
THE JOURNAL OF CHEMICAL PHYSICS 139, 034107 (2013)

An improved treatment of empirical dispersion and a many-body energy
decomposition scheme for the explicit polarization plus symmetry-adapted
perturbation theory (XSAPT) method
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We recently introduced a low-cost quantum chemistry method for computing intermolecular in-
teractions, combining a monomer-based self-consistent field calculation (the “explicit polariza-
tion” method, XPol) with pairwise-additive symmetry adapted perturbation theory (SAPT). The
method uses Kohn-Sham (KS) orbitals in the SAPT formalism but replaces the SAPT dis-
persion and exchange-dispersion terms with empirical potentials (“+D”), and we called this
method XPol+SAPT(KS)+D. Here, we report a second-generation version of this approach,
XPol+SAPT(KS)+D2 or XSAPT(KS)+D2 for short, in which we have modified the form of the
empirical atom–atom dispersion potentials. Accurate binding energies are obtained for benchmark
databases of dimer binding energies, and potential energy curves are captured accurately for a va-
riety of challenging systems. We suggest that using different asymptotic corrections for different
monomers is necessary to get good binding energies in general, especially for hydrogen-bonded
complexes. As compared to our original “+D” formulation, the second-generation “+D2” method
accurately reproduces not only total binding energies but also the various components of the inter-
action energy, and on this basis we introduce an energy decomposition scheme that extends tradi-
tional SAPT energy decomposition to systems containing more than two monomers. For (H2O)6,
the many-body contribution to the interaction energy agrees well with that obtained from traditional
Kitaura-Morokuma energy decomposition analysis in a large basis set. © 2013 AIP Publishing LLC.
[http://dx.doi.org/10.1063/1.4813523]

I. INTRODUCTION

Despite enormous progress in electronic structure the-
ory over the past several decades, the “gold standard” of
chemical accuracy, coupled cluster singles and doubles with
perturbative triples, CCSD(T), remains out of reach for
most systems. For calculation of non-covalent interactions,
which is the topic of the present work, CCSD(T)/aug-cc-
pVTZ calculations on (H2O)20 represent the present state-
of-the-art,1 and are only feasible on massively parallel ar-
chitectures. Second-order Møller-Plesset perturbation theory
(MP2) is tractable in larger systems but overestimates bind-
ing energies in cases where the binding is dominated by
dispersion interactions.2 Various strategies have been used
to correct this deficiency, including spin-component scaled
(SCS) MP2 methods,3, 4 sometimes with parameters fit specif-
ically for non-covalent interaction energies,5 and also MP2.X
methods that combine MP2 and MP3 results in an em-
pirical way.6 These methods achieve a mean accuracy of
� 0.4 kcal/mol with respect to complete-basis CCSD(T) bind-
ing energies,7 but scale no better than O(N5) with respect to
total system size, N.

Density functional theory (DFT) is more affordable but
many of the most popular functionals afford a poor descrip-
tion of dispersion interactions.8, 9 One strategy to circumvent
this problem is to introduce a rather large number of empir-
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ical parameters into the functional,10, 11 then optimize these
parameters using data sets that include weak interactions. The
M06-2X functional10 is a popular example of this approach.
Alternatively, one might attempt to capture the dispersion in-
teractions directly by means of classical atom–atom poten-
tials, typically with r−6 dependence.8, 12, 13 Such approaches
fall under the moniker “DFT-D,” and are often able to repro-
duce higher-level calculations rather well.13–16 The ωB97X-D
functional11 is a popular example. Grimme et al.14 have re-
cently introduced a “third generation” (DFT-D3) correction
that further improves the description of non-bonded interac-
tions, in functionals such as ωB97X-D3.16 Finally, dispersion
can be introduced into DFT by means of non-local correlation
functionals.17–19 The LC-VV10 functional19 is an example of
such an approach, which has recently been shown to exhibit
outstanding performance for many types of intermolecular
interactions.20 The description of weak interactions in DFT
has thus come a long way in the past few years, yet none of
these methods scales better than O(N3). As such, these DFT
methods are still not feasible for applications to molecular liq-
uids or biomolecules.

Fragment-based approaches21–26 do provide a relatively
affordable route to computing binding energies in large sys-
tems, by partitioning the supersystem into subsystems (frag-
ments). In particular, our group has developed a low-cost,
monomer-based approach that we call explicit polarization
(XPol) plus symmetry-adapted perturbation theory (SAPT),
or XSAPT,26–29 which we have previously abbreviated XPS.30
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This approach starts from the variational XPol method,31

which is used to capture many-body (MB) polarization ef-
fects by means of a charge-embedded, monomer-based self-
consistent field (SCF) calculation. In a subsequent step, we
apply a pairwise-additive form of SAPT.32–34 The resulting
XSAPT method generalizes traditional SAPT from two-body
to many-body systems. Theoretical details can be found in our
previous work,27, 28 including a recent review.26 The wall time
for an XSAPT calculation scales as O(n) with respect to the
number of monomers, n, assuming that one has nC2 proces-
sors to run in “embarrassingly parallel” mode for the second-
order SAPT calculations, and is O(n3) even in serial mode.29

When a Hartree-Fock (HF) description of the monomers is
used in the XPol calculation, in conjunction with a suitable
basis set, errors in dimer binding energies computed by XS-
APT lie within 1 kcal/mol of high-level benchmarks.27, 28

One might try to improve on this accuracy by using
instead a Kohn-Sham (KS) description of intramolecular
electron correlation, in what we have termed XSAPT(KS).26

However, this approach suffers from the same problem
as SAPT(KS),35, 36 namely, significant overestimation
of dispersion energies.28 Ironically, the dispersion and
exchange-dispersion terms in SAPT(KS) are not only the
least accurate ones, but also the most expensive to compute,
scaling as O(N4) and O(N5), respectively, with respect to
monomer size, N. For this reason, we recently introduced
XSAPT(KS)+D,29 in which the sum-over-states (uncou-
pled Hartree-Fock37) dispersion formula in second-order
SAPT(KS) is replaced by empirical atom–atom potentials
developed for this purpose by Hesselmann.38 In conjunction
with a double-ζ basis set, XSAPT(KS)+D exhibits mean
errors in binding energies of <0.5 kcal/mol for the S22A data
set39 and the larger (and more balanced) S66 data set.40 In
this respect, XSAPT(KS)+D is superior to various MP2-type
methods extrapolated to the complete basis-set (CBS) limit,
and methods containing triple excitations are required in
order to do better.26

In traditional SAPT, the interaction energy decomposes
naturally according to

ESAPT
int = E

(1)
elst + E

(1)
exch + E

(2)
ind + E

(2)
exch-ind

+E
(2)
disp + E

(2)
exch-disp + · · · . (1)

All terms up to second order in the intermolecular interac-
tion are listed explicitly, with subscripts that denote electro-
static (elst), exchange (exch), induction (ind), and dispersion
(disp) contributions. This work is mainly focused on devel-
oping a similar interaction-energy decomposition scheme for
XSAPT, and comparing the various energy components to
dimer SAPT results for the S22A database.41 In the course of
this analysis, we discovered that the original XSAPT(KS)+D
method does not do a good job of reproducing individual en-
ergy components, and thus its favorable performance for bind-
ing energies is due in no small part to error cancellation. This
led us to pursue a “second generation” dispersion correction
(“+D2”), using alternative dispersion potentials developed by
Podeszwa et al.42

II. THEORY

A. Summary of XSAPT

The success of XSAPT is based on the fact that the many-
body (non-pairwise-additive) contribution to cluster binding
energies is dominated by induction interactions, whereas elec-
trostatic, exchange-repulsion, and dispersion interactions are
nearly pairwise additive.43–48 An overview of the formal the-
ory is provided in Ref. 26 and a thorough exposition is pro-
vided in Ref. 28; here, we provide only a brief summary.

Assuming closed-shell monomers for simplicity, the
XPol energy is given by26, 27

EXPol =
n∑

A=1

[
2
∑

a

c†a
(
hA + JA − 1

2 KA
)

ca + EA
nuc

]
+ Eembed.

(2)

The term in square brackets is the ordinary HF energy for
monomer A, but we assume that the MOs ca for monomer
A are expanded using atom-centered Gaussian basis functions
located on monomer A only. This affords a method whose cost
grows only linearly with respect to the number of monomers,
n, and furthermore excludes basis set superposition error, by
construction. The embedding potential Eembed is electrostatic
only, and in applications to date (including the present work),
this potential arises from charge–density interactions between
the density of the monomer undergoing SCF iterations and
atom-centered ChElPG28, 49 charges derived from the SCF
electrostatic potentials of the other monomers.

Subsequent to the XPol step, we use direct products
of XPol monomer wave functions as zeroth-order states
for SAPT, with an appropriately modified perturbation that
avoids double-counting any interactions that are already in-
cluded in Eq. (2).27 These SAPT calculations are performed
in a pseudocanonicalized dimer basis set, which captures
some intermolecular charge-transfer interactions.27 The final
XSAPT energy, including all terms through second order in
the intermolecular interactions, can be expressed as

EXSAPT =
∑
A

(∑
a

[
2εA

a − c†a
(
JA − 1

2 KA
)
ca

] + EA
nuc

)

+
∑
A

∑
B>A

[
E

[0;1AB ]
RSPT + E

[0;1AB ]
exch + E

[0;2AB ]
RSPT + E

[0;2AB ]
exch

+
∑
C

′ ∑
D>C

′(E[0;1AB,1CD ]
RPST + E

[0;1AB,1CD ]
exch

)]
. (3)

The superscripts in square brackets denote various orders
in perturbation theory,28 e.g., E

[0;1AB ]
RSPT is zeroth-order in the

monomer fluctuation potentials (intramolecular electron cor-
relation) and first-order in the intermolecular potential be-
tween monomers A and B. In terms of the more traditional
SAPT notation of Eq. (1),

E
[0;1AB ]
RSPT = E

(1)
elst,A + E

(1)
elst,B, (4a)

E
[0;1AB ]
exch = E

(1)
exch,A + E

(1)
exch,B, (4b)
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and

E
[0;2AB ]
RSPT = E

(2)
ind,A + E

(2)
ind,B + E

(2)
disp,AB, (5a)

E
[0;2AB ]
exch = E

(2)
exch-ind,A + E

(2)
exch-ind,B + E

(2)
exch-disp,AB. (5b)

See Ref. 28 for details and an explanation of the notation, but
note that there is a typographical error in Eq. (51) of the latter
paper; Eq. (3) above is the corrected version.

In XSAPT(KS)+D,29 we replace the terms E
(2)
disp,AB

+ E
(2)
exch-disp,AB [cf. Eq. (1)] with empirical atom–atom po-

tentials. Furthermore, the monomers are described using
KS-DFT, hence the various SAPT terms in Eqs. (4) and
(5) do include some intramolecular electron correlation. To
date, however, we have omitted the three-body induction
couplings,28 E

[0;1AB,1CD ]
RPST + E

[0;1AB,1CD ]
exch in Eq. (3), from the

XSAPT(KS)+D method, and we also neglect these terms in
the present work. This reduces the cost of the method from
O(n3) to O(n2) with respect to the number of monomers, yet
accurate results can still be obtained for many-body systems,
as demonstrated herein.

B. XSAPT energy decomposition

In the context of XPol-SAPT, it makes sense to define the
MB contribution to the interaction energy, EMB

int , according to

EMB
int = EXSAPT

int −
∑
A

∑
B<A

EXSAPT
AB , (6)

where EXSAPT
int is the overall XSAPT interaction energy and

EXSAPT
AB is the interaction energy for dimer A· · · B. The SAPT

part is pairwise additive by construction (we do not con-
sider the three-body SAPT terms derived by Lotrich and
Szalewicz50, 51). Thus, the total SAPT interaction energy for
a collection of monomers is

ESAPT
int =

∑
A

∑
B<A

ESAPT
AB . (7)

Addition of Eqs. (6) and (7) affords

EMB
int = EXSAPT

int − ESAPT
int −

∑
A

∑
B<A

(
EXSAPT

AB − ESAPT
AB

)
.

(8)
The SAPT interaction energy can be decomposed as in
Eq. (1) and substituted into Eq. (8), with the result rewritten
as

EXSAPT
int = E

(1)
elst + E

(1)
exch + E

(2)
ind + E

(2)
exch-ind

+E
(2)
disp + E

(2)
exch-disp + · · ·

+
∑
A

∑
B<A

(
EXSAPT

AB − ESAPT
AB

) + EMB
int . (9)

Equation (9) is the interaction-energy decomposition
scheme for XSAPT. This energy decomposition analysis
(EDA) requires three sets of calculations. First, traditional
SAPT calculations and also XSAPT calculations must be per-
formed on all pairs of monomers, to obtain pairwise electro-
static, exchange, dispersion, and induction terms. Second, an
XSAPT calculation must be performed on the entire system,

which provides not only EMB
int but also the rest of the induc-

tion terms that are missing in the first set of calculations. The
latter are defined by the double sum in Eq. (9).

It is common in SAPT calculations to solve coupled-
perturbed Hartree-Fock (CPHF) equations and thereby in-
clude an infinite-order response correction for polarization in
the presence of a frozen partner density.52 In contrast, the
XSAPT method treats polarization self-consistently in the
XPol step. As such, the infinite-order response correction for
induction should be included exactly by the XPol part of the
calculation (with further induction corrections vanishing), if
the XPol calculation is performed using density embedding,23

that is, if monomer SCF densities are used to compute the
electrostatic interactions between the monomers in the self-
consistent XPol calculation. We do not pursue this possibility
here, but instead use atom-centered point charges to do the
embedding, as in previous work.27–29 This procedure is signif-
icantly less expensive (especially if the monomers are large),
and implicitly includes some higher-order induction effects
into the zeroth-order XPol monomer energies.27 Therefore,
the energy difference between XSAPT and SAPT for all pairs
of dimers [the double sum in Eq. (9)] partly includes the
infinite-order response correction for induction. In addition,
some higher-order induction effects are captured by the δEHF

int
correction53, 54 that is discussed below.

It is common to truncate the SAPT interaction energy at
second order in Eq. (9) and incorporate higher-order polariza-
tion effects by adding a correction

δEHF
int = EHF

int − (
E

(1)
elst + E

(1)
exch + E

(2)
ind,resp + E

(2)
exch-ind,resp

)
(10)

to the interaction energy. The “response” (resp) subscripts in-
dicate that the infinite-order response correction for induction
is incorporated by solving CPHF equations, and EHF

int is the
counterpoise-corrected HF binding energy for the dimer. It
is recommended to include the δEHF

int term in SAPT calcu-
lations involving polar monomers, because induction correc-
tions converge slowly for polar molecules.53, 54 Furthermore,
we find that δEHF

int is necessary in traditional SAPT calcula-
tions, not only to obtain quantitative binding energies but also
to obtain qualitatively correct potential energy surfaces for
induction-dominated systems.55 In the present work, we as-
sume that this correction term is pairwise additive for many-
body XSAPT calculations,

δEHF
int =

∑
A

∑
B<A

δEHF
AB. (11)

The quality of the results presented herein indicates that this
assumption is quite robust.

Adding the δEHF
int correction term to Eq. (9), the XSAPT

interaction energy becomes

EXSAPT
int = E

(1)
elst + E

(1)
exch + E

(2)
disp + E

(2)
exch-disp

+
[
E

(2)
ind + E

(2)
exch-ind +

∑
A

∑
B<A

δEHF
AB

+
∑
A

∑
B<A

(
EXSAPT

AB − ESAPT
AB

) + EMB
int

]
. (12)
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Those terms in square brackets are regarded as the total
induction energy, and the total dispersion energy is E

(2)
disp

+ E
(2)
exch-disp. One may argue that this procedure double-counts

the higher-order induction terms since both the XPol SCF pro-
cedure and δEHF

int are included in those terms. In the charge-
embedded, monomer-based SCF calculation for XPol, both
infinite-order response and higher-order corrections for in-
duction are only partly included. Furthermore, we assume
that the δEHF

int correction term is pairwise for the many-
body system. Thus, this approach relies partly on cancella-
tion of errors to provide meaningful results. However, thor-
ough comparisons to benchmark calculations will show that
this interaction-energy decomposition scheme is accurate and
robust.

C. Second-generation dispersion potential

Our original XSAPT(KS)+D method29 was based on
empirical atom–atom dispersion potentials developed for
SAPT(KS) by Hesselmann.38 Here, we test a second-
generation (“+D2”) version of XSAPT that employs an al-
ternative dispersion potential developed by Podeszwa et al.:42

EdlDF
disp = −

∑
i∈A

∑
j∈B

(B �=A)

[
Cij,6

r6
ij

f6(βij rij ) + Cij,8

r8
ij

f8(βij rij )

]
.

(13)
In this equation, Cij, 6 = (Ci, 6Cj, 6)1/2 (similar for Cij, 8) and β ij

= (β iβ j)1/2. This empirical potential has previously been used
to correct the results of a “dispersionless” density functional
(dlDF),42, 56 hence the notation EdlDF

disp . The indices i and j in
Eq. (13) represent nuclei located on different monomers and

fn(rij ) = 1 − exp(−rij )
n∑

m=0

rm
ij

m!
(14)

is the Tang-Toennies damping function.57 The quantities
Ci,6, Ci,8, and β i are parameters that are fit to reproduce
SAPT(DFT) dispersion energies (E(2)

disp + E
(2)
exch-disp) for a

training set of dimers.42 For hydrogen, the values of these
parameters depend upon the identity of the nearest-neighbor
atom.

The Hesselmann38 (“+D”) and Podeszwa et al.42

(“+D2”) dispersion potentials were parameterized in com-
pletely different ways. The latter was fit directly to SAPT dis-
persion potentials,

Edisp(R) = E
(2)
disp(R) + E

(2)
exch-disp(R) (15)

for a large training set of dimers, where the disper-
sion energies Edisp(R) were computed using SAPT(DFT).58

Hesselmann’s38 dispersion potential, on the other hand, was
parameterized to reproduce benchmark intermolecular inter-
action energies for the S22 data set.38 In view of this, the
dispersion potential of Podeszwa et al.42 seems better suited
for use in our energy decomposition scheme, since it con-
stitutes a well-defined dispersion component. As in our pre-
vious work,29 we refer to results using Hesselmann’s38 dis-
persion potential as XSAPT(KS)+D, whereas results using

Eq. (13), which are presented here for the first time, will be
called XSAPT(KS)+D2.

III. COMPUTATIONAL ASPECTS

A. Basis sets and functionals

Our tests indicate that triple-ζ basis sets, augmented with
diffuse functions, are required in order to obtain accurate
results for individual energy components. Our basis set of
choice is the second-generation Ahlrichs triple-ζ one, def2-
TZVPP,59 as XSAPT calculations with this basis exhibit the
best accuracy for S22A binding energies, amongst many basis
sets that we have tested.27, 28 We augment def2-TZVPP with
diffuse functions taken from Dunning’s aug-cc-pVTZ (aTZ)
basis set, and refer to the augmented basis set as aug-def2-
TZVPP (aTZVPP). In addition to the computational cost of
augmenting all atoms, however, the use of a large number
of diffuse functions can sometimes lead to overpolarization
in the context of charge-embedding schemes.60 Thus, most
of the XSAPT calculations reported here use “heavy aug-
mented” (ha) basis sets that have diffuse functions only on
the non-hydrogen atoms, and in particular we make extensive
use of ha-def2-TZVPP (haTZVPP).

We use long-range-corrected (LRC) density
functionals61–64 to obtain correct asymptotic behavior,
as in previous work.29 Specifically, we employ two LRC
functionals based on the short-range ωPBE exchange
functional.65 One of these (LRC-ωPBEh64) also contains
20% short-range Hartree-Fock exchange, whereas the other
(LRC-ωPBE61) does not. The range separation parameter
(ω) is determined by system-specific tuning66 to satisfy the
condition

εHOMO = −IP, (16)

where “IP” denotes the lowest ionization potential. For clus-
ters of monomers, we previously took ω for the supersys-
tem to be the one corresponding to the lowest monomer IP,29

on the assumption that the non-covalent interactions would
not significantly affect the IPs (hence the lowest monomer
IP equals the cluster IP). As such, the same value of ω was
used for all monomers in the cluster calculations reported in
Ref. 29. Subsequently, we discovered that the results could
be significantly improved in certain cases by using different
ω values for different monomers, in order to obtain an exact
asymptotic correction (AC) for each monomer unit, as is done
in the SAPT(DFT) method58 and the DFT-SAPT method.67 In
the present work, we compare these two approaches, using the
designation “(AC)” whenever different ω values are used for
different monomers. Tuned ω values for the monomers con-
sidered here are provided in Table S1 of the supplementary
material.68

Our tests indicate that errors for the exchange en-
ergy components increase with increasing fraction of short-
range HF exchange in the LRC functional. Furthermore,
we find that Podeszwa’s42 dispersion potential [Eq. (13)]
gives lower errors for dispersion components as compared to
Hesselmann’s38 potential. We expect that Podeszwa’s42 po-
tential works well with pure functionals in the short range
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since both exchange and dispersion components give lower
errors. Actually, the LRC-ωPBE functional gives better re-
sults when used with Podeszwa’s42 dispersion potential and
the LRC-ωPBEh functional is more suitable to use with
Hesselmann’s38 dispersion force field, and for this reason
we use LRC-ωPBEh for XSAPT(KS)+D and LRC-ωPBE
for XSAPT(KS)+D2, with the haTZVPP basis set in ei-
ther case. As in our previous work,29 the parameter sβ in
Hesselmann’s38 dispersion potential was optimized in a basis-
set-specific way, using the S22A dimer binding energies39 as
benchmarks. The fitted values of sβ for several different basis
sets are listed in Table S2 of the supplementary material.68

In consideration of computational cost, it is not feasi-
ble to use a triple-ζ basis set to do a δEHF

int calculation for
large monomers, even with the pairwise-additive approxima-
tion used here. We find that the 6-31+G(3d,3pd) basis set
affords δEHF

int estimates comparable to those obtained using
triple-ζ basis sets. Comparing this basis set to def2-TZVPP
augmented with Pople diffuse sp functions on non-hydrogen
atoms, the unsigned difference in the δEHF

int corrections for
S22A data set is only 0.02 kcal/mol. Thus, we use the smaller
6-31+G(3d,3pd) basis set to compute the δEHF

int corrections
throughout this work.

Previously, we showed29 that XSAPT(KS)+D combined
with the partially augmented aug-cc-pVDZ′ (aDZ′) basis
set69, 70 outperforms MP2/CBS and related SCS-MP2/CBS
methods, so XSAPT(KS)+D/aDZ′ results are presented here
as well, for comparison. The aDZ′ and TZVPP basis sets gave
the best results for the XSAPT(HF) method,27, 28 so we also
include them in this work.

All XSAPT calculations reported here use smooth
ChElPG embedding charges28 for the XPol calculations and
“projected” (pseudocanonical dimer) basis sets27 for the
SAPT corrections. For supersystem DFT calculations, the
def2-QZVP basis set is used. The Euler-Maclaurin-Lebedev
(99,590) quadrature grid was used for all semi-local function-
als and the (75,302) grid was used for LC-VV10 calculations,
except in the case of the F−(H2O)10 clusters where consider-
ations of cost led us to use a (75,302) grid for the semi-local
functionals and a (50,194) grid for LC-VV10.

Finally, for comparative purposes we will present some
results computed using a recently proposed Hartree-Fock plus
dispersion (HFD) method augmented with first-order correla-
tion effects.42 This method, which was termed “HFDasc(1)”
in Ref. 42, computes the interaction energy according to the
formula

EHFDasc(1) = EHF
int + EdlDF

disp + ε(1). (17)

Here, EHF
int is the Hartree-Fock interaction energy, EdlDF

disp is the
empirical dispersion potential in Eq. (13), and

ε(1) = ε
(1)
elst + ε

(1)
exch (18)

is the first-order SAPT interaction energy. We compute ε(1) as
the difference between the first-order SAPT(KS) energy (us-
ing the LRC-ωPBE functional61) and the first-order SAPT0
energy,

ε(1) = ESAPT(KS) − ESAPT0. (19)

The haTZVPP basis set was used for supersystem Hartree-
Fock calculations and ε(1) was calculated using the projected
(pseudocanonicalized) version of haTZVPP.

B. Benchmarks

For most of the systems considered in this work, we
benchmark against CCSD(T)/CBS results, some of which are
taken from the literature and some of which are computed
here for the first time. In a few cases, alternative levels of the-
ory are used as benchmarks due to the availability of EDA re-
sults. This section described the benchmarks that we use and
how they are obtained.

For dimers, we use the CCSD(T)/CBS results in the
S22A and S66 data sets.39, 40 The S22A database revises the
energetics of the original S22 database,71 and although a fur-
ther revision (S22B) has been published,72 the mean unsigned
error (MUE) between the S22A and the S22B binding ener-
gies is only 0.035 kcal/mol. As such, we use the S22A binding
energies here, to facilitate comparison to some other ab initio
results in the literature. For benchmarks of individual energy
components for the S22 data set, we use the SAPT2+(3)/aTZ
results from Ref. 41. For S22A binding energies, this level of
theory is found to be the most accurate SAPT method.34

We will also benchmark against CCSD(T)/CBS poten-
tial energy curves (PECs) for several systems. For Ar· · · Ne,
the CCSD(T)/CBS result was obtained here by combining
the HF/aug-cc-pV6Z energy with a two-point extrapolation73

(aug-cc-pV5Z and aug-cc-pV6Z) of the CCSD(T) correlation
energy. Potential energy curves for (C6H6)2, F−(H2O), and
Cl−(H2O) are taken from the literature,29, 74 where they are
computed using standard extrapolation techniques to obtain
the MP2/CBS result combined with a triples correction

δCCSD(T) = ECCSD(T) − EMP2, (20)

computed in a basis set where the CCSD(T) calculation is fea-
sible.

For the F−(H2O)n and Cl−(H2O)n clusters (where n
≤ 6), structures were optimized at the resolution-of-identity
(RI) MP2/aTZ level. For the ten isomers of F−(H2O)10, struc-
tures were taken from Ref. 25 and then re-optimized at the
B3LYP/6-31G* level. We report unrelaxed binding energies
for these halide–water clusters, i.e., the H2O monomer ener-
gies are computed using their cluster geometries.

RI-MP2 correlation energies in the CBS limit were es-
timated using a two-point (aug-cc-pVTZ and aug-cc-pVQZ)
extrapolation.73 This extrapolated correlation energy was
added to the HF/aug-cc-pVQZ energy to estimate the RI-
MP2/CBS energy. To this RI-MP2/CBS energy, we then add
a triples correction [see Eq. (20)] in which the MP2 and
CCSD(T) energies are each computed within the RI approx-
imation using the “haTZ” basis set, which was suggested for
this purpose in Ref. 75.

The expensive ERI-CCSD(T) term needed in Eq. (20) is ap-
proximated efficiently by means of an electrostatically em-
bedded many-body expansion (EE-MBE) of the correlation
energy.76 Specifically, we use a three-body truncation of the
MBE in conjunction with gas-phase Mulliken embedding
charges computed at the B3LYP/6-31G* level. (EE-MBE
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results for water clusters and ion–water clusters are remark-
ably insensitive to the details of the embedding charges in
many cases.77)

These halide–water benchmarks are new, and both coor-
dinates and benchmark energetics for them are available in the
supplementary material.68 The accuracy of the three-body ap-
proximation to δRI-CCSD(T) can be gauged by comparing it to
a two-body approximation, and data for both are provided in
the supplementary material.68 To summarize: for X−(H2O)2

(X = F, Cl), the difference between a two-body approxima-
tion to δRI-CCSD(T) and the exact triples correction defined by
Eq. (20) is <0.1 kcal/mol. Furthermore, for the ten isomers of
F−(H2O)10 considered in this work, values of δRI-CCSD(T) com-
puted by means of a two-body truncation range from −2.1 to
−2.8 kcal/mol while values obtained using a three-body ap-
proximation range from −1.6 to −2.1 kcal/mol, for an aver-
age difference of 0.6 kcal/mol between the two- and three-
body approximations to δRI-CCSD(T). It is therefore anticipated
that a four-body approximation would modify the total bind-
ing energies by significantly less than 0.6 kcal/mol.

SAPT2+(3) calculations were performed using the SAPT

2008.2 program78 with integrals generated by the ATMOL

program.79 The RI-CCSD(T) and RI-MP2 calculations nec-
essary for the triples correction in Eq. (20) were computed
using the ORCA program,80 v. 2.9.1. Large-basis CCSD(T)
calculations for Ar· · · Ne were computed using CFOUR.81, 82

All other calculations were performed using a locally mod-
ified version of Q-CHEM, v. 4.0.83, 84 All supersystem cal-
culations are counterpoise corrected according to the Boys-
Bernardi scheme,85 with the exception of the EE-MBE triples
correction in Eq. (20) and also the Ar· · · Ne calculations.

IV. RESULTS AND DISCUSSION

A. S22 and S66 data sets

Interaction energies calculated using XSAPT, traditional
SAPT, the effective fragment potential (EFP) method,21 the
HFDasc(1) approach,42 and several post-HF methods are com-
pared to benchmark CCSD(T)/CBS results for the S22A data
set in Table I. The MUE for high-level SAPT2+(3)/aTZ cal-
culations is 0.32 kcal/mol,41 and is just a little bit worse than
the SCS(MI)-MP2/CBS and SCS-CCSD/CBS results.39 The
SAPT2+(3) and XSAPT-based results are all better than the
EFP and MP2/CBS results. As noted previously,41 EFP re-
sults are quite poor (MUE = 1.79 kcal/mol) when S22 ge-
ometries are used, but the MUE is reduced to 0.91 kcal/mol at
EFP geometries. This suggests that the XSAPT results might
also improve if XSAPT-optimized geometries were used (an
assertion that is supported by some limited finite-difference
optimizations27, 28), but we have not explored this possibility,
as analytic gradients for XSAPT are not available.

The XPol procedure was originally developed as a “next
generation” force field,86, 87 where it was combined with pair-
wise Lennard-Jones (LJ) potentials to account for short-range
exchange repulsion and long-range dispersion interactions.
LJ parameters were optimized in Ref. 87 at the B3LYP/6-
31G(d) level using 105 hydrogen-bonded dimers. However,
we find that this XPol-LJ method affords very poor binding

energies for the S22A data set, with a MUE of 3.29 kcal/mol.
(The method furthermore predicts that three of the dispersion-
dominated dimers are not bound at all.) It was argued in
Ref. 87 that the LJ parameters are optimized especially for the
hydrogen-bonded systems and that XPol-LJ should provide
a good description of hydrogen-bonded interactions. How-
ever, for the H-bonded subset of S22, the MUE remains large,
3.16 kcal/mol. This is the reason why we need to use SAPT to
capture the rest of interaction following an XPol calculation.

The results for XSAPT(KS)+D are better than those for
XSAPT(KS)+D2, but one should recall that in developing
the original “+D” dispersion potential, we specifically opti-
mized one parameter (sβ) to minimize errors for S22A bind-
ing energies. The main source of error in XSAPT(KS)+D2
comes from dispersion-dominated complexes, especially the
π -stacked uracil dimer and adenine–thymine complexes,
where the errors are 3 and 4 kcal/mol, respectively. The
primary source of these errors is the dispersion component
of the potential. For uracil dimer, the D2 dispersion poten-
tial overestimates the SAPT2+(3)/aTZ dispersion energy by
1.8 kcal/mol, and for adenine–thymine by 2.0 kcal/mol. These
two systems also represent the outliers for the HFDasc(1)

method [Eq. (17)], which uses the same form of the dis-
persion potential as in XSAPT(KS)+D2, although the er-
rors are somewhat larger for HFDasc(1): 5 kcal/mol for uracil
dimer and 3 kcal/mol for adenine–thymine. In fact, there is
much formal similarity between the XSAPT(KS)+D2 and
HFDasc(1) methods, as will be discussed below.

We do not understand the origin of the large errors for
the two π -stacked systems in any further detail, although it is
noteworthy that of the 79 dimers used as a training set for the
D2 dispersion potential [Eq. (13)], only two π -stacked com-
plexes are included: the sandwich isomer of benzene dimer
(for which our method performs very well, as discussed be-
low), and the pyrazine dimer.42 Thus, some refinement for
larger π -stacked systems may be in order. If we eliminate
the two problematic π -stacked systems from the S22 data
set, then the MUE for XSAPT(KS)+D2/haTZVPP (AC) is
reduced to 0.34 kcal/mol for the dispersion-dominated subset
and 0.54 kcal/mol for the entire set of 20 complexes.

One curious feature of the data in Table I is that the “first
generation” XSAPT(KS)+D exhibits a smaller MUE than
does second-generation XSAPT(KS)+D2 for the dispersion-
dominated subset of S22. This is puzzling insofar as the
“+D2” dispersion potential is fit directly to dispersion en-
ergies (E(2)

disp + E
(2)
exch-disp) computed using SAPT(DFT). To

investigate this further, we have benchmarked the individ-
ual energy components (electrostatics, exchange, induction,
and dispersion) against those obtained at the SAPT2+(3)/aTZ
level,41 which includes monomer electron correlation effects.
These comparisons are listed in Table II, and provide a clue as
to the main sources of error. [At first glance, one might won-
der why the energy components other than dispersion should
be different for XSAPT(KS)+D and XSAPT(KS)+D2, but
one must recall that the two approaches employ different KS
functionals, as discussed in Sec. III A.]

The MUE for the dispersion energy obtained using
XSAPT(KS)+D2 is actually better than the corresponding
MUE for XSAPT(KS)+D. As such, the larger errors in



034107-7 K. U. Lao and J. M. Herbert J. Chem. Phys. 139, 034107 (2013)

TABLE I. Mean unsigned errors (MUEs), in kcal/mol, and percent errors (in parentheses), with respect to CCSD(T)/CBS benchmarks for the S22A data set
along with subsets consisting of the hydrogen-bonded dimers, dispersion-dominated dimers, and dimers of mixed influence. All calculations were performed at
S22 geometries except for one set of EFP results, as indicated.

Method H-bonded Disp.-bound Mixed All S22

XSAPT(HF)/aDZ′ 0.60 (6.55) 0.85 (32.06) 0.30 (9.32) 0.60 (16.70)
XSAPT(HF)/TZVPP 0.40 (3.63) 0.78 (21.99) 0.37 (10.09) 0.53 (12.36)
XSAPT(KS)+D/aDZ′ 0.73 (5.93) 0.38 (9.87) 0.52 (12.31) 0.53 (9.39)
XSAPT(KS)+Da 0.76 (6.54) 0.30 (7.34) 0.32 (7.26) 0.45 (7.06)
XSAPT(KS)+D (AC)a 0.62 (5.91) 0.41 (7.95) 0.40 (9.19) 0.47 (7.70)
XSAPT(KS)+D2a 0.88 (5.54) 0.99 (15.17) 0.35 (7.24) 0.75 (9.58)
XSAPT(KS)+D2 (AC)a 0.72 (4.57) 1.18 (15.88) 0.52 (11.82) 0.82 (10.99)
HFDasc(1) 0.59 (3.98) 1.44 (21.45) 0.59 (13.69) 0.90 (13.42)
SAPT2+(3)b 0.42 (4.09) 0.41 (8.79) 0.13 (4.64) 0.32 (5.98)
EFP (S22 geoms.)c 2.93 (19.53) 1.70 (42.62) 0.76 (17.43) 1.79 (27.26)
EFP (EFP geoms.)d 1.97 (14.51) 0.48 (13.10) 0.34 (7.39) 0.91 (11.73)
MP2e 0.24 1.69 0.61 0.88
SCS-MP2e 1.54 0.55 0.37 0.80
SCS(MI)-MP2e 0.30 0.37 0.17 0.28
SCS-CCSDe 0.40 0.23 0.08 0.24

aUsing the haTZVPP basis set and the δEHF
int correction.

bUsing the aug-cc-pVTZ basis set, from Ref. 41.
cFrom Ref. 41.
dUsing EFP-optimized geometries, from Ref. 41.
eCBS limit, from Ref. 39.

XSAPT(KS)+D2 binding energies for dispersion-dominated
dimers must arise from less satisfactory error cancellation
between the different energy components, as compared to
the original +D method. As such, XSAPT(KS)+D2 error
statistics for S22A (Table I) are slightly worse than for
XSAPT(HF). For XSAPT(KS)/haTZVPP with empirical dis-
persion, using the exact AC for different monomers is a lit-
tle bit worse than using the same ω value for the whole sys-
tem as compared to their errors with respect to CCSD(T)/CBS
benchmark for the S22A data set. However, we will see that
for other systems, the use of exact AC is essential, and in any
case for S22A it does not significantly degrade the results.

For the XSAPT(HF)/aDZ′, XSAPT(HF)/TZVPP, and
XSAPT(KS)+D/aDZ′ methods, the MUEs for the various
energy components with respect to the SAPT2+(3) bench-
marks are quite large as shown in Table II. Insofar as
these methods provide good results for binding energies,

it is clear that cancellation of errors must play a sig-
nificant role. XSAPT(KS)/haTZVPP methods with empir-
ical dispersion potentials and δEHF

int corrections give very
good results for individual energy components, especially
XSAPT(KS)+D2. The electrostatic and exchange energies
predicted by XSAPT(KS)+D and XSAPT(KS)+D2 with ex-
act AC are a bit worse than the corresponding results with-
out using exact AC, or in other words, a bit farther from the
SAPT2+(3) results.

SAPT2+(3)/aTZ was selected as a benchmark for the in-
dividual energy components because it is the most accurate
version of SAPT for the S22A binding energies.34 It is pos-
sible, however, that SAPT2+(3)/aTZ energy components do
not accurately represent the exact values, owing to truncation
of either the basis set or the perturbation series. For example,
intramolecular electron correlation contributions to the elec-
trostatic and exchange energies in SAPT2+(3) are truncated

TABLE II. Mean unsigned errors (MUEs), in kcal/mol, and percent errors (in parentheses), for individual energy components of the S22 data set, with respect
to benchmarks computed at the SAPT2+(3)/aTZ level.41 All calculations were performed at S22 geometries.

Energy components

Method Electrostatic Exchange Induction Dispersion

XSAPT(HF)/aDZ′ 0.69 (10.74) 2.84 (18.87) 1.92 (61.80) 1.25 (21.95)
XSAPT(HF)/TZVPP 0.41 (7.35) 2.16 (13.43) 1.70 (58.56) 0.60 (9.04)
XSAPT(KS)+D/aDZ′ 0.64 (13.37) 3.34 (25.10) 1.86 (60.20) 1.37 (18.08)
XSAPT(KS)+Da 0.35 (7.07) 0.81 (6.16) 0.25 (14.22) 0.55 (7.96)
XSAPT(KS)+D (AC)a 0.37 (7.54) 0.98 (7.77) 0.20 (11.30) 0.62 (8.52)
XSAPT(KS)+D2a 0.32 (6.31) 0.57 (4.81) 0.23 (12.01) 0.38 (6.68)
XSAPT(KS)+D2 (AC)a 0.36 (7.16) 0.72 (6.46) 0.23 (11.11) 0.38 (6.68)
EFPb 2.03 (34.26) 2.29 (16.53) 1.71 (50.73) 0.80 (12.61)

aUsing the haTZVPP basis and the δEHF
int correction.

bFrom Ref. 41.
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TABLE III. Mean unsigned errors (MUEs), in kcal/mol, and percent errors (in parentheses), with respect to
CCSD(T)/CBS benchmarks for the S66 data set along with subsets consisting of the hydrogen-bonded dimers,
dispersion-dominated dimers, and dimers of mixed influence. All calculations except the EFP ones were per-
formed at S66 geometries.

Method H-bonded Disp.-bound Mixed All S66

XSAPT(HF)/aDZ′ 0.26 (3.46) 0.83 (27.66) 0.45 (11.32) 0.54 (15.27)
XSAPT(HF)/TZVPP 0.36 (6.07) 0.44 (14.51) 0.36 (7.48) 0.39 (9.86)
XSAPT(KS)+D/aDZ′ 0.28 (4.00) 0.22 (9.06) 0.34 (8.01) 0.27 (7.04)
XSAPT(KS)+Da 0.46 (5.13) 0.38 (13.46) 0.35 (7.50) 0.40 (9.11)
XSAPT(KS)+D (AC)a 0.37 (3.98) 0.34 (12.25) 0.34 (7.75) 0.35 (8.28)
XSAPT(KS)+D2a 0.49 (5.55) 0.34 (11.13) 0.47 (8.33) 0.42 (8.51)
XSAPT(KS)+D2 (AC)a 0.34 (3.15) 0.31 (10.06) 0.53 (9.69) 0.38 (7.56)
HFDasc(1) 0.39 (4.50) 0.41 (11.76) 0.65 (12.10) 0.46 (9.31)
EFPb 0.79 0.65 0.35 0.61
B2PLYP-D3c 0.50 0.13 0.15 0.26
M06-2Xc 0.24 0.35 0.25 0.28
ωB97X-Dd 0.16 0.58 0.24 0.33
MP2e · · · · · · · · · 0.45
SCS-MP2e · · · · · · · · · 0.74
SCS(MI)-MP2e · · · · · · · · · 0.28
CCSDe · · · · · · · · · 0.62
SCS-CCSDe · · · · · · · · · 0.15

aUsing haTZVPP and the δEHF
int correction.

bUsing EFP-optimized geometries, from Ref. 41.
cUsing def2-QZVP, from Ref. 13.
dUsing 6-311++G(3df,3pd), from Ref. 16.
eCBS limit, from Ref. 40.

at

ε
(1)
elst,resp(3) = E

(12)
elst,resp + E

(13)
elst,resp (21)

and

ε
(1)
exch(2) = E

(11)
exch + E

(12)
exch, (22)

respectively. However, the convergence behavior is improved
if these are replaced by ε

(1)
elst,resp(CCSD) and ε

(1)
exch(CCSD),

computed at the CCSD level.88–90 Due to the high compu-
tational cost for some of the larger dimers in the S22 data set,
we do not consider this possibility in the present work, and
treat SAPT2+(3)/aTZ as a good benchmark.

Examining the EFP results in Table II (which are taken
from Ref. 41), we observe that the MUEs for the individual
energy components are very large. For two of the dispersion-
dominated complexes (π -stacked benzene dimer and π -
stacked indole-benzene), the electrostatic interactions are
even predicted to be repulsive by EFP.41 On average, EFP un-
derestimates electrostatic and induction energies in almost all
strongly hydrogen-bonded complexes, by several kcal/mol,
probably owing to insufficient capture of charge penetration
by the screening function that is applied to the multipolar
electrostatics.41 Furthermore, neglect of the charge-transfer
term in the EFP potentials is another source of error for induc-
tion energies, especially for hydrogen-bonded complexes.41

The exchange energies are always underestimated by EFP,
which may be caused by neglect of intramolecular correla-
tion effects that are captured by SAPT.41 Of the various EFP
energy components, the dispersion energy best agrees with
SAPT2+(3) results, although Podeszwa’s42 (+D2) dispersion
potentials provide better agreement.

Another energy decomposition scheme based on the su-
permolecular method was proposed long ago by Kitaura and
Morokuma,91 and is conventionally known as EDA. Although
the definitions of different energy components in the SAPT
and EDA methods are different, they share a common term:
electrostatic interaction. Given the same molecular geome-
try and level of theory, the electrostatic term calculated by
SAPT should be similar to the corresponding term computed
by EDA. For the S22A data set, the MUE of the electro-
static term calculated by EDA at the BLYP-D3/TZ2P level is
0.32 kcal/mol,92 quite similar to XSAPT(KS)/haTZ results
with empirical dispersion. In short, our interaction-energy de-
composition scheme is accurate and can be extended to many-
body systems that are not amenable to traditional SAPT en-
ergy decomposition.

Table III presents errors in binding energies, as com-
pared to CCSD(T)/CBS benchmarks, for the S66 data set.40

This set includes 66 weakly bound dimers representing bind-
ing motifs commonly found in biomolecular structures, and is
thought to be more balanced than S22 with respect to differ-
ent types of interactions. Although the original S66 binding
energies40 have been revised,93 the revised values are only
marginally different; the MUE between the original and the
revised binding energies is 0.08 kcal/mol. We use the orig-
inal binding energies here, to facilitate comparison to some
published ab initio and DFT results.13, 40 As shown in previ-
ous work,29 the XSAPT(KS)+D/aDZ′ method affords good
cancellation of errors and gives very good results for S66
(MUE = 0.27 kcal/mol). A few supersystem DFT methods
have been identified that yield comparable MUEs,13 includ-
ing M06-2X, ωB97X-D, and the double-hybrid B2PLYP-D3
method, and S66 error statistics for these methods are listed
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in Table III as well. (Note, however, that a quadruple-ζ ba-
sis set was used in most of these DFT benchmarks,13 so these
DFT calculations are considerably more expensive than the
XSAPT(KS)+D calculations.) For the -D and -D3 supersys-
tem DFT methods, the classical dispersion potential is crucial
to achieving MUEs of ∼0.3 kcal/mol. In the case of B2PLYP,
for example, the MUE is reduced from 1.60 to 0.26 kcal/mol
when the D3 correction is added.13

For XSAPT(KS)/haTZVPP in both its -D and -D2 form,
we obtain MUEs of ∼0.4 kcal/mol when the δEHF

int correction
is applied. This is superior to MP2, SCS-MP2, and CCSD
results in the CBS limit, and superior also to EFP results.
The maximum error for the XSAPT(KS)+D2/haTZVPP (AC)
method is about 3 kcal/mol, for the π -stacked uracil dimer.
That same system affords the maximum error when consider-
ing the S22 data set as well, and above we suggested that the
+D2 potential could benefit from re-parameterization using a
data set in which π -stacked complexes are better represented.
For S66, the MUE for XSAPT(KS)+D2/haTZVPP (AC) is
reduced to 0.33 kcal/mol if we eliminate the problematic π -
stacked uracil dimer.

Note also that the use of exact AC (i.e., monomer-specific
values of ω) reduces the MUE only marginally, from 0.42 to
0.38 kcal/mol for S66. For the S22A data set, exact AC ac-
tually increases the MUE, albeit by a similarly tiny amount
(0.07 kcal/mol; see Table I). Thus, on the basis of the S22
and S66 results alone, there is really nothing to recommend
the use of monomer-specific ω values, although there is also
no compelling reason not to use the exact AC, other than the
minor trouble of determining the optimized ω value for each
monomer. However, use of the exact AC proves to be very
important for binding energies of Cl−(H2O)n clusters, as dis-
cussed below in Sec. IV D.

Finally, the HFDasc(1) results are worth considering in a
bit more detail. This method exhibits a MUE of 0.46 kcal/mol
for the S66 data set, and the maximum error (3.5 kcal/mol)
also comes from the π -stacked uracil dimer. Its performance
for S66 is thus very similar to that of XSAPT(KS)+D2,
which was the case for the S22 data set as well. This is
likely no accident, as the two methods bear much formal
similarity. In particular, the δEHF

int correction is included in
both, and the key difference is that whereas the HFDasc(1)

method includes the (infinite-order) CPHF response to the
frozen, Hartree-Fock monomer density, the XSAPT(KS)+D2
method includes higher-order induction effects via the point-
charge embedding of the iterative XPol procedure. As noted
in Sec. II B, this means that XSAPT(KS)+D2 double-counts
some higher-order induction effects, yet this evidently does
not have deleterious effects on binding energies, even in
strongly hydrogen-bonded complexes, and is considerably
cheaper than solving CPHF equations. We therefore view
this small formal inconsistency as a worthwhile price to pay
for the ability to include electron correlation effects in the
monomer properties.

B. Potential energy curves

The error statistics for S22A and S66 binding energies
demonstrate that XSAPT(KS) methods with empirical disper-
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FIG. 1. Potential energy curves for Ar· · · Ne: (a) comparison of various
XSAPT methods and (b) comparison of XSAPT and DFT methods. The
δEHF

int correction is included in the XSAPT(KS)/haTZVPP methods with em-
pirical dispersion potentials. For DFT methods, the def2-QZVP basis set is
used with counterpoise correction.

sion potentials provide a good description of a wide variety of
non-covalent interactions at their van der Waals (vdW) min-
ima. It is important also to know how these methods perform
across the whole range of intermolecular distances, so in this
section we examine some one-dimensional PECs.

The Ar· · · Ne interaction potential is thought to be a dif-
ficult case since several DFT methods, which are recom-
mended for non-covalent interactions and which predict an
accurate value of the Ar· · · Ne binding energy at the CCSD(T)
vdW minimum, afford qualitatively incorrect PECs for this
system.29, 56 Figure 1 compares the Ar· · · Ne interaction po-
tentials given by various methods. XSAPT(KS)+D/aDZ′ pro-
vides a very good description of the whole range PEC for
this system and is better than the XSAPT(KS)/haTZVPP
+ δEHF

int methods with empirical dispersion potentials. Fur-
thermore, using the same ω for both monomers leads to
slightly better results across the PEC.

In Fig. 1(b), we also compare XSAPT(KS) to DFT results
obtained using the def2-QZVP basis set. The DFT methods
selected for this comparison have been shown to yield accu-
rate binding energies for the dispersion-dominated subset of
S66.13, 20 Of these DFT methods, M06-2X overestimates the
well depth at the minimum-energy geometry, as demonstrated
previously.56 B2PLYP-D3, which has the smallest MUE of
any DFT-based method for the dispersion-dominated subset
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FIG. 2. Potential energy curves for (a) the “sandwich” and (b) the
“T-shaped” isomer of (C6H6)2. The distance coordinate in either case
is the center-to-center distance between the benzene rings. Benchmark
CCSD(T)/CBS results are taken from Ref. 74. The δEHF

int correction is in-
cluded in the two XSAPT(KS)/haTZVPP calculations that include empirical
dispersion.

of S66 (see Table III), affords an Ar· · · Ne well that is much
too shallow. The popular ωB97X-D functional11 shifts the
minimum-energy distance significantly as compared to other
methods; the ωB97X-D minimum is located at a distance that
is 0.4 Å too large, and the well depth is too shallow as well.
The non-local correlation functional LC-VV10 yields a more
accurate PEC than either M06-2X or ωB97X-D, consistent
with results for the S66 data set, where the MUE for the
dispersion-dominated subset is just 0.1 kcal/mol using LC-
VV10.20 However, XSAPT(KS)+D/aDZ′ is clearly superior
across the entire PEC.

For the remaining homo-monomer systems consid-
ered in this work (benzene dimer and water clusters), the
XSAPT(KS)+D2/haTZVPP methods with and without exact
AC are the same. Furthermore, XSAPT(KS)+D/haTZVPP
with and without exact AC affords very similar results, since
these two methods differ only by way of slightly different sβ

parameters in the dispersion potential.68 For brevity, we thus
limit our discussion to XSAPT(KS)/haTZVPP results with-
out exact AC for homo-monomer systems. For the halide–
water clusters (hetero-monomer systems), however, we will
only show the results with exact AC, since this improves the
binding energies, as will be seen in Sec. IV D.

FIG. 3. Potential energy curves for (a) F−(H2O) and (b) Cl−(H2O) at a fixed
H2O geometry. The distance coordinate is the halide–oxygen distance and
the benchmark is CCSD(T)/CBS. The δEHF

int correction is included in the
XSAPT(KS)/haTZVPP methods with empirical dispersion potentials.

Benzene dimer is considered to be a stringent test of dis-
persion interactions and we consider both “sandwich” and
“T-shaped” isomers, as shown in Fig. 2. For the sandwich
isomer, XSAPT(KS)+D2/haTZVPP reproduces the whole
CCSD(T)/CBS potential curve almost quantitatively. For the
T-shaped isomer, XSAPT(KS)+D2/haTZVPP slightly under-
estimates the binding energy at short intermolecular distance
but is very accurate beyond the vdW minimum. The new +D2
dispersion potential outperforms the old one for this system.

In Fig. 3, we plot PECs for F−(H2O) and Cl−(H2O),
which are known to be challenging cases for both XSAPT as
well as traditional SAPT,29, 55 even when third-order correc-
tions are included in the latter.55 Using the exact AC improves
the binding energies by about 0.1 kcal/mol for F−(H2O) and
0.3 kcal/mol for Cl−(H2O). Values of ω, optimized accord-
ing to Eq. (16), are 0.500, 0.475, and 0.375 bohr−1 for H2O,
F−, and Cl−, respectively, and the similarity between the H2O
and F− values explains why use of exact AC has a smaller
effect for F−(H2O) than for Cl−(H2O). This provides further
evidence that the exact AC afforded by the IP condition in
Eq. (16) is necessary, especially for H-bonded systems.

For F−(H2O), the XSAPT(KS)+D/aDZ′ and
XSAPT(KS)+D/haTZVPP (AC) methods greatly over-
estimate the interaction energy at short distance. The
second-generation method is significantly better, and in
fact is in nearly quantitative agreement with CCSD(T)/CBS
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results except at monomer separations much smaller than
the vdW distance, where it becomes a bit too repulsive. In
previous work,55 we hypothesized that the poorly shaped
PECs for F−(H2O) that were obtained using XSAPT(KS)+D
might originate in a low-energy FH· · · OH− diabatic state94

that simply cannot be captured by monomer-based methods.
While such a state may ultimately lead to other problems, we
see in Fig. 3 that most of the error in the shape of the PEC is
eliminated when the +D dispersion potential is replaced by
+D2, and the δEHF

int is included as well.

C. Water hexamer

Results presented above demonstrate the excellent per-
formance of XSAPT(KS)+D2/haTZVPP (AC) for dimers,
including some challenging ones. In this section and in
Sec. IV D, we investigate whether these favorable results ex-
tend to large clusters composed of polar monomers, where
many-body polarization effects are important.

In this section, we examine the widely studied (H2O)6

cluster, considering the eight low-lying isomers identified in
Ref. 95. Although CCSD(T)/CBS binding energies are avail-
able for these isomers,95, 96 we have chosen to base our anal-
ysis instead on MP2/a5Z-h energies from Ref. 48. (The nota-
tion “a5Z-h” means aug-cc-pV5Z with h functions removed.)
The reason for this choice is that traditional EDA has been
performed at this level of theory,48 the results of which can be
used to validate our XSAPT version of EDA.

On the other hand, we have made binding energies a ma-
jor focus of this work and therefore we should at least ex-
amine the (H2O)6 binding energies and make some effort to
improve upon the MP2/a5Z-h//MP2/aTZ benchmarks from
Ref. 48, which we will do using the CCSD(T)/CBS//MP2/
haTZ results from Ref. 95. We have attempted to correct the
former benchmarks in two ways, as detailed in the supplemen-
tary material.68 In the first case, we simply add a CCSD(T)
correction to the counterpoise-corrected MP2/a5Z-h binding
energies in Ref. 48; this correction is computed as the differ-
ence between CCSD(T)/CBS and MP2/CBS binding energies
from Ref. 95. The slightly different cluster geometries used in
Ref. 95 versus Ref. 48 (MP2/haTZ versus MP2/aTZ) are un-
likely to make much difference, hence the major source of er-
ror in what we will call “MP2/a5Z-h + δCCSD(T)” binding en-
ergies is basis-set incompleteness at a5Z-h level. This causes
MP2/a5Z-h binding energies to differ from MP2/CBS values
by 0.7–0.8 kcal/mol.68 In view of this, a second attempt was
made to obtain better binding energies simply by using the
CCSD(T)/CBS//MP2/haTZ values95 at MP2/aTZ geometries.
In the latter case, we have added MP2/a5Z-h monomer relax-
ation energies (from Ref. 48), since monomer relaxation was
included in the calculations of Ref. 95 but is not included in
the binding energies that we report here, since we want to iso-
late intermolecular interactions.

Figure 4 compares the binding energies of eight (H2O)6

isomers, computed with various methods, to these bench-
marks. Of the XSAPT methods, XSAPT(KS)+D/aDZ′ sig-
nificantly overestimates the binding energies and furthermore
makes rather large errors in the relative energies and the ener-

FIG. 4. Binding energies for eight isomers of (H2O)6, computed using (a)
XSAPT methods and (b) XSAPT, XPol-LJ, and DFT methods. MP2/a5Z-h
//MP2/aTZ results are taken from Ref. 48 and corrected, as described in the
text, to obtain the “MP2/a5Z-h + δCCSD(T)” benchmarks. Alternatively, we
can use CCSD(T)/CBS results at MP2/haTZ geometries, since the latter are
very similar to the MP2/aTZ geometries. LJ parameters for XPol-LJ are taken
from Ref. 87 where they were optimized for H-bonded systems. The def2-
QZVP basis set with counterpoise correction is used for all DFT methods,
and the δEHF

int correction is included in the XSAPT(KS)/haTZVPP methods
with empirical dispersion.

getic ordering of the isomers. (Note that this is true regardless
of which of the benchmarks from the previous paragraph we
choose for comparison.) We have seen previously that triple-
ζ basis sets are often important for H-bonded systems, but
using XSAPT(KS)+D with the haTZVPP basis set leads to
binding energies that are underestimated rather than overesti-
mated, although the relative energies are improved. In all, the
+D results cannot be said to be quantitative for (H2O)6.

The +D2 potential, however, affords good results for
both absolute binding energies and relative isomer energies,
except for a slight overstabilization of the cyclic-chair iso-
mer. For the most part, the XSAPT(KS)+D2 (AC)/haTZVPP
binding energies lie between the two sets of CCSD(T) bench-
marks, though slightly (<1 kcal/mol) underestimated with
respect to the CCSD(T)/CBS//MP2/haTZ values that we
consider the more reliable. The contribution from δEHF

int is
about 10 kcal/mol and is essential for obtaining good re-
sults. This is consistent with recommendations to use δEHF

int
for SAPT calculations involving polar monomers.34, 53, 54

However, the δEHF
int correction is not suitable for use with

XSAPT(KS)+D/aDZ′ since this method’s success rests on
cancellation of errors.
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FIG. 5. Many-body polarization energies for eight (H2O)6 isomers.
MP2/a5Z-h results are taken from Ref. 48. The δEHF

int correction is included
in the XSAPT(KS)+D2/haTZVPP calculations.

In Fig. 4(b), we compare XSAPT to M06-2X and
ωB97X-D results, as these two functionals performed best for
the H-bonded subset of S66, with MUEs of ≈0.2 kcal/mol
(see Table III). For (H2O)6, however, the errors are much
larger. M06-2X overestimates the binding energies by 1–
3 kcal/mol, and ωB97X-D by about 1 kcal/mol, relative
to CCSD(T)/CBS//MP2/haTZ benchmarks. The LC-VV10
functional also consistently overestimates the binding ener-
gies by a larger amount (≈3 kcal/mol), although the rela-
tive energies are quite good. Despite being parameterized for
H-bonded complexes,87 the XPol-LJ results are quite poor,
with binding energies that are underestimated by up to about
5 kcal/mol. Unlike these other methods, the performance of
XSAPT(KS)+D2/haTZVPP for dimers does extend to this
larger system.

Turning now to analysis of energy components in
(H2O)6, the importance of many-body effects in this sys-
tem has been quantified recently by Chen and Li,48 at
the MP2/a5Z-h level, using localized molecular orbital en-
ergy decomposition analysis (LMO-EDA), which is a sim-
plified version of the Kitaura-Morokuma EDA scheme.91

These authors point out that the many-body effects are dom-
inated by polarization interactions, whereas the other en-
ergy components are strictly or nearly pairwise additive.48

Figure 5 compares the many-body polarization energies for
the (H2O)6 isomers considered here, computed using LMO-
EDA at the MP2/a5Z-h level48 or using our XSAPT-based
energy-decomposition scheme, the latter of which assumes
that the many-body energy arises exclusively from polariza-
tion. The +D and +D2 versions of XSAPT(KS)/haTZVPP
give very similar results for the many-body contribution to
the energy, so only the latter are shown, for clarity. These
results are in good agreement with the LMO-EDA results,
whereas the XSAPT(KS)+D/aDZ′ method consistently un-
derestimates the many-body energy.

Electrostatic energies from LMO-EDA and from
XSAPT(KS)-based methods are shown in Fig. 6. The
XSAPT(KS)/aDZ′ method greatly overestimates the elec-
trostatic energies, as compared to values extracted from
MP2/a5Z-h calculations, whereas XSAPT(KS)/haTZVPP

FIG. 6. Electrostatic interaction energy for eight (H2O)6. The MP2/a5Z-h
results are taken from Ref. 48.

methods with empirical dispersion potentials show good
agreement with LMO-EDA for the electrostatic energy. This
is consistent with our previous conclusions that triple-ζ basis
sets are necessary for hydrogen-bonded systems.28, 29

D. Halide–water clusters

The SAPT method does not afford chemical accuracy
for strongly interacting systems, especially ions at short in-
termolecular distances, where the perturbation series con-
verges slowly or may even diverge.55, 97 First-generation
XSAPT(KS)+D/aDZ′ results for F−(H2O) or Cl−(H2O) also
show qualitatively incorrect PECs at short distance, as demon-
strated in Fig. 3 and also Ref. 29. As demonstrated above,
however, this problem is resolved by the D2 dispersion poten-
tial, and the halide–water PECs have reasonable shapes and
afford accurate binding energies. In this section, we extend
these anion systems from two-body to many-body systems,
investigating binding energies for X−(H2O)n up to n = 6, for
X = F and Cl. All cluster geometries were optimized at the
RI-MP2/aTZ level of theory, and we consider one geometry
per cluster size. Since traditional SAPT is limited to dimers,
we first compare the binding energies for the binary X−(H2O)
complexes in Table IV.

The difference between RI-CCSD(T)/CBS and RI-
MP2/CBS binding energies is only 0.1–0.3 kcal/mol for these
dimers, although the difference is larger in the larger halide–
water clusters, as demonstrated below. Examining the DFT
results in Table IV, we see that both M06-2X and LC-
VV10 overestimate the binding energies, by ∼3 kcal/mol for
F−(H2O) and ∼1 kcal/mol for Cl−(H2O). Addition of the D3
correction proposed by Grimme14 (M06-2X-D3) leads to even
worse results. The ωB97X-D binding energy for Cl−(H2O)
is quite accurate but that for F−(H2O) is overestimated by
about 1 kcal/mol. SAPT0/aDZ′ binding energies are reason-
able (errors ∼1 kcal/mol) and are significantly better than
SAPT0/aTZ results. This is consistent with SAPT0 results
for other systems, where the aDZ′ basis set leads to favor-
able error cancellation,34, 69 which is why this basis set was
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TABLE IV. Binding energies (in kcal/mol) for F−(H2O) and Cl−(H2O).

Method F−(H2O) Cl−(H2O)

RI-CCSD(T)/CBS −32.32 −15.48
RI-MP2/CBS −32.25 −15.75
M06-2Xa −35.67 −16.30
ωB97X-Da −33.73 −15.48
LC-VV10a −35.01 −16.49
SAPT0/aDZ′ −33.93 −14.67
SAPT0/aTZ −37.57 −16.52
SAPT2+(3)/aTZ −34.07 −15.53
XSAPT(KS)+D/aDZ′ −27.44 −13.52
XSAPT(KS)+Db −36.22 −14.63
XSAPT(KS)+D (AC)b −36.20 −14.79
XSAPT(KS)+D2b −33.01 −14.69
XSAPT(KS)+D2 (AC)b −33.15 −15.05

aUsing the def2-QZVP basis set with counterpoise correction.
bUsing the haTZVPP basis set and the δEHF

int correction.

proposed in the first place, albeit in the context of dispersion-
bound complexes.

The high-level SAPT2+(3)/aTZ method affords almost
the same binding energy as RI-CCSD(T)/CBS for Cl−(H2O)
but overestimates the F−(H2O) binding energy by about
1.8 kcal/mol, consistent with previous results where methods
beyond SAPT0 were employed.55 In conjunction with the ob-
servation that supersystem DFT errors are consistently larger
for F−(H2O) than they are for Cl−(H2O), these results sug-
gest that fluoride–water is an especially challenging test of
monomer-based quantum chemistry, as we have observed in
previous work.25, 26, 28, 55, 98

Examining the XSAPT results in Table IV, we observe
that XSAPT(KS)+D/aDZ′ underestimates the X−(H2O)
binding energy, especially for X = F, but the new
XSAPT(KS)+D2/haTZVPP method performs much better,
with errors <1 kcal/mol when exact AC is used. Once again,
this is consistent with the need for triple-ζ basis sets for H-
bonded systems.28, 29 In terms of the exact AC (versus us-
ing the same ω value for all monomers), results with and
without exact AC differ by only 0.14 kcal/mol for F−(H2O),
but for Cl−(H2O) exact AC improves the binding energy by
0.36 kcal/mol.

Figure 7 compares XSAPT(KS)+D2 binding energies
for X−(H2O)n clusters (up to n = 6) to RI-CCSD(T)/CBS
benchmarks. Also included in this comparison are binding
energies computed using three different DFT methods. As
cluster size increases from n = 1 to n = 6, we observe
that the magnitude of the triples correction [Eq. (20)] in-
creases from −0.07 to −1.46 kcal/mol for fluoride–water
clusters and from 0.27 to 0.46 kcal/mol for chloride–water
clusters. (Actual numerical data are given in the supplemen-
tary material.68) For F−(H2O)n clusters, the triples correc-
tion is −1.0 kcal/mol already for n = 3, and is as large as
−2.1 kcal/mol for F−(H2O)10. As such, the RI-MP2/CBS
method cannot be considered a sub-kcal/mol benchmark
level of theory for F−(H2O)n binding energies, although for
Cl−(H2O)n the triples correction is no larger than 0.5 kcal/mol
up to n = 6.

FIG. 7. Errors in binding energies with respect to RI-CCSD(T)/CBS bench-
marks for (a) F−(H2O)n and (b) Cl−(H2O)n, up to n = 6. The def2-QZVP
basis set and counterpoise correction was used for all DFT calculations. The
δEHF

int correction is included in the XSAPT calculations. Positive and negative
errors imply that the binding energies are over- and underestimated, respec-
tively.

Oddly, XSAPT(KS)+D2/haTZVPP results for F−(H2O)n

are slightly better when the same ω value is used for both F−

and H2O. Differences between this approach and the exact
AC approach range up to about 1 kcal/mol. These discrepan-
cies may be coincidence or cancellation of errors, because for
Cl−(H2O)n, where the ω values optimized for Cl− and H2O
are quite different,68 use of the exact AC proves to be crucial.
Exact AC reduces the errors from ≈6 kcal/mol for Cl−(H2O)5

and Cl−(H2O)6 down to 1.1 and 0.1 kcal/mol, respectively.
In view of these results, we consider the use of exact AC

(i.e., different ω values for different monomers) to be very
important for XSAPT calculations, despite the small differ-
ences observed for the S22 and S66 data sets, which include
no ions and whose interaction energies are relatively small
as compared to those encountered for X−(H2O)n complexes.
The S22 and S66 results likely understate the importance of
monomer-specific AC, because many of the interaction en-
ergies in those data sets are quite small and thus their ω-
dependence is small on an energy scale of, say, 1 kcal/mol.
Moreover, several of the strongly H-bonded examples in those
data sets, such as (H2O)2 and (HCO2H)2 from S22, are homo-
dimers; in such cases, there is no distinction between the “ex-
act” (monomer-specific) AC, and the tuning of ω based on
using the lowest monomer IP in Eq. (16). In SAPT(DFT) and
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TABLE V. Mean unsigned errors with respect to RI-CCSD(T)/CBS bench-
marks, for binding energies of X−(H2O)n, n = 1–6.

MUE/kcal mol−1

Method X = F X = Cl

RI-MP2/CBS 0.94 0.32
M06-2Xa 4.35 2.99
ωB97X-Da 1.42 0.38
LC-VV10a 2.77 2.66
XSAPT(KS)+D2b 0.39 3.43
XSAPT(KS)+D2 (AC)b,c 0.58 0.71
XSAPT(KS)+D2 (AC)c,d 2.20 0.48

aUsing the def2-QZVP basis set with counterpoise correction.
bUsing the haTZVPP basis set.
cUsing the δEHF

int correction.
dUsing the aTZVPP basis set.

DFT-SAPT calculations, monomer-specific AC has been rec-
ommended even for charge-neutral monomers.36, 99

Also interesting are the results when the basis set is in-
creased from haTZVPP to the fully augmented aTZVPP. As
summarized in Table V, the MUE for the fluoride–water clus-
ters increases from 0.6 to 2.2 kcal/mol while that for chloride–
water clusters decreases from 0.7 to 0.5 kcal/mol. The differ-
ence in the latter case is not substantial, but for fluoride–water
clusters we think this is a possible indication of overpolariza-
tion in the XPol step, owing to the presence of a large number
of diffuse basis functions. These results are the reason that we
primarily use haTZVPP in this work.

Beran100 has suggested that errors in fragment-based cal-
culations of molecular clusters ought to be extensive (propor-
tional to the number of monomer units). In applications to
water clusters, our group has indeed observed some numeri-
cal evidence of a roughly constant error per hydrogen bond,
for clusters with �5 hydrogen bonds.27 The slight uptick in
the errors for F−(H2O)n as a function of increasing clus-
ter size [see Fig. 7(a)] reminds us of these observations. To
investigate this further, we performed calculations on a set
of ten isomers of F−(H2O)10, whose initial structures were
taken from Ref. 25 but then optimized at the B3LYP/6-31G*
level of theory. MUEs for these F−(H2O)10 binding energies,
with respect to RI-CCSD(T)/CBS benchmarks, are listed in
Table VI. Results from several supersystem DFT methods
are included in this comparison, and in these cases the def2-
QZVP basis set and the Boys-Bernardi counterpoise correc-
tion were used, consistent with other DFT results presented
herein.

As compared to the RI-CCSD(T)/CBS benchmarks,
the MUE obtained at the RI-MP2/CBS level is about
1.8 kcal/mol, providing further demonstration that the many-
body triples correction is significant for F−(H2O)n. The three
DFT methods that we examine (M06-2X, ωB97X-D, and LC-
VV10) each afford very large errors in total binding energies,
although errors for relative isomer energies are much smaller.
M06-2X is the worst of the bunch, with a MUE of almost
9 kcal/mol in the binding energies. Errors in the absolute bind-
ing energies are much larger than those observed in a recent
study of DFT methods applied to SO2−

4 (H2O)6 clusters,101

confirming the challenging nature of fluoride–water clusters,

TABLE VI. Mean unsigned errors in the binding energies of ten isomers of
F−(H2O)10, with respect to RI-CCSD(T)/CBS benchmarks.

MUE/kcal mol−1

Method Binding energy Relative energy

RI-MP2/CBS 1.79 0.27
M06-2Xa 8.69 0.78
ωB97X-Da 3.68 0.35
LC-VV10a 6.77 0.44
XSAPT(KS)+D2b 1.07 0.59
XSAPT(KS)+D2 (AC)b 1.34 0.49

aUsing the def2-QZVP basis set with counterpoise correction.
bUsing the haTZVPP basis set and the δEHF

int correction.

and none of the three functionals that worked so well for S22
even comes close to achieving “chemical accuracy” for abso-
lute binding energies. The MUEs for relative isomer energies,
on the other hand, are <1 kcal/mol for all three functionals. A
plot of the relative energies of our ten F−(H2O)10 clusters, at
various levels of theory and compared to RI-CCSD(T)/CBS
benchmarks, can be found in Fig. S1 of the supplementary
material.68

In contrast to these supersystem DFT results, the
XSAPT(KS)+D2/haTZVPP method (either with or without
exact AC) exhibits a much smaller MUE (∼1 kcal/mol) for
the absolute binding energies of these F−(H2O)10 clusters.
Thus, the absolute binding errors come close to the “chem-
ical accuracy” standard of 1 kcal/mol, and are certainly good
enough to be useful in practical applications (especially con-
sidering that errors in relative energies are smaller still), even
though the errors are larger than the ∼0.5 kcal/mol errors in
binding energies for n ≤ 6. Further work is presently under-
way in our group to examine the issue of size extensivity in
fragment-based methods and to test these methods in signifi-
cantly larger clusters.

V. CONCLUSIONS

A second-generation (“+D2”) version of our
XPol+SAPT(KS) method with empirical dispersion has been
introduced and tested. An exact asymptotic correction (AC)
scheme, in which the AC is optimized separately for each
monomer according to the criterion εHOMO = −IP, is found
to be necessary in general to obtain good binding energies,
especially for ion–water clusters and other strongly hydrogen-
bonded complexes. The XSAPT(KS)+D2/haTZVPP method
with monomer-specific AC exhibits MUEs of 0.82 and
0.38 kcal/mol for S22A and S66 binding energies, respec-
tively, although two outliers (the π -stacked uracil dimer and
π -stacked adenine–thymine complex) suggest that some
further refinement of the empirical dispersion potentials may
be in order, using data sets that contain additional π -stacked
complexes.

A variety of other challenging systems have been
considered as well, including Ar· · · Ne, (C6H6)2, (H2O)6,
Cl−(H2O)n, and F−(H2O)n. The XSAPT(KS)+D2/haTZVPP
method affords accurate one-dimensional potential energy
scans for the dimers and accurate relative energies for the
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larger clusters. In particular, this method corrects certain
qualitative problems in the short-range description of halide–
water interaction potentials that were observed in the “first
generation” version of the method.29

The accuracy of XSAPT(KS)+D2/haTZVPP (AC) is su-
perior to that of popular DFT approaches for non-covalent
interactions, including M06-2X, ωB97X-D, and LC-VV10,
which are selected as exemplars here because of their favor-
able accuracy for S22 binding energies.

For the very challenging halide–water clusters,
XSAPT(KS)+D2/haTZVPP (AC) binding energies are
of moderate accuracy, with ∼1 kcal/mol errors observed
with respect to RI-CCSD(T)/CBS results. On the other hand,
the DFT methods fare even worse, with errors of several
kcal/mol in absolute binding energies. These supersystem
DFT approaches are not only less accurate as compared to
XSAPT(KS)+D2, but because the latter is a monomer-based
method, the supersystem DFT calculations are much more
expensive as well.29

The halide–water clusters examined here prove to be very
challenging examples for both supersystem and monomer-
based methods designed for non-covalent interactions, and
we suggest that these examples should probably be consid-
ered routinely whenever evaluating the performance of var-
ious methods for non-covalent interactions. Coordinates for
these clusters along with benchmark RI-CCSD(T)/CBS bind-
ing energies are available in the supplementary material.68

Finally, we have introduced an interaction-energy de-
composition scheme for XSAPT that extends SAPT energy
decomposition analysis to many-body systems. The different
energy components (electrostatic, exchange, induction, and
dispersion) for the S22A data set are in very good agreement
with benchmark SAPT2+(3)/aug-cc-pVTZ results, demon-
strating that our energy decomposition scheme is robust. Us-
ing this energy-decomposition scheme in conjunction with
XSAPT(KS)+D2, the many-body contributions to the bind-
ing energies of (H2O)6 isomers are reproduced almost per-
fectly as compared to benchmark calculations. Therefore,
XSAPT(KS)+D2 (AC) not only yields good binding ener-
gies for different non-covalent systems, but furthermore we
can decompose these binding energy into physical meaning-
ful energy components for many-body systems, which is not
possible in traditional SAPT.
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In a recent paper,1 we used high-level symmetry-adapted perturbation theory (SAPT) results for the S22 data set, which were
obtained from Ref. 2, to benchmark a dispersion-corrected version of the “extended SAPT” method3 that we called XSAPT+D2.
Since then, we have discovered that the data in the supplementary material to Ref. 2 were computed at the SAPT2+/
aug-cc-pVDZ level but were mislabeled as SAPT2+(3)/aug-cc-pVTZ. We have since made the SAPT2+(3)/aug-cc-pVTZ re-
sults available in the supplementary material that accompanies Ref. 4. Since we expect these new benchmarks to be superior in
quality, it is useful to discuss how the XSAPT+D2 method performs against these SAPT2+(3)/aug-cc-pVTZ benchmarks.

For comparison to SAPT2+(3)/aug-cc-pVTZ benchmarks, Table II in Ref. 1 should be replaced by Table II shown below.
As compared to the results reported in Ref. 1, the XSAPT+D2 errors for non-dispersion components of the energy improve
by small but noticeable amounts. For example, the mean unsigned errors (MUEs) for the electrostatic, exchange, and induction
components obtained with the XSAPT(KS)+D2 (AC) method1 decrease to 0.20, 0.53, and 0.17 kcal/mol, respectively, whereas
we previously reported 0.36, 0.72, and 0.23 kcal/mol.

TABLE II. Mean unsigned errors (MUEs), in kcal/mol, and percent errors (in parentheses), for individual energy components of the S22 data set, with respect
to benchmarks computed at the SAPT2+(3)/aug-cc-pVTZ level.4 All calculations were performed at S22 geometries.

Energy Components

Method Electrostatic Exchange Induction Dispersion

XSAPT(HF)/aDZ′ 0.71 (9.25) 2.49 (16.22) 2.02 (62.54) 1.42 (24.17)
XSAPT(HF)/TZVPP 0.28 (5.71) 1.83 (10.94) 1.80 (59.50) 0.76 (11.42)
XSAPT(KS)+D/aDZ′ 0.55 (11.21) 3.00 (22.90) 1.96 (60.98) 1.55 (20.72)
XSAPT(KS)+Da 0.16 (3.17) 0.49 (3.99) 0.19 (13.53) 0.68 (8.98)
XSAPT(KS)+D (AC)a 0.17 (3.19) 0.64 (5.21) 0.15 (10.56) 0.75 (9.60)
XSAPT(KS)+D2a 0.20 (3.14) 0.48 (4.78) 0.17 (11.29) 0.39 (5.70)
XSAPT(KS)+D2 (AC)a 0.20 (3.00) 0.53 (4.91) 0.17 (10.36) 0.39 (5.70)
EFPb 1.77 (32.66) 2.07 (14.87) 1.81 (51.53) 0.95 (14.20)

aUsing the haTZVPP basis and the δEHF
int correction.

bEFP data are from Ref. 2.

In Ref. 5, electrostatic energies for the S22 data set were computed via supermolecular energy decomposition analysis
at the BLYP-D3/TZ2P level. The MUE with respect to the old SAPT2+/aug-cc-pVDZ benchmarks was 0.32 kcal/mol,1 but
increases to 0.48 kcal/mol in comparison to the new SAPT2+(3)/aug-cc-pVTZ benchmarks. In comparison, the MUE for
XSAPT decreases from 0.36 to 0.20 kcal/mol, hence XSAPT+D2 (AC) outperforms traditional energy decomposition analysis,
at least for the electrostatic term.

In conclusion, when the benchmark energy components are computed at the SAPT2+(3)/aug-cc-pVTZ level, as we claimed
they were in our original work,1 the XSAPT-based energy decomposition analysis looks like an even more attractive way to
understand the nature of intermolecular interactions in non-covalent clusters.

We thank Professor David Sherrill for assistance in resolving these issues.
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