F3 = Ø we could write
E

(2)
F1∩F2∩F3

= 0. Exploiting these identities, we can rewrite
Eq. (13) in an equivalent way:

E ≈ E
(2)
F1∪F2

+ E
(2)
F1∪F3

+ E
(2)
F2∪F3

− E
(2)
(F1∪F2)∩(F1∪F3)

−E
(2)
(F1∪F2)∩(F2∪F3) − E

(2)
(F1∪F3)∩(F2∪F3)

+E
(2)
(F1∪F2)∩(F1∪F3)∩(F2∪F3). (15)
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Comparing this expression to Eq. (8) suggests that Eq. (15)
has the form of a summation (over all unique pairs of dimers)
of intersection-corrected two-body energies. By careful anal-
ysis of Eq. (7), it becomes apparent this is possible for arbi-
trary N, in the case of non-intersecting fragments.

Although the argument above can be generalized to larger
m, due to the factorial increase in the number of terms it is
easier to pursue another line of thinking. To this end, consider
Fig. 1(d) in which we have defined a set of NC2 “auxiliary”
monomers, which are precisely the dimers from Fig. 1(c).
By way of notation, let us denote the auxiliary monomers
as F̃α ≡ F̃ (1)

α in order to distinguish them from the original
monomers, F (1)

α . Unlike the original monomers, the auxil-
iary monomers do intersect, and thus far we know only one
way to approximate the supersystem energy for intersecting
monomers, namely, Eq. (8). Applying this equation to the par-
ticular set of auxiliary monomers in Fig. 1(d), one obtains

E ≈ E
(1)
F̃1

+ E
(1)
F̃2

+ E
(1)
F̃3

− E
(1)
F̃1∩F̃2

− E
(1)
F̃1∩F̃3

− E
(1)
F̃2∩F̃3

+ E
(1)
F̃1∩F̃2∩F̃3

. (16)

This is identical to the energy expression in Eq. (15), once the
identities of the fragments is recognized.

The procedure in the preceding paragraph can be general-
ized. Start from a set of non-intersecting fragments. At order
m in the GMBE, we define a set of NCm auxiliary monomers,
each of which is identical to an m-mer formed from the non-
intersecting fragments. The auxiliary monomers do intersect,
and we therefore approximate the energy using Eq. (8). Fi-
nally, by realizing that the energy computed for these auxil-
iary monomers must be equal to that computed for the m-mers
from which they arose, we obtain the m-body approximation
to the total energy within the GMBE:

E(m) =
NCm∑
α=1

E (m)
α , (17)

where

E (m)
α =E(m)

α −
NCm∑
β

(β > α)

E
(m)
Fα∩Fβ

+
NCm−1∑

β, γ

(γ > β > α)

E
(m)
Fα∩Fβ∩Fγ

− · · · + (−1)NCm−αE
(m)
Fα∩Fα+1∩···∩FNCm

. (18)

In other words, the m-body approximation E ≈ E(m) is a sum
of intersection-corrected energies for the various m-mers con-
structed using a given fragmentation scheme.

Previously, we suggested that the GMBE follows the
spirit of Eq. (7), a point on which we now elaborate. For any
truncation order, m, we may compute an approximate energy
E(m) as the sum of the energies of the NCm distinct m-mers,
so long as we take care not to double count any interactions.
We ensure no double-counting occurs by appealing to PIE, as
applied to the set of nuclei. Equation (7) can be interpreted
similarly: it states that the m-body approximation to the en-
ergy is given by the sum of the m-mer energies, less a linear
combination of the (m − 1)-mer energies, the (m − 2)-mer
energies and so on, down to monomer energies. These terms

need to be included so as to cancel any double-counting, but
in the special case of non-intersecting monomers all intersec-
tions are readily evaluated in terms of monomers or unions
of monomers. Furthermore, Eq. (17) reduces to Eq. (7) if the
monomers do not intersect.

A useful feature of the traditional MBE, Eq. (6), is that
one may check the convergence of the n-body approximation
to the supersystem energy based on whether the (n + 1)-body
correction is negligible or not. This same sort of comparison
is also possible for the GMBE. However, while one might an-
ticipate that the terms E(n) in the traditional MBE will get
smaller as n increases, it is not clear whether the same will
be true of the GMBE. A second distinction is that once E(n)

has been computed using the traditional MBE, the only new
information that is needed to compute E(n + 1) is the energy of
each (n + 1)-mer, of which there are NCn + 1. In the case of
the GMBE, however, the calculation of E(n + 1) may also re-
quire the energies of some additional intersections that were
not required to compute E(n).

E. Unified view of existing fragment methods

Having introduced the GMBE, our second goal is to de-
fine the concept of “fragment-based approach” in an elemen-
tal fashion, similar to the “molecules in molecules” (MIM)
idea8 but taking into account the more general energy expres-
sion derived above. The actual separation is to some extent se-
mantic, but we find that four elements are sufficient to specify
each such approach:

(1) a fragmentation method,
(2) a capping method,
(3) an embedding method, and
(4) the number of layers.

In Ref. 8, the capping method was included as part of
the definition of the fragmentation method, but separating the
two is useful for classifying some existing fragmentation ap-
proaches, such as the molecular fractionation with conjugate
caps and related methods.36–39 The “number of layers” in our
list corresponds to the “MIM level” in Ref. 8, and although all
of our calculations in Sec. III use only a single layer, we in-
clude this element for the sake of completeness as it is neces-
sary for specifying multi-layer fragment methods.8, 18, 19, 22, 27

(In the multi-layer case, the first three elements in our list
would need to be specified for each layer.) By “embedding
method,” we mean an algorithm by means of which an ex-
act or (more often) approximate electrostatic potential for
the supersystem is added to each fragment electronic struc-
ture calculation.40 The most common embedding schemes use
atom-centered point charges to represent the other fragments;
such procedures are discussed in more detail in Sec. II F.

The elemental scheme outlined above allows us to clas-
sify, and thus compare, a great many seemingly disparate
fragment-based methods, and here we explore some exam-
ples that are relevant to the calculations presented in Sec. III.
We have already mentioned the SMF method of Collins
and co-workers;24, 33–35 in fact, three different fragmentation
schemes are suggested in Ref. 24 (“levels one, two, and three”
in the language of that paper), which differ in the number of
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covalent bonds allowed between atoms in the same fragment.
For the purpose of notation, let us denote these three ap-
proaches as SMF1, SMF2, and SMF3. The same capping
method is used in each case, and all three methods employ
only a single layer of theory. No embedding was employed
in the original version of these methods,24, 33 although later
a distributed-multipole52 embedding was considered, along
with terms intended to model dispersion interactions between
non-bonded fragments.34, 41 The latter terms are not consid-
ered here, and the SMF1 calculations presented in Sec. III
simply use the SMF1 fragmentation scheme, with or without
an electronic embedding that is described in Sec. II F.

In SMF1, fragments are constructed from all possible
pairs of covalently bonded groups. (In our implementation,
this relies on either a user-defined connectivity or a default
cutoff of 2.0 Å to define covalent bonds.) The fragments
in Fig. 1(b) were constructed according to this algorithm.
Specifically, we start with G1 and form fragments G1 ∪ Gi

with any group Gi that is covalently bonded to G1, in this case,
G2. We then proceed to G2 and form all unique fragments
G2 ∪ Gi, etc. The SMF2 and SMF3 fragmentation algorithms
are similar except that groups connected by two or three cova-
lent bonds, respectively, are included within a fragment. All
three SMF approaches use the same capping method: after
severing a covalent bond between atoms located at r1 and r2,
a hydrogen atom is placed at position rcap defined by

rcap = r1 +
(

R1 + RH

R1 + R2

)
(r2 − r1), (19)

where Rx is the atomic radius of atom x. We will call this the
“SMF capping method.”

The GEBF approach of Li and co-workers26, 31, 32 is an-
other relevant example that can largely be viewed as an al-
ternative fragmentation method. The GEBF fragmentation
method starts with G1 and creates a fragment that includes
G1 and all other groups that lie within some specified dis-
tance, ξ , of the atoms in G1. (We take ξ = 3.0 Å, as in
Ref. 26.) The GEBF approach uses the same capping method
as in SMF, and also uses an electrostatic embedding based
on charges derived from natural population analysis.42 The
embedding charges, which could in principle be converged
self-consistently with the fragment self-consistent field (SCF)
wave functions, by means of a “dual SCF” procedure,43, 44

are found to be converged, or very nearly so, after only one
iteration.26

Unfortunately, the charge-embedding procedure that is
used in the GEBF method leads to non-variational SCF wave
functions, because the embedding potential is simply grafted
onto the SCF equations without proper account for how the
embedding charges vary with respect to changes in the SCF
wave function.43–45 As a result, the derivatives δESCF/δφ

A
i ,

where φA
i represents the ith occupied molecular orbital on

molecule A, are not zero, even if they are iterated to fully self-
consistent convergence with the fragment SCF wave func-
tions. As such, correct analytical gradients ought to require
the solution of coupled-perturbed equations—even at the SCF
level—whose dimension equals the dimension of the entire
(super)system. Although we are not the first to make this
observation,46, 47 this point is neither discussed in any of the

TABLE I. Elemental classification of various fragment-based methods.

Fragment Capping Embedding No. of
Method method method method layers

SMF1a SMF1(1) SMF None 1
SMF2a SMF2(1) SMF None 1
SMF3a SMF3(1) SMF Mone 1
GEBFb GEBF(1) SMF XPolc 1
SMF1(2)d SMF1(2) None None 1
EE-SMF1(2)d SMF1(2) None EE-MB-be 1
GEBF(1)d GEBF(1) None None 1
EE-GEBF(1)d GEBF(1) None EE-MB-be 1
GEBF(2)d GEBF(2) None None 1
EE-GEBF(2)d GEBF(2) None EE-MB-be 1

aIntroduced in Ref. 24.
bIntroduced in Ref. 26.
cEmbedding method from Ref. 43, introduced in this work for self-consistent GEBF
calculations.
dNew in this work.
eEmbedding method from Ref. 13.

GEBF papers,26, 31, 32 nor in the majority of other papers where
the embedding charges are iterated to self-consistency.34, 35, 48

It implies that putative analytic gradients published for some
of these methods are formally incorrect,31, 32, 49 despite hav-
ing been used in the past for geometry optimizations and
frequency calculations.50, 51 (In a similar vein, correct an-
alytic gradients for the fragment molecular orbital (FMO)
method1, 53–55 were reported only recently,47 following several
“approximate” versions of the FMO gradient.56, 57)

Next, let us discuss how the MBE fits into the unified,
elemental framework suggested here. As discussed in Sec. II
D, the MBE can be viewed as a systematic procedure for cre-
ating ever-larger monomers, and as such we view the MBE
as a part of the fragmentation method. The generalized MBE
is used to define the energy formula, whether or not the frag-
ments intersect. In view of this, we will adopt the notation
“XYZ(n)” to mean that fragmentation method XYZ has been
used in conjunction with an n-body truncation of the GMBE;
only the n = 1 and n = 2 cases are considered here.

Using this nomenclature, the method known in the litera-
ture as GEBF (Refs. 26, 31, and 32) is here denoted GEBF(1),
since it uses the one-body energy formula defined in
Eqs. (8) and (9) [or, equivalently, the GMBE in Eq. (17),
truncated at m = 1]. The GEBF(2) method, which is intro-
duced here for the first time, fragments the system in the
same way but evaluates the energy using the two-body ver-
sion of the GMBE.58 Table I summarizes how we catego-
rize various approaches on the basis of the elemental clas-
sification scheme suggested above.59 Further examples of
this classification scheme are discussed in the supplemen-
tary material,61 where we discuss the fragment molecular or-
bital method,53–55 the kernel energy method,62–65 the hybrid
many-body interaction method,15–17 and various ONIOM-like
QM:QM methods,8, 18–23 in addition to methods already men-
tioned explicitly above.

F. Electrostatic embedding

We alluded above to the fact that the GEBF
approach26, 31, 32 to obtaining self-consistent embedding
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charges does not preserve the variational nature of the
fragment SCF wave functions, and therefore complicates
the formulation of analytic gradients.49 The reason is that
this (and other34, 35, 48) self-consistent charge-embedding
procedures simply graft a charge–density interaction term
onto the SCF energy expression, without modifying the
accompanying Fock matrix, and therefore without consid-
eration for how the embedding charges vary with respect to
changes in the SCF wave function. This can be remedied by
explicitly incorporating these variations into the fragment
Fock matrices,43, 44 in what has come to be called the explicit
polarization (XPol) method.43, 66, 67 The charge derivatives
∂qi/∂Pμν that are required to construct the extra terms in
the Fock matrix have been reported for Mulliken charges,
Löwdin charges, and “ChElPG” charges69, 70 that are fit
to reproduce the molecular electrostatic potential,44, 45 and
we find that the ChElPG charges are the most stable.44

The XPol method has recently been suggested as a means
to incorporate electrostatic embedding into the MBE in a
variational fashion,68 which we shall pursue in some of the
calculations in Sec. III.

Most of our calculations, however, utilize the charge
embedding scheme introduced by Dahlke and Truhlar13 in
the context of what they term the electrostatically embedded
many-body (EE-MB) method. Two different versions were in-
troduced in Ref. 13, and we use “version b” (EE-MB-b), in
which gas-phase monomer calculations are used to determine
Mulliken charges for each monomer. The gas-phase charges
are then used as fixed embedding charges for the subsequent
fragment calculations. At first glance this seems rather crude,
although EE-MB results are found to be surprisingly insen-
sitive to the precise details of the embedding charges.13, 71

For some systems (e.g., zwitterionic glycine in water), self-
consistency is found to have a more significant effect,72 and
we will make a limited exploration of self-consistent embed-
ding charges for the F−(H2O)10 system in Sec. III C 2. Our
main focus in this work, however, is a comparison of MBE-
and GMBE-based methods.

The EE-MB-b charge embedding has not previously been
defined for methods that allow intersecting fragments, and
its extension to intersecting fragments is ambiguous because
atoms contained within intersections might have different
charges in different fragments. To resolve this ambiguity, we
define the embedding charge for a particular atom to be the
average of its charge in all fragments. This definition is a tem-
porary workaround that is not without problems (as discussed
in Sec. III), and we intend to consider alternatives in future
work. Nevertheless, it works surprisingly well for many of
the systems considered here. Methods denoted EE-XYZ(n)
include this version of electrostatic embedding.

III. NUMERICAL RESULTS

A. Computational details

We will consider numerical applications to (H2O)N and
F−(H2O)10 clusters described at either the Hartree-Fock (HF)
or B3LYP levels of theory. The 6-31+(d,2p) basis set is used
for all of the B3LYP calculations, whereas HF calculations

use 6-31G(d) for (H2O)N and 6-31+G(d) for F−(H2O)10. Wa-
ter cluster geometries ranging from N = 3 to N = 10 were
obtained from Ref. 21, and geometries for a set of F−(H2O)10

isomers were generated by means of molecular dynamics with
the AMOEBA force field.73 The F−(H2O)10 cluster geometries
are available in the supplementary material.61

Fragment-based calculations are designed to replicate the
results of a supersystem electronic structure calculation, at re-
duced cost. Ideally, owing to the embarrassingly paralleliz-
able nature of the approach, the largest individual electronic
structure calculation should represent the computational bot-
tleneck, assuming that sufficient processors are available.
(The situation is more complicated for methods where embed-
ding charges are determined self-consistently.) However, for
calculations based on the generalized MBE, the cost of deter-
mining all of the mutual intersections between fragments may
actually become prohibitive. In the Appendix, we prove that
the cost of fragmentation based on PIE scales exponentially
with the number of fragments. Thus, if the GMBE is to be a
useful approach for large molecules, clever fragmentation al-
gorithms that avoid this bottleneck will need to be developed.
We are currently pursuing such approaches, with promising
preliminary results as discussed in the Appendix. Here, our
focus is on accuracy, in order to first establish that GMBE-
based approaches are worth pursuing at all.

Of the methods introduced in Table I, we do not consider
the one-body methods SMF1(1) or EE-SMF1(1), because the
fragments in these cases are limited to a single H2O molecule
or F− ion, and thus these methods are nearly devoid of inter-
molecular interactions. The GEBF(1) method also truncates
the GMBE at the one-body level, but employs larger frag-
ments and is therefore worth considering. For the systems
considered here, the SMF1(2) method is equivalent to a two-
body expansion with non-intersecting fragments, which has
been considered previously for water clusters,13 and the EE-
SMF1(2) approach is, for (H2O)N, completely equivalent to
the EE-MB approach used in Ref. 13. These calculations pro-
vide a useful point of comparison for GEBF(2) results, which
are considered here for the first time.

Fragmentation is performed with an in-house program
that generates input files for the Q-CHEM electronic struc-
ture program.74 The raw energetic data can be found in the
supplementary material.61 As a concise summary and useful
companion for the discussion below, Table II summarizes the
statistical errors for each method, where the error is defined
with respect to a supersystem calculation. Table III summa-
rizes these same statistical errors on a per-monomer basis.

B. Water clusters

1. Absolute energies

We first consider how accurately the fragment meth-
ods reproduce the total energy of a supersystem calculation.
Figure 2 plots the unsigned errors resulting from each of six
different approaches. For the least accurate methods, the er-
rors emerge in a hierarchal manner so that we can make
a general statement that the accuracy increases in the or-
der SMF1(2) < GEBF(1) < EE-SMF1(2). Each of the other
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TABLE II. Mean signed error (MSE) and mean absolute error (MAE), both in kcal/mol, as obtained using various fragment methods.

Type No embedding Mulliken embeddinga

System Method of error SMF1(2) GEBF(1) GEBF(2) SMF1(2) GEBF(1) GEBF(2)

Absolute HF MSE 17.83 4.39 0.00 2.04 0.69 0.00
energies, HF MAE 17.83 5.59 0.01 2.04 0.72 0.02
(H2O)N

b B3LYP MSE 12.12 3.56 0.17 1.93 0.34 − 0.01
B3LYP MAE 12.12 4.06 0.47 1.93 0.41 0.03

Relative HF MSE − 0.12 6.27 − 0.01 0.15 0.46 0.05
energies, HF MAE 1.47 6.65 0.01 0.58 0.55 0.05
(H2O)N

b B3LYP MSE − 0.70 4.97 1.65 − 0.05 0.33 0.05
B3LYP MAE 1.23 5.88 1.65 0.37 0.48 0.06

Relative HF MSE − 0.22 − 2.36 0.37 0.09 − 2.77 0.09
energies, HF MAE 1.46 6.84 0.46 0.19 3.30 0.09
F−(H2O)10 B3LYP MSE − 0.70 4.97 1.65 − 0.05 0.33 0.05

B3LYP MAE 2.51 6.36 1.07 0.52 2.57 0.13

aEE-MB-b embedding (Ref. 13) using gas-phase Mulliken charges.
bN ≤ 10.

three methods—GEBF(2), EE-GEBF(1), and EE-GEBF(2)—
exhibits errors not substantially larger than 1 kcal/mol.

The relative accuracy of certain methods is readily ex-
plained in terms of fragment size. The SMF1(1) fragments
consist of individual water molecules, and it follows that the
fragments in SMF1(2) are water dimers. In fact, for these par-
ticular systems, SMF1(2) is equivalent to a traditional two-
body cluster expansion. We anticipate large many-body po-
larization effects in (H2O)N clusters (e.g., 9–13 kcal/mol in
the hexamer75), and indeed many of the SMF1(2) errors are
larger than 10 kcal/mol. The GEBF fragmentation approach,
on the other hand, leads to fragments consisting of three or
four water molecules, whose intermolecular interactions are
therefore incorporated even at the one-body level, and errors
are reduced to the 1–10 kcal/mol range for GEBF(1) calcu-
lations. We note that GEBF(1) is not equivalent to SMF1(3)
or SMF1(4), where the fragments are trimers and tetramers,
respectively, because the GEBF(1) method omits three- and
four-body interactions between water molecules more distant
than ξ = 3.0 Å. These would be included in SMF1(3) and
SMF1(4) calculations.

We find that EE-SMF1(2) is actually more accurate than
GEBF(1), despite the fact that the former approach does
not include any explicit three-body interactions at all. Three-
body and higher-order effects are included in EE-SMF1(2)
implicitly (and approximately), via the embedding charges,
whereas GEBF(1) neglects all many-body effects beyond
those that arise explicitly from the presence of three or four
H2O molecules per fragment. These observations are espe-
cially noteworthy in view of the reduced fragment size in EE-
SMF1(2) relative to GEBF(1).

In order to make contact with previous literature, we
should note that the SMF1(2) method, as applied to water
clusters, is equivalent to standard two-body application of
the MBE; Dahlke and Truhlar13 have termed this the many-
body pairwise additive (MB-PA) approach. EE-SMF1(2) cal-
culations for (H2O)N, with the embedding scheme used here,
are equivalent to the EE-MB-PA method of Ref. 13. We
should also note that our implementation of GEBF(1) dif-
fers slightly from the method originally implemented by
Li et al.,26 insofar as we use fixed, gas-phase Mulliken
charges for the electrostatic embedding, whereas in Ref. 26

TABLE III. Summary of errors in absolute energies per monomer (in kcal/mol), using various fragment methods.

Type No embedding Mulliken embeddinga

System Method of error SMF1(2) GEBF(1) GEBF(2) SMF1(2) GEBF(1) GEBF(2)

Absolute HF MSE 2.04 0.49 0.00 0.25 0.07 0.00
energies, HF MAE 2.04 0.58 0.00 0.25 0.08 0.00
(H2O)N

b B3LYP MSE 1.75 0.50 0.03 0.27 0.05 0.00
B3LYP MAE 1.75 0.56 0.06 0.27 0.06 0.00

Absolute HF MSE − 1.45 0.59 0.04 0.10 − 0.95 0.01
energies, HF MAE 1.45 0.74 0.05 0.10 0.95 0.01
F−(H2O)10 B3LYP MSE − 2.21 0.56 0.08 − 0.10 − 0.64 0.00

B3LYP MAE 2.21 0.71 0.08 0.10 0.74 0.01

Absolute HF MSE 4.87 3.80 2.69 0.45 0.22 0.13
energies, HF MAE 4.87 3.80 2.69 0.45 0.22 0.13
(H2O)57 B3LYP MSE 3.74 2.95 2.07 − 0.36 − 0.40 − 0.31

B3LYP MAE 3.74 2.95 2.07 0.36 0.40 0.31

aEE-MB-b embedding (Ref. 13) using gas-phase Mulliken charges.
bN ≤ 10.
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FIG. 2. Total unsigned errors (plotted on a logarithmic scale) in fragment-
based calculations for (H2O)N clusters at (a) the HF/6-31G(d) and (b) the
B3LYP/6-31+G(d,2p) level.

the charges were obtained from natural population analysis42

and were iterated toward self-consistency. Interestingly, for
the (H3O+)5(HO−)5(H2O)22 system considered in Ref. 26,
self-consistent iteration modifies the embedding charges by
only ∼0.01e, so for the rather simple test systems examined
in this work, the lack of self-consistency may not be a major
concern.

In contrast, the GEBF(2) and EE-GEBF(2) methods are
introduced here for the first time, which would not have
been possible except for the formulation of the GMBE in
Eq. (17) that extends the MBE to intersecting monomers.
These are the first two-body calculations to exploit intersect-
ing monomers,76 and it is apparent from Fig. 2 that extending
the GEBF method to dimers has the desired result. Compar-
ing GEBF(1) and GEBF(2), we see an increase in accuracy
of one or two orders of magnitude when the dimer terms are
included. A similar increase in accuracy is observed in com-
paring EE-GEBF(1) to EE-GEBF(2) and indeed we will see
that the intersecting-dimer approaches generally outperform
the intersecting-monomer approaches.

As pointed out by Beran,15 for non-covalent clusters
one expects that the total error to be an extensive quan-
tity in fragment-based calculations. The absolute errors per
monomer, which are intensive, are plotted in Fig. 3 and the
corresponding error statistics are listed in Table III. For the
SMF1(2) and EE-SMF1(2) methods, we obtain MAEs of
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FIG. 3. Total unsigned errors per monomer, plotted on a logarithmic scale, in
fragment-based calculations for (H2O)N clusters at (a) the HF/6-31G(d) and
(b) the B3LYP/6-31+G(d,2p) level.

about 2 kcal/mol/H2O and 0.2 kcal/mol/H2O, respectively.
(As a check of our implementation, we note that these val-
ues are in good agreement with the statistical errors reported
by Dahlke and Truhlar for the same systems, using the equiv-
alent MB-PA and EE-MB-PA methods.13) The GEBF(2) and
EE-GEBF(2) methods prove to be much more accurate, with
MAEs and MSEs of <0.01 kcal/mol/H2O. We should note
that data points with errors less than 0.1 kcal/mol are not
shown in either Fig. 2 or Fig. 3, since the range of the data
is such that it would be awkward to plot all of them on a sin-
gle set of axes, even using a logarithmic scale. The absence
of a data point for a particular method thus indicates that the
error is basically negligible. (The raw data can, however, be
found in the supplementary material.61)

2. Relative energies

The error statistics for absolute energies (which translate
directly into errors in the cluster binding energies) are quite
promising, but it is important to consider relative conforma-
tional energies as well. For the purpose of this comparison, we
set E = 0 for each cluster size based on whichever structure
is lowest in energy for the supersystem calculation, meaning
that the fragment methods may afford negative relative ener-
gies if the lowest-energy isomer is predicted incorrectly. The
isomer whose energy is set to zero is not included in comput-
ing error statistics.
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FIG. 4. Relative energies for (H2O)N clusters predicted by fragment-based
methods, as compared exact (supersystem) results, at (a) the HF/6-31G(d)
level and (b) the B3LYP/6-31+G(d,2p) level. The oblique solid line corre-
sponds to exact agreement with a supersystem calculation.

Figure 4 plots the relative energy as predicted by the
fragment methods against the correct (i.e., supersystem) rel-
ative energy. The GEBF(1) results are quite poor, with er-
rors that approach 20 kcal/mol in some cases. [In fact, sev-
eral GEBF(1) data points lie outside of the range plotted in
Fig. 4, but to avoid further compressing the more interesting
data, these points are omitted. The complete data set is pro-
vided in the supplementary material.61] This observation is
particularly interesting because it means that SMF1(2) per-
forms better than GEBF(1) for relative energies, despite per-
forming worse for absolute energies. The explanation lies in
the fact that all of the SMF1(2) absolute energy errors have the
same sign (as can be inferred from the fact that the MAE and
the MSE in Table II are identical), whereas GEBF(1) exhibits
both positive and negative errors in the absolute energies. The
GEBF(1) errors lie erratically around the supersystem result,
leading to larger errors in relative energies.

The water decamer provides an illustrative example. In
this case, GEBF(1) overstabilizes the minimum-energy iso-
mer by about 3 kcal/mol at the HF/6-31G(d) level but under-
stabilizes the so-called “PP2” isomer21 by 15 kcal/mol, for a
total MAE of 18 kcal/mol. The SMF1(2) approach understa-
bilizes both structures by about 25 kcal/mol, so that the error
in the absolute electronic energy is significantly larger for ei-
ther isomer, as compared to GEBF(1) results, but the SMF1(2)
error in the relative energies is <1 kcal/mol.

Much of the literature on fragment-based quantum chem-
istry methods has focused on errors in absolute energies with
respect to supersystem calculations, with water clusters be-
ing a popular test system. Relative conformational energies
have been considered far less frequently, leaving us with lit-
tle precedent as to the magnitudes of errors that we might
expect. Tschumper and co-workers19 have considered a se-
ries of water clusters with the intent of benchmarking how
well an ONIOM-like “QM:QM” approach reproduces high-
level ab initio results. The QM:QM approach is equivalent to
a “level two” MIM expansion,8 in which a lower level of the-
ory (MP2/cc-pVTZ in this case) is applied to the full system
and corrected by means of a three-body expansion at a higher
level of theory [CCSD(T)/aug-cc-pVTZ]. Amongst the calcu-
lations presented in Ref. 19, of particular interest are a series
of five (H2O)16 isomers, for which a MAE of 0.1 kcal/mol
is reported for the relative isomer energies. This is in good
agreement with results presented here for two-body methods.

Pruitt et al.77 have considered the relative energies of
various isomers of the open-shell OH(H2O)5 cluster within
the FMO approach,1, 54 which merits some explanation. The
FMO method employs user-defined fragments and frozen-
orbital caps whenever covalent bonds are severed,54 and both
a two-body truncation of the MBE (“FMO2”) and a three-
body truncation (“FMO3”) have been introduced. For clus-
ters such as (H2O)N or OH(H2O)5, FMO calculations have
typically employed single-molecule fragments, in which case
FMO2 is the same as EE-SMF1(2), except that FMO2 uses
self-consistent (albeit non-variational) Mulliken embedding
charges, whereas our EE-SMF1(2) charges are fixed at gas-
phase values.

FMO2 calculations for six different isomers of
OH(H2O)5, with fragment calculations performed at the
ROMP2/aug-cc-pVTZ level, are found to afford a MAE
of 1.7 kcal/mol in the relative isomer energies.77 This may
be compared to the MAEs of 0.4–0.6 kcal/mol reported in
Table II for EE-SMF1(2) calculations of (H2O)N relative
energies at the HF and B3LYP levels. One should not read
too much into this comparison, given that the systems in
question are different, yet the significantly smaller errors
observed in the EE-SMF1(2) calculations suggest that the
lack of self-consistency in the EE-SMF1(2) embedding
charges is perhaps not the largest source of error in these
calculations. Rather, the two-body truncation, and the use
of single-molecule fragments, seem to be more important
than the intimate details of the charge-embedding scheme.
This supposition is supported, to some extent, by the fact
that three-body FMO3 calculations reduce the MAE in the
OH(H2O)5 relative energies to 0.3 kcal/mol.77 In view of this,
it is promising that EE-GEBF(2) calculations for (H2O)N

clusters exhibit MAEs of only 0.05 kcal/mol.

3. Larger water clusters

The GEBF(2) and EE-GEBF(2) results presented above
seem quite promising, but one might object that because
the GEBF(2) fragmentation algorithm results in 3–4 H2O
molecules per fragment, some of the fragments constitute
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a significant fraction of the total cluster size, which might
make the results appear more favorable than they would be
in larger systems. To investigate this possibility, we next con-
sider a (H2O)57 cluster, in order to ascertain whether GEBF(2)
and EE-GEBF(2) remain the most accurate approaches when
the resulting dimers no longer comprise a majority of the
molecule. Geometries for this cluster were extracted from a
molecular dynamics simulation and are available in the sup-
plementary material.61

In order to reduce the number of dimers that we need
to consider, for this particular system we have employed two
cutoffs. For SMF1(2) calculations we consider only those
pairs of monomers that are within 3.0 Å of each other. Be-
cause the GEBF(1) monomers are larger, we reduced this cut-
off to 1.0 Å for GEBF(1) calculations, which has the effect
that dimers are created only from monomers that intersect.
Admittedly, these cutoffs are considerably more aggressive
than what has been used in the literature to date, e.g., Dahlke
and Truhlar22 utilize a 5–6 Å cutoff for water clusters. We
justify our choice by the simple fact that it affords reasonable
accuracy. In future work, the convergence with respect to the
dimer cutoff distance should be investigated.

Table III lists the MSEs and MAEs for these clusters on a
per-molecule basis, and the trends mirror what we observe in
smaller clusters. Of the non-embedded approaches, GEBF(2)
performs the best and is about 1 kcal/mol more accurate than
GEBF(1), and 2 kcal/mol more accurate than SMF1(2). Elec-
trostatic embedding increases the accuracy by about an order
of magnitude, and EE-GEBF(2) is the most accurate embed-
ded method. Relative to the results in smaller water clusters,
we do observe a notable increase in the error per monomer
at both the GEBF(1) and GEBF(2) levels, with or without
electrostatic embedding, although the errors remain small
(≤0.4 kcal/mol, with embedding). The important point is that
for (H2O)57, the GEBF(2) dimers no longer encompass the
majority of the cluster and we expect these results to be more
typical of the errors that one can expect when using GEBF(2)
in large clusters, i.e., we are probing the intrinsic accuracy of
the method in these calculations.

To place this level of error in context, we note that FMO2
results reported for a single isomer of (H2O)64, performed us-
ing B3LYP/6-31+G* and B3LYP/6-31++G** with two H2O
molecules per fragment, were larger than 0.7 kcal/mol/H2O.78

At the FMO3 level, the same setup results in errors less than
0.1 kcal/mol/H2O.78 In a recent study,79 the accuracy of the
SMF and FMO methods was compared for water clusters,
defining water molecules within 2.3 Å of one another to be
“bonded” for the purposes of applying the SMF3 fragmenta-
tion method. Proceeding in this way, the accuracy of SMF3
and FMO3 was found to be similar. A more detailed compari-
son awaits improvements to our fragmentation procedure that
will allow for systematic tests of the thresholding procedures
discussed in the Appendix.

C. Fluoride–water clusters

As compared to neat water clusters, hydrated ions may
represent more challenging systems due to the greater de-

gree of polarization and the large ion–water interaction. In-
deed, FMO calculations on large Na+(H2O)N clusters have
shown that two-body (FMO2) calculations yield very poor ap-
proximations to the total energy, with errors greater than 65
kcal/mol even with as many as 31 H2O molecules included
in the same fragment as the cation, and ∼100 kcal/mol when
only six water molecules are included with Na+.80 (FMO3
calculations perform much better, although errors remain on
the order of 2–6 kcal/mol, even with a very large central
fragment.80) Hydrated anions are likely to be even more chal-
lenging owing to the greater extent of charge delocalization
associated with the ion, and here we perform tests on a set of
F−(H2O)10 using one- and two-body GMBE methods.

1. Fixed-charge embedding

Figure 5 plots errors in the total energy per monomer for
a set of ten F−(H2O)10 isomers, using the same fixed-charge
embedding procedure that was used for the water clusters. For
the most part, the trends that we observe are the same as those
observed for water clusters: SMF1(2) performs the worst and
EE-GEBF(2) performs the best, electrostatic embedding gen-
erally improves the accuracy of the results, and the use of in-
tersecting monomers generally improves the accuracy as well.
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FIG. 5. Unsigned error in the total electronic energy per water monomer
(plotted on a logarithmic scale) for a set of ten F−(H2O)10 cluster isomers.
Calculations were performed at (a) the HF/6-31+G(d) and (b) the B3LYP/6-
31+G(d,2p) levels of theory.
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One anomaly stands out, however. For neutral water clus-
ters, EE-GEBF(1) was a significant (factor of ten) improve-
ment over GEBF(1), yet for these fluoride–water clusters both
methods exhibit comparable accuracies of ∼1 kcal/mol. This
may be due to over-polarization brought about by using inter-
secting monomers. Suppose that water molecule A belongs
to the same monomer as the fluoride ion. In such a case,
one would expect A’s electron density to be significantly dis-
torted relative to what it would be when A appears in another,
charge-neutral fragment. As a result of this asymmetry, the
embedding point charges are averages over two very different
electronic environments. (Recall from Sec. II F that for inter-
secting monomers we use fragment-averaged point charges
for the electrostatic embedding.) In principle, the same error
is present in EE-GEBF(2) calculations, though perhaps less
pronounced owing to increased dimer size, and in fact EE-
GEBF(2) is significantly more accurate for F−(H2O)10 rela-
tive energies, as compared to the other methods considered
here. Nevertheless, these observations point to the need to ex-
plore alternative ways to compute embedding charges in the
case of intersecting monomers.

Relative energies of the fluoride–water clusters are plot-
ted versus supersystem results in Fig. 6. Again we see that
GEBF(1) is the least accurate method for relative energies,
whereas EE-GEBF(2) is the most accurate. The main point of

 0

 5

 10

 15

 20

 25

 30

 8  10  12  14  16  18  20  22

 0

 5

 10

 15

 20

 25

 30

 35

 40

 10  15  20  25  30

(a)

(b)

re
la

tiv
e 

en
er

gy
 (

fr
ag

m
en

t c
al

cu
la

tio
n)

 / 
kc

al
 m

ol
–1

relative energy (supersystem calculation) / kcal mol–1

SMF1(2)
GEBF(1)
GEBF(2)

EE-SMF1(2)
EE-GEBF(1)
EE-GEBF(2)

SMF1(2)
GEBF(1)
GEBF(2)

EE-SMF1(2)
EE-GEBF(1)
EE-GEBF(2)

FIG. 6. Relative energies for isomers of F−(H2O)10 as predicted by var-
ious fragment methods at (a) the HF/6-31+G(d) and (b) the B3LYP/6-
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interest for these figures is that the errors obtained using EE-
GEBF(1) and EE-GEBF(2) are an order of magnitude larger
than what was observed in application of the same methods
to (H2O)N clusters. We suspect that this is once again a de-
ficiency of the embedding charges, and points to the need to
explore alternate, self-consistent embedding schemes.

2. Self-consistent XPol embedding

As a preliminary example of one such self-consistent
charge embedding, we consider the use of XPol/ChElPG em-
bedding charges. As noted in Sec. II F, a naïve implementa-
tion of self-consistency will cause the total energy to be non-
variational.49 This can be avoided by the use of XPol embed-
ding charges, as was recently suggested in the context of the
MBE.68

As a simple example to illustrate the procedure, consider
a conventional two-body approximation to the energy of the
trimer IJK, where I, J, and K are non-intersecting fragments.
Following Eqs. (1) and (2), let us write this approximation in
the following way:

EIJK ≈ E
(1)
Ijk + E

(1)
iJ k + E

(1)
ijK + �E

(2)
IJk + �E

(2)
IjK + �E

(2)
iJK .

(20)

Capitalized indices in this expression imply that the indexed
fragment is treated at the SCF level, while fragments with
lower-case indices are represented by embedding charges. All
three one-body terms can be extracted from a single XPol
calculation on IJK, whereas each two-body calculation re-
quires a separate XPol calculation in which one of the frag-
ments is a dimer. For example, the �E

(2)
IJk term would be

computed using an XPol calculation involving two fragments:
IJ and K. In that particular calculation, SCF equations on
K must be iterated to convergence even though it is ulti-
mately only IJ’s energy that is extracted from the calcula-
tion, which introduces additional computational complexity
as compared to the more naïve self-consistent procedures dis-
cussed above, but the number of additional iterations is min-
imal. (Even when starting from isolated, gas-phase initial-
guess wave functions, the XPol procedure typically converges
in ≤4 loops over monomers.)

Error statistics for the GEBF(1) and GEBF(2) methods
with XPol embedding, as applied to F−(H2O)10, are listed
in Table IV. For comparison, we also tabulate the statisti-
cal errors using fixed, gas-phase ChElPG embedding charges
(analogous to the “EE-MB-b” embedding used above but
with ChElPG charges replacing Mulliken charges). For the
GEBF(1) method, XPol embedding does afford an increase in
accuracy for both absolute and relative energies as compared
to earlier results using fixed, fragment-averaged embedding
charges, and the same is true if we obtain these fixed charges
using ChElPG. This suggests that at least part of the problem
with the earlier EE-GEBF(1) results is indeed related to er-
ratic polarization caused by the fragmented-averaged charges.
On the other hand, the EE-GEBF(2)/ChElPG results for rela-
tive isomer energies are significantly worse when the charges
are iterated to self-consistency (cf. the last two columns in
Table IV).
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TABLE IV. Statistical errors in EE-GEBF(n) calculations for F−(H2O)10 isomers using ChElPG embedding
charges, in units of kcal/mol/H2O. Results are compared for fixed gas-phase ChElPG embedding charges and
for charges that are converged self-consistently using the XPol procedure. All ChElPG calculations use a grid
spacing �x = 1.0 Å.

Absolute energies Relative energies

Type GEBF(1) GEBF(2) GEBF(1) GEBF(2)

Method of error Fixed XPol Fixed XPol Fixed XPol Fixed XPol

HF MSE − 0.76 − 0.34 0.01 0.00 − 2.45 − 2.10 0.08 1.09
HF MAE 0.76 0.34 0.01 0.06 2.82 1.86 0.08 1.13
B3LYP MSE − 0.46 − 0.03 0.10 0.08 − 1.55 − 1.30 0.36 1.41
B3LYP MAE 0.46 0.12 0.10 0.12 2.29 1.60 0.36 1.68

For the calculations reported in Table IV, we used a
fairly coarse ChElPG grid spacing of 1.0 Å, as this was suffi-
cient to provide reasonable results in previous XPol/ChElPG
calculations.45 [It is also sufficient to provide very accurate
GEBF(2) results when gas-phase ChElPG embedding charges
are used, as the results in Table IV will attest.] However, the
1.0 Å grid spacing engenders a fairly serious loss of rotational
invariance, which went unnoticed in our previous work,44, 45

probably because the weighted least-squares procedure that
we use to compute the ChElPG charges45 ensures that the
charges are smooth functions of the nuclear coordinates. Pro-
vided that one works only in the molecule-fixed coordinate
frame, the lack of rotational invariance may therefore go com-
pletely unnoticed. In the present context, however, simply
re-ordering the fragments in the Q-CHEM input file (which
amounts to rotating the molecule-fixed frame with respect to
the laboratory frame) may change the energy by ∼10−4 Eh.

To examine this issue further, we have performed EE-
SMF1(2) calculations using a finer grid (�x = 0.3 Å), and
Table V compares these results to those obtained using �x
= 1.0 Å. The fine grid reduces the errors in absolute energies
only slightly (by about 0.2 kcal/mol/H2O), relative to results
obtained with the coarser grid, but significantly reduces the
errors in the relative energies (by about a factor of two for the
MAEs and a factor of ten for the MSEs). However, the fine
grid also significantly increases the cost of these calculations,
to the point that we have not attempted GEBF(n) calculations
with the finer grid, as the number of electronic structure cal-
culations is much larger for these methods.

One puzzling aspect of the data in Table V is the
fact that results obtained using gas-phase ChElPG embed-
ding charges remain more accurate than the self-consistent,
XPol-embedded results. This is especially true for abso-
lute energies, where the fixed-charge results exhibit errors
of ≤0.1 kcal/mol/H2O, even when the coarse grid is used,
whereas XPol-embedded results with the fine grid exhibit er-
rors of 0.7–0.8 kcal/mol/H2O. For relative energies, the XPol-
embedded results are only slightly worse than those obtained
using gas-phase embedding charges, which makes us wonder
whether the problem may once again stem from lack of ro-
tational invariance. We are currently working to implement
ChElPG charges using sparse, atom-centered grids, which
will significantly reduce the computational overhead such
that more systematic tests can be performed. This approach
should also reduce the magnitude of the rotational invariance
errors.81, 82

IV. CONCLUSIONS

We have introduced a GMBE for fragment-based quan-
tum chemistry, which extends the traditional MBE to the
case where fragments may share some nuclei in common.
Application of the GMBE, truncated at some n-body level
of approximation, provides a systematic means to approach
the exact supersystem energy, analogous to how the MBE
is applied in the case of non-intersecting fragments. The
GMBE, which reduces to the traditional MBE in the case
of non-intersecting fragments, provides a universal energy

TABLE V. Statistical errors in EE-SMF1(2) calculations for F−(H2O)10 isomers using ChElPG embedding
charges, in units of kcal/mol/H2O. Results are compared for fixed gas-phase ChElPG embedding charges and for
charges that are converged self-consistently using the XPol procedure.

Absolute energies Relative energies

Type Fixed XPol charges Fixed XPol charges
Method of error chargesa Coarse grida Fine gridb chargesa Coarse grida Fine gridb

HF MSE 0.10 0.83 0.66 0.14 − 1.28 − 0.15
HF MAE 0.10 0.83 0.66 0.30 1.12 0.64
B3LYP MSE 0.00 0.99 0.78 0.02 − 1.59 − 0.29
B3LYP MAE 0.03 0.99 0.78 0.37 1.61 0.75

aGrid spacing �x = 1.0 Å.
bGrid spacing �x = 0.3 Å.
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expression for fragment-based methods, which are therefore
differentiated by their fragmentation, capping, and embedding
procedures, but not by the formula that is used to compute the
energy.

This formulation provides a unified view of several
fragment-based methods that have been proposed previously,
and suggests that it is possible to create a number of novel
fragment-based methods simply by combining elements from
existing approaches in new ways. One of these new ways,
namely, a two-body extension of the previously-reported
GEBF method26, 31, 32 (which, in fact, is based on the same en-
ergy expression as the CG-MTA approach25, 29, 30) is reported
here for the first time, and appears to be quite promising.

Numerical results for (H2O)N and F−(H2O)10 clusters
indicate that methods based on intersecting fragments are
more accurate, for both absolute and relative energies, than
are methods that utilize non-intersecting fragments, when the
GMBE is truncated at the two-body level. Notably, this re-
mains true even in large clusters such as (H2O)57, where all of
the fragments are small as compared to the size of the over-
all system. Although electrostatic embedding in most cases
significantly improves the accuracy of results based on the
GMBE (as seen in many previous studies using the traditional
MBE), for the F−(H2O)10 we find that this need not be the
case. The reason probably lies in the use of fixed embed-
ding charges, which was done here in order to make contact
with previous methods in the literature, and points to the need
to develop self-consistent charge embedding schemes for use
with the GMBE.

At present, the primary drawback that limits applications
of the GMBE is the steep cost of computing all possible mu-
tual intersections between different fragments, which is nec-
essary once the fragments are allowed to intersect. Efforts to
reduce this cost by means of thresholding procedures are cur-
rently underway in our group, and we expect that improved
fragmentation algorithms will facilitate systematic tests of
GMBE-based fragment methods, in the near future.
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APPENDIX: COMPUTATIONAL SCALING

Here, we discuss the computational scaling of fragmen-
tation based on PIE, and some aspects of our fragmentation
algorithm. Let nI denote the number of elements in fragment
I. In order to deduce the scaling of PIE, imagine that we start
with fragment I and compute I ∩ J. The cost of this calcu-
lation should scale asymptotically as (nI + nJ ) log(nI + nJ ),
because it could be performed by sorting the nI + nJ nuclear
indices into an ordered list and checking for repeated indices.
For simplicity, consider a case where all of the fragments have
the same size, n. Then the cost to determine I ∩ J is O(n log n).
By storing the elements of I ∩ J, one may readily compute

I ∩ J ∩ K by concatenating the list of indices in I ∩ J with the
list of indices from K, and then performing a sort. Since |I ∩ J|
≤ n, we can assume that the cost of computing I ∩ J ∩ K is
O(n log n) at worst, and by induction this is true of higher-
order intersections (I ∩ J ∩ K ∩ L, etc.) as well.

If there are N fragments in total, then the number of in-
tersections involving m fragments is NCm, so the total time (in
the worst case) looks like

t ∼ (n log n)
N∑

m=2

(
N

m

)
. (A1)

The summation can be expressed in closed form if the lower
limit is extended to m = 0, with the result that

t ∼ (n log n)(2N − N − 1). (A2)

For large N, we therefore have

t ∼ 2N (n log n), (A3)

where n is indicative of the typical number of nuclei in a frag-
ment, and N is the total number of fragments.

In the worst-case scenario, Eq. (A3) demonstrates that the
cost of applying PIE scales exponentially with the number of
fragments. However, this argument makes two unrealistic as-
sumptions: first, that all intersections are nonempty; and sec-
ond, that each intersection to be searched takes a roughly con-
stant number of operations (nlog n). As such, Eq. (A3) should
be treated as an upper bound to the actual cost of fragmenta-
tion.

In practice, we can use a backtracking algorithm to re-
duce the cost considerably, such that evaluation of the inter-
sections is quite efficient in cases where a large fraction of the
intersections are empty. As an example to illustrate this point,
we take the protein TM1081 that was considered in a recent
study by Collins.35 This protein contains 2048 atoms, corre-
sponding to 689 groups and 699 fragments according to the
SMF1(1) algorithm. Despite the seemingly intractable factor
of 2699 ≈ 2.6 × 10210 that appears in Eq. (A3), our algorithm
requires only about 3 min, running on a laptop, to determine
the groups, fragments, intersections, and caps, and to generate
the necessary Q-CHEM input files.

Nevertheless, in dense three-dimensional systems such as
water clusters, backtracking alone is insufficient to enable us
to evaluate all terms suggested by the GEBF(2) method for a
system such as (H2O)57. To perform the (H2O)57 calculations
reported here we had to resort to a distance-based threshold in
which we only consider dimers formed from fragments within
1 Å of one another, which effectively limits dimer formation
to intersecting fragments. Table VI compares the number of
distinct electronic structure input files that are generated for
various fragmentation schemes as applied to (H2O)10, where
we compute every single term that appears in the one- or two-
body GMBE, and also for (H2O)57, where the 1 Å threshold
for dimer formation is applied. If all terms in the energy ex-
pression are enumerated, then the GEBF(2) approach results
in a significantly larger number of electronic structure calcula-
tions, but distance-based thresholding can reduce this number
substantially. In fact, at the GEBF(1) level, the (H2O)57 cal-
culation with thresholds actually requires fewer independent
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TABLE VI. Number of distinct electronic structure calculations required by
various fragment-based approaches in two different systems. For (H2O)10,
all terms in the one- or two-body GMBE are included, but for SMF1(2) and
GEBF(2) calculations in (H2O)57, dimers more than 1 Å apart are neglected.

Method (H2O)10 (H2O)57

SMF1(2) 55 111
GEBF(1) 38 15
GEBF(2) 484 628

electronic structure calculations than does a calculation for
(H2O)10 with no thresholds.

For geometry optimizations or molecular dynamics sim-
ulations, the use of thresholding will require a careful imple-
mentation that utilizes switching functions to attenuate a par-
ticular dimer’s contribution to the energy as its constituent
monomers move apart. Development of such techniques is
presently underway in our group.
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