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High-accuracy electronic structure calculations with correlated wave functions demand the use of
large basis sets and complete-basis extrapolation, but the accuracy of fragment-based quantum chem-
istry methods has most often been evaluated using double-ζ basis sets, with errors evaluated relative
to a supersystem calculation using the same basis set. Here, we examine the convergence towards the
basis-set limit of two- and three-body expansions of the energy, for water clusters and ion–water clus-
ters, focusing on calculations at the level of second-order Møller-Plesset perturbation theory (MP2).
Several different corrections for basis-set superposition error (BSSE), each consistent with a trun-
cated many-body expansion, are examined as well. We present a careful analysis of how the interplay
of errors (from all sources) influences the accuracy of the results. We conclude that fragment-based
methods often benefit from error cancellation wherein BSSE offsets both incompleteness of the basis
set as well as higher-order many-body effects that are neglected in a truncated many-body expansion.
An n-body counterpoise correction facilitates smooth extrapolation to the MP2 basis-set limit, and
at n = 3 affords accurate results while requiring calculations in subsystems no larger than trimers.
© 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4836637]

I. INTRODUCTION

Two factors control the accuracy of ab initio calculations:
the level of theory used to describe electron correlation, and
the size of the one-particle basis set. Convergence with respect
to the latter, which is the topic of the present work, is gener-
ally not an option and one must resort to extrapolation pro-
cedures to estimate the complete basis-set (CBS) limit. The
fact that the basis set is not complete implies that the finite-
basis solution to Schrödinger’s equation lacks sufficient flex-
ibility to model the true wave function, leading to basis-set
incompleteness error (BSIE). It is worth noting that BSIE can
sometimes compensate for inadequacies in the treatment of
electron correlation; to unmask such errors, it is important to
be able to perform CBS extrapolations for the systems of in-
terest.

An additional complication arises for energy differences,
namely, the presence of basis-set superposition error (BSSE).
Consider the canonical case of computing a dimer (A· · · B)
binding energy. Here, the dimer (AB) basis set is larger and
more flexible than either monomer basis set, hence a naïve
calculation of the binding energy according to the equation

�E = EAB − EA − EB, (1.1)

in any finite basis set, represents an unbalanced approxima-
tion. BSSE is a reflection of this fact. The familiar Boys-
Bernardi counterpoise (CP) correction1 amounts to adding ex-
tra basis functions in calculating EA and EB, in such a way as
to correct for the unbalanced nature of the binding energy in
Eq. (1.1).
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BSSE and BSIE are intimately related,2, 3 which makes
it difficult to disentangle them or quantitatively define either
one.4 Whereas Eq. (1.1) suggests that BSSE is solely an in-
termolecular phenomenon, intramolecular BSSE may exist as
well, especially in larger molecules, and may affect the rela-
tive energies of, e.g., a compact versus an extended structure
of a polypeptide.5–10

Unfortunately, the separation between inter- and intra-
molecular BSSE is somewhat arbitrary in a macromolecule,
depending upon the semantics of defining boundaries be-
tween “molecular” units that sever covalent bonds, although
intramolecular CP corrections along these lines have been
proposed.11–14 The present study sidesteps this issue by fo-
cusing on clusters of small molecules that should thus contain
little intramolecular BSSE. We therefore make no attempt to
correct for intramolecular BSSE except via extrapolation to
the CBS limit.

The Boys-Bernardi CP correction and its many-body
generalizations, which are discussed in Sec. II, provide a
means to correct for finite-basis inadequacies. Many of these
corrections, however, rely on a series of calculations in the
full (supersystem) basis set, which can become burdensome
for large clusters of molecules, or where a high level of theory
is employed. For sufficiently large clusters, even non-BSSE-
corrected calculations become intractable, and in such cases
a popular avenue is fragment-based quantum chemistry. (See
Ref. 15 for a recent review and Ref. 16 for additional discus-
sion of how some of these methods are related to one another.)
Fragment-based methods assume that supersystem properties
are obtainable from isolated subsystem properties, allowing
for a host of smaller calculations, that are embarrassingly par-
allelizable and can be combined to give an approximate value
for the supersystem quantity of interest.
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In the interest of obtaining high-level benchmarks using
fragment-based methods, we wish to explore their use with
correlated wave functions and large, correlation-consistent
basis sets. To this end, two different BSSE corrections have
been introduced that are compatible with a truncated (at order
n) many-body expansion: the many-body counterpoise cor-
rection, MBCP(n),17 and the Valiron-Mayer function coun-
terpoise correction, VMFC(n).18 A preliminary comparison
of these two approaches was presented in Ref. 17, and the
present study provides a more complete follow-up, with par-
ticular emphasis on extrapolation to the CBS limit.

At the outset, we note that several previous studies17, 19, 20

have demonstrated that a two- or three-body expansion in
a triple-ζ basis set is sufficient to obtain a high accuracy
“triples” correction,

�ECCSD(T) = ECCSD(T) − EMP2. (1.2)

Thus, by understanding how errors from a truncated n-
body expansion (with or without CP corrections) com-
pare to MP2/CBS results, we learn how such errors affect
CCSD(T)/CBS results, where CCSD(T) denotes coupled-
cluster theory including single and double excitations, with
perturbative triple excitations.

The remainder of the paper is organized as follows. In
Sec. II, we briefly recount the formalism underlying the trun-
cated many-body expansion and, especially, the approximate
CP-type corrections that are consistent with the n-body ex-
pansion. Then, in Sec. IV, we apply these methods to two
systems: (H2O)6 and (H2O)10F−.

II. THEORY

A. Many-body expansion

The many-body expansion (MBE) for a system of N
monomers is given by

E =
N∑

I=1

EI +
∑
I<J

�EIJ +
∑

I<J<K

�EIJK

+ · · · + �EIJK···N, (2.1)

where I, J, . . . index monomers with energies EI ,EJ , . . ..
The higher-order correction terms in Eq. (2.1) can be conve-
niently defined via a recursive formula. The n-body correction
�EIJK···n is

�EIJK···n = EIJK···n −
∑

IJ ···(n−1)

�EIJ ···n−1

− · · · −
N∑

I=1

EI , (2.2)

where the first term on the right, EIJK···n, represents the en-
ergy of the system composed of monomers I, J, K, . . . , n. It
is important to note that the summations in Eq. (2.2) are re-
stricted to monomer indices present in �EIJK···n, which ac-
cording to Eq. (2.1) means that I < J < K < · · · < n.

In the present study, we are interested in the cases n = 2
and n = 3, for which Eq. (2.2) becomes

�EIJ = EIJ − EI − EJ , (2.3a)

and

�EIJK = EIJK − �EIJ − �EIK

−�EJK − EI − EJ − EK. (2.3b)

In a large system and/or a large basis set, these truncated ex-
pressions may dramatically reduce the amount of computer
time that is required to compute the energy. Owing to the
highly nonlinear scaling of ab initio quantum chemistry, this
may be true even before the embarrassingly parallelizable na-
ture of the independent monomer, dimer, and trimer calcula-
tions is exploited, i.e., even if all calculations are run in serial
on a single processor.17

B. “Exact” BSSE corrections

In the spirit of Boys-Bernardi CP correction, many-body
BSSE corrections will involve “ghost atom” basis functions
on some monomers. We will use a notation with subscript
monomer indices, as above, but where superscript indices in-
dicate which monomers contribute basis functions. For exam-
ple, EIJ

I represents the energy of the “real” monomer I com-
puted in the basis of dimer IJ, and EIJK

IJ denotes the energy
of the dimer IJ computed in the basis of the trimer IJK.

1. Boys-Bernardi counterpoise correction

The most popular BSSE correction method, the Boys-
Bernardi CP correction,1 uses the full cluster basis set for
each monomer calculation. The CP-corrected binding energy,
EB.E., is therefore given by Refs. 17 and 21,

EB.E. = EIJK···N
IJK···N −

∑
I

EIJK···N
I . (2.4)

This formula represents the natural N-body generalization of
the method introduced by Boys and Bernardi for dimers,4, 22

and we will refer to it simply as the CP correction. Equa-
tion (2.4) has also been called the “site-site function CP
method.”23

It is convenient to add and subtract the energy of each
monomer, in its own basis set, to arrive at an additive correc-
tion, ECP, to the uncorrected energy:

EB.E. = Euncorrected
B.E. + ECP. (2.5)

The uncorrected binding energy is computed by generalizing
the naïve formula of Eq. (1.1),

Euncorrected
B.E. = EIJK···N

IJK···N −
∑

I

EI
I , (2.6)

and therefore, the CP correction is

ECP =
∑

I

(
EI

I − EIJK···N
I

)
. (2.7)

The convenience of this additive correction is that it facili-
tates a correction for intramolecular BSSE by fragmenting a
molecule across covalent bonds.13
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2. Valiron-Mayer function counterpoise correction

In the literature concerning BSSE, there is a prevalent
belief that the CP scheme, in one fashion or another, does
not properly account for BSSE, though many of these early
claims were later refuted.4 Perhaps the most familiar criticism
of the Boys-Bernardi scheme is that it neglects “higher-order”
BSSE effects.24 Valiron and Mayer suggest that for a clus-
ter of N monomers, the proper way to remove all BSSE is to
remove BSSE from all pairs of monomers, from all trimers
of monomers, and so on. Using this reasoning, it is straight-
forward to arrive at a BSSE-corrected binding energy of the
form:24

EB.E. = Euncorrected
B.E. +

∑
I

(
EI

I − EIJK···N
I

)

+
∑
I<J

(
�EIJ

IJ − �EIJ ···N
IJ

)

+
∑

I<J<K

(
�EIJK

IJK − �EIJ ···N
IJK

) + · · · . (2.8)

Of particular importance here is the fact that the first cor-
rection to the binding energy is a term equal to the stan-
dard Boys-Bernardi CP correction, which lends support to the
claim that the latter procedure neglects higher-order BSSE
effects. The BSSE correction EVMFC that is suggested by
Eq. (2.8) is known as the VMFC correction.

3. CP versus VMFC

The VMFC method has seen little practical use because
its cost grows rapidly with the number of monomers. This is
easily seen by considering the number of individual calcula-
tions each method requires. For an N monomer cluster, the
VMFC correction requires 2N − 1 calculations in the super-
system basis set, whereas the Boys-Bernardi CP correction re-
quires only N. Furthermore, various studies have shown that
the difference in VMFC and CP binding energies is typically
less than 1.0 kcal/mol.18, 25, 26 A literature search reveals only
one exception, namely, (H2O)6 binding energies computed at
the MP2/cc-pVDZ level of theory, for which a difference of
about 4 kcal/mol is obtained.18 However, this sizable differ-
ence is reduced to only 0.3 kcal/mol by the addition of diffuse
basis functions.18

The claim that CP is negligent naturally poses the ques-
tion of which BSSE method is best. Currently this question
is unanswered and it seems likely that debate will continue
for some time because any attempt to resolve this issue must
contend with the fact that the difference between the CBS
result and any truncated basis set result is equal to the sum
of BSIE and BSSE. Without an explicit formula for either
it is impossible to determine whether CP, VMFC, or some
other correction (such as the so-called chemical Hamiltonian
approach11, 12) best eliminates the “true” BSSE. Here, we fo-
cus instead on each method’s ability to replicate benchmark
results.

TABLE I. Total number of distinct electronic structure calculations required
in order to evaluate various BSSE corrections.

Name Full basisa m-mer basisb Totalc

CP N 0 N

VMFC 2N − 2 (2m − 2)NCm
∑N

i=2 2i
NCi

VMFC(n) 0 (2m − 2)NCm
∑n

i=2(2i − 2)NCi

MBCP(n) 0 NN−1Cm−1 N
∑n

i=2 N−1Ci−1

aNumber of calculations involving the supersystem basis.
bNumber of calculations involving a subsystem basis with functions on m monomers
(m < N), where jCk = j !/k!(j − k)!.
cTotal number of distinct electronic structure calculations.

C. Approximate BSSE corrections

The number of terms required to apply the BSSE cor-
rections discussed above is given in Table I. For VMFC, the
number of calculations in the supersystem basis set grows
exponentially with N. That fact, combined with an unwield-
ily number of smaller calculations as well, means that the
VMFC approach is feasible only for very small clusters. The
CP approach is more tractable but also becomes expensive
for large systems, particularly those likely to be investigated
using fragment-based methods. To apply these two BSSE cor-
rections to larger systems, approximate versions based on
n-body truncation have been proposed.17, 18 We next discuss
these approximate methods.

1. MBCP(n)

Our group recently proposed an approximate form of the
Boys-Bernardi CP correction that we called the many-body
counterpoise correction,17 abbreviated as MBCP(n) when the
MBE is truncated at order n. The idea behind MBCP(n) is that
each one of the EIJK···N

I terms in the normal CP correction
[Eq. (2.4)] can be fragmented using a MBE. This gives a hi-
erarchy of methods, each corresponding to a particular value
of n. Here, we focus on the cases n = 2 and n = 3, for which
the MBCP(n) corrections are

EMBCP(2) =
∑

I

∑
J �=I

(
EIJ

I − EI
I

)
, (2.9a)

EMBCP(3) =
∑

I

∑
J �=I

∑
K>J
K �=I

[
EIJK

I − (
EIJ

I − EI
I

)

− (
EIK

I − EI
I

) − EI
I

]
. (2.9b)

The many-body nature of these equations is immediately ap-
parent when compared to Eqs. (2.3a) and (2.3b). The final
BSSE-corrected binding energy, at the MBCP(3) level for ex-
ample, would be written as

E
MBCP(3)
B.E. = Euncorrected

B.E. +
∑

I

EI
I

+ EMBCP(2) + EMBCP(3). (2.10)

There are several points worth making at this time. For
MBCP(n) with n < N, there will be no supersystem basis set
calculations, in fact it is readily seen that the largest basis set
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needed is that of n monomers at a time. Furthermore, no cal-
culation needed for MBCP(n) will have more than one “real”
monomer at a time, e.g., EIJK

I in Eq. (2.9b) consists of one
real monomer and two ghost monomers. Finally, because each
term in the correction is independent of the other terms, the
MBCP(n) procedure is highly parallelizable.

2. VMFC(n)

Kamiya et al.18 have proposed an approximate form of
the VMFC that we will call VMFC(n). This approach is mo-
tivated by the realization that Eq. (2.8) has terms involving
monomer basis sets, dimer basis sets, and so on, up to the full
supersystem basis set. Neglecting all terms in Eq. (2.8) that
involve basis functions on more than n monomers affords

EB.E. = Euncorrected
B.E. +

N∑
I=1

EI
I +

NC2∑
I<J

�EIJ
IJ

+
NC3∑

I<J<K

�EIJK
IJK + · · · +

N Cn∑
I<J<K<···<n

�EIJK···n
IJK···n . (2.11)

Upon relabeling the terms, we can rewrite this equation as

EB.E. = Euncorrected
B.E. +

N∑
I=1

EI
I + EVMFC(2)

+ EVMFC(3) + · · · + EVMFC(n), (2.12)

which defines the various n-body BSSE corrections, EVMFC(n).
For a given truncation order, n, VMFC(n) includes all

the terms that MBCP(n) does, as well as terms arising from
dimers in the n-body basis, trimers in the n-body basis, and
so on, up to n-mers in the n-body basis. As such, VMFC(n)
is far more expensive than MBCP(n), except for n = 2, where
the two methods are equivalent. It is reasonable to ask at this
point if these “extra” terms afford additional accuracy, but as
discussed in Sec. II B 3, the answer is complicated by BSIE,
as well as by the error in truncating the MBEs that give rise
to VMFC(n) and MBCP(n). These errors are difficult to dis-
entangle. The results presented below, along with previous
studies,18, 25, 26 seem to suggest that these terms are not worth
the increased computational time.

III. COMPUTATIONAL DETAILS

In previous tests of our MBCP(n) method,17 we used
eight isomers of (H2O)6 for which binding energies com-
puted at the MP2-R12/K2–level of theory,27–29 along with ge-
ometries optimized at the MP2/haTZ level, are available in
Ref. 30. Here, “haTZ” is a “heavy augmented” basis, con-
sisting of cc-pVTZ for hydrogen and aug-cc-pVTZ for other
atoms. The K2–basis set comes from Ref. 28, and consists
of aug-cc-pV5Z with the two highest angular momentum
shells removed from each atom. The MP2-R12 method con-
tains terms that depend linearly on the inter-electron distance,
and should converge rapidly with respect to the one-particle
basis set. As such, these energies are expected to be con-
verged to the CBS result without the need for extrapolation,30

making them ideal benchmarks for comparing MBCP(n) and
VMFC(n).

We also consider a set of ten (H2O)10F− clusters, us-
ing unrelaxed structures from a molecular dynamics simula-
tion as reported in Ref. 16. Energetics were computed at the
resolution-of-identity (RI) MP2 level,31 using standard auxil-
iary basis sets.32

CBS-quality results were obtained via separate extrapo-
lations for the Hartree-Fock (HF) energy and the correlation
energy.33 For the HF energies a three-point fit was used,34

EHF
ζ = EHF

CBS + ae−bζ , (3.1)

where a and b are fitting parameters and ζ = 2, 3, 4 for the
aug-cc-pVDZ, aug-cc-pVTZ, aug-cc-pVQZ basis sets. (We
will refer to these as the aug-cc-pVζZ sequence of basis sets,
or “aζZ” for short.) For the correlation energy we used a two-
point fit (ζ = 3, 4),35, 36

Ecorr
ζ = Ecorr

CBS + cζ−3, (3.2)

where c is a fitting parameter. When the highest basis set used
is aug-cc-pVζZ, both of these extrapolation schemes have
been shown to be capable of replicating benchmark results of
at least aug-cc-pV(ζ + 1)Z quality.37, 38 This means that our
current CBS extrapolation procedure should adequately repli-
cate the quintuple-ζ benchmarks. Coordinates and energies
for these benchmark clusters are available in the supplemen-
tary material.39

Binding energies are reported with respect to relaxed
monomers. This adds an additional complication from a
BSSE correction standpoint, because BSSE corrections are
performed at the supersystem geometry. It therefore becomes
necessary to account for the relaxation via an additive correc-
tion, Erelax.22, 25 The form of the relaxation energy,

Erelax =
N∑

I=1

(
EI

I − E
opt
I

)
, (3.3)

is independent of the type of BSSE correction. Here, EI
I de-

notes monomer I’s energy computed in its own basis at the su-
persystem geometry, and E

opt
I is the same quantity computed

at the minimum-energy monomer geometry.
All electronic structure calculations were performed us-

ing Q-CHEM.40 Creation of Q-CHEM inputs for the MBE cal-
culations was carried out using our program FRAGME∩T,16, 41

which creates the appropriate input files when the user inputs
the desired fragmentation, embedding, and capping method.
(In the present study, each fragment consists of either a sin-
gle H2O molecule or F− ion, so no capping is necessary.)
FRAGME∩T also handles the creation of all input files re-
quired to compute the BSSE corrections. The MBE is trun-
cated at either n = 2 or n = 3; we refer to these two methods as
“2B” and “3B,” respectively. The EE-2B and EE-3B methods
are the corresponding electrostatically embedded (EE) meth-
ods. We use a point-charge embedding along the lines of that
used by Dahlke and Truhlar,42–44 in which Mulliken charges
(computed at the B3LYP/6-31G* level) are used to represent
those atoms not included in a monomer, dimer, or trimer elec-
tronic structure calculation. The monomer geometries used
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to compute these point charges are those appropriate for the
cluster geometry.

IV. RESULTS

A. CBS extrapolation

The extrapolation ansätze in Eqs. (3.1) and (3.2) are
rooted in the observed exponential convergence of Hartree-
Fock energies with respect to ζ ,33, 34 and the provable ζ−3

convergence of correlation energies (at least for atoms at the
level of second-order perturbation theory; see Ref. 36 and ref-
erences therein). However, there is no reason to believe that
the parameters a, b, and c in Eqs. (3.1) and (3.2) should be
the same for the total cluster energy as they are, e.g., for the
monomer energies. Stated differently, the results of the CBS
extrapolation will depend upon whether the various compo-
nents of the binding energy are added together before or after
extrapolation.

In an attempt to ensure that our forthcoming results are
not biased unfairly towards one BSSE correction or another,
we briefly consider the impact of several different ways of
calculating the CBS-extrapolated binding energy. The relaxed
binding energy, ẼX

B.E., where the tilde indicates that the relax-
ation energy is included and X indicates a particular flavor of
BSSE correction, e.g., X = CP, can be extrapolated in eight
unique ways:

ẼX
B.E. = (

Euncorrected
B.E. + Erelax

) + (EX), (4.1a)

ẼX
B.E. = (

Euncorrected
B.E.

) + (Erelax + EX), (4.1b)

ẼX
B.E. = (

Euncorrected
B.E.

) + (Erelax) + (EX), (4.1c)

ẼX
B.E. = (E(H2O)6

+ Erelax + EX∗), (4.1d)

ẼX
B.E. = (E(H2O)6

+ Erelax) + (EX∗), (4.1e)

ẼX
B.E. = (E(H2O)6

+ EX∗) + (Erelax), (4.1f)

ẼX
B.E. = (E(H2O)6

) + (Erelax + EX∗), (4.1g)

ẼX
B.E. = (E(H2O)6

) + (Erelax) + (EX∗). (4.1h)

In each of these equations, the terms grouped in paren-
theses are added together prior to extrapolation, so that in
Eq. (4.1d), for example, only a single extrapolation is per-
formed, whereas in Eq. (4.1h) all three components of the
binding energy are extrapolated separately. As will become
evident shortly, (Euncorrected

B.E. + Erelax + EX) is equivalent to
Eq. (4.1d) and (Euncorrected

B.E. + EX) + (Erelax) is equivalent to
Eq. (4.1f), so the equations above represent all unique permu-
tations.

For convenience, the various energetic components in
these equations are defined in Table II, but we call attention to
two components in particular. For a particular BSSE correc-
tion method, X, we can define

EX = EX
B.E. − Euncorrected

B.E. , (4.2)

TABLE II. Energetic quantities used in the CBS extrapolations in
Eqs. (4.1a)–(4.1h).

Quantity Description

ẼX
B.E. Relaxed, BSSE-corrected binding energy using BSSE

correction method X

EX
B.E. BSSE-corrected binding energy using correction method X

Euncorrected
B.E. Binding energy of the system, not corrected for BSSE

E(H2O)6 The energy of the (H2O)6 supersystem
Erelax Sum of the individual monomer relaxation energies
EX BSSE correction for BSSE method X
EX∗ Same as EX , except that the

∑
I EI

I terms in EX and
Euncorrected

B.E. have been cancelled

and a formula for EX can be worked out from Eq. (2.5),
Eq. (2.10), or Eq. (2.12), for X = CP, MBCP(n), and
VMFC(n), respectively. The definition of EX∗ is best given
mathematically:

EX∗ = EX −
N∑

I=1

EI
I . (4.3)

For the eight (H2O)6 clusters, we have computed the
MP2/CBS value of ẼX

B.E. for each of the five BSSE correc-
tion methods, X, that are considered in this work (including
no BSSE correction at all), using each of the eight extrapola-
tions suggested in Eqs. (4.1a)–(4.1h). Mean unsigned errors
(MUEs) for each extrapolation, relative to the benchmark re-
sults in Ref. 30, are listed in Table III. It is immediately ap-
parent that the eight schemes do not predict results of equal
quality.

In light of the results in Table III, we will use
Eq. (4.1e) to compute CBS binding energies for the rest of
the manuscript. Aside from being the most accurate partition-
ing scheme [alongside Eq. (4.1g)], Eq. (4.1e) has the added
benefit that the terms in the first set of parenthesis only de-
pend on how the supersystem’s energy is computed and the
second set contains all of the dependence on the particular
choice of BSSE correction. Consequentially, error consider-
ations in the rest of the paper will be facilitated by allowing
us to break the final error into contributions from fragmenting
the supersystem and those from approximate BSSE correc-
tions. Because the BSSE corrections are additive, the errors
will be as well. It is worth noting that Eq. (4.1d) represents the
“normal” way of performing a CBS extrapolation, because it

TABLE III. Errors (relative to MP2/CBS benchmarks in Ref. 30) in MP2
binding energies of (H2O)6 obtained by extrapolating results from five differ-
ent BSSE correction schemes using the eight different extrapolation methods
in Eqs. (4.1a)–(4.1h).

Mean unsigned error kcal mol−1

(4.1a) (4.1b) (4.1c) (4.1d) (4.1e) (4.1f) (4.1g) (4.1h)

None 1.60 1.65 1.60 0.73 0.75 1.07 0.75 1.11
CP 0.88 0.13 0.88 0.09 0.02 0.09 0.02 0.38
MBCP(2) 0.67 0.10 0.67 0.33 0.19 0.32 0.19 0.17
MBCP(3) 0.89 0.16 0.89 0.10 0.04 0.10 0.04 0.40
VMFC(3) 0.90 0.12 0.90 0.09 0.05 0.09 0.05 0.41
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is more in line with the original physical motivations of the
extrapolation procedures (see Ref. 36, for example).

B. (H2O)6 clusters

1. Extrapolation without counterpoise correction

Historically, fragment methods have been used as an ap-
proximation to a particular level of theory, and their merit has
been judged by their ability to reproduce supersystem proper-
ties computed at the same level of theory. Here, we repeat this
exercise for the relaxed binding energies of the water hexam-
ers. The mean signed errors (MSEs), where

error = EX/aζZ − EMP2/aζZ, (4.4)

for X = 3B, EE-2B, and EE-3B (recall that aζZ ≡ aug-
cc-pVζZ) are shown in Fig. 1. Based on previous work by
Dahlke and Truhlar,42–44 albeit in a more limited selection of
basis sets, it is possible to give an empirical accuracy ordering
of

2B < 3B ≈ EE-2B < EE-3B

for the fragment methods considered here. To a large extent,
the data in Fig. 1 are in agreement with this trend. (MSEs
for 2B/aζZ are not shown in Fig. 1, but are on the order of
10 kcal/mol.) We do note a tendency for the fragment meth-
ods to underbind the cluster, and we suggest that this arises
from a neglect of stabilizing higher-order interactions; simi-
lar underbinding has been seen by other researchers.18, 42–44

The ability for fragment methods to accurately reproduce
a given level of theory is a nice result, but perhaps the more
interesting result from Fig. 1 is that the errors generally de-
crease as ζ increases, with the sole exception being the for-
tuitously accurate EE-2B/aDZ results. The latter method thus
represents a “Pauling point,”45 in the sense that both addition
of three-body terms (EE-3B/aDZ) and/or extension of the ba-
sis set (EE-2B/aTZ or EE-3B/aTZ) have deleterious effects
on the agreement with supersystem benchmarks. In view of
the popularity of double-ζ basis sets in fragment-based ap-
proaches, often at the MP2 level,18, 42–44, 46–49 this error can-
cellation should be borne carefully in mind. In fact, there has
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FIG. 1. Mean signed error (MSE) in the uncorrected MP2/aζZ binding ener-
gies for eight isomers of (H2O)6 computed at the MP2/aζZ level. The MSE
is computed with respect to supersystem MP2 results in the same basis set.
The “a∞Z” values represent CBS extrapolations.

been little systematic analysis of the errors in fragment-based
methods as a function of basis size. In the few studies where
a sequence of aug-cc-pVζZ basis sets has been used,50–52 the
conclusions are mixed. Often (but not always), the results im-
prove as ζ increases,51, 52 but the fragment molecular orbital
(FMO) method, as applied to (H2O)16, exhibits errors that
clearly grow larger as a function of ζ .50

At some level, the error statistics in Fig. 1 serve to reit-
erate the conclusions of Dahlke and Truhlar,42–44 namely, that
two- and three-body expansions offer reasonable accuracy for
clusters of polar molecules if—and only if—electrostatic em-
bedding is employed. For (H2O)6, all such methods afford
errors <0.6 kcal/mol, whereas non-embedded three-body re-
sults err by >1.2 kcal/mol. However, we are interested in
pushing the limits of such approaches in terms of their ability
to reproduce high-level benchmarks, and to this end we have
recomputed the MSEs for (H2O)6, except that now we use
MP2/CBS values30 as the benchmark for all fragment-based
methods, regardless of basis set. In other words, we replace
EMP2/aζZ in Eq. (4.4) by EMP2/CBS, in order to define the er-
ror. These results are plotted in Fig. 2.

It is important to note that most previous benchmark stud-
ies of fragment-based methods have not examined errors with
respect to large- or complete-basis results. As such, Fig. 2 re-
veals an important point that is perhaps worth stating explic-
itly: errors less than “chemical accuracy” (loosely defined as
�1 kcal/mol) are no cause for celebration if the correspond-
ing supersystem benchmark calculations (used to quantify the
error) are performed at a low level of theory.

Interestingly, of the various methods examined in Fig. 2,
the full (supersystem) MP2 results are less accurate, as com-
pared to MP2/CBS benchmarks, than the truncated MBEs.
(The exception is the two-body method without electrostatic
embedding, which exhibits MSEs of ∼10 kcal/mol that are
not shown in Fig. 2.) As such, the more faithfully that a frag-
ment method reproduces MP2/aζZ results, the larger is its
MSE with respect to MP2/CBS results. Of course, the dif-
ference in the MP2/aζZ and MP2/CBS binding energies is
equal to the sum of the BSSE and BSIE and so Fig. 2 is really
proving that neither of these errors is negligible. Moreover,
we have noted previously17 that extrapolation of non-BSSE-
corrected MP2/aζZ energies for (H2O)6 fails to reproduce the
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FIG. 2. Convergence (to the CBS limit) of the uncorrected MP2/aζZ bind-
ing energies for isomers of (H2O)6. The MSE is computed with respect to
MP2/CBS benchmarks from Ref. 30.
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FIG. 3. Convergence (to the CBS limit) of the relative energies of (H2O)6
isomers. The mean signed errors (MSEs) are computed with respect to
MP2/CBS benchmarks from Ref. 30.

consensus value17, 30, 53 of the MP2/CBS limit (at least when
basis sets no larger than aQZ are employed in the extrapola-
tion), and this is evident in Fig. 2. By contrast, extrapolation
of CP-corrected energies through MP2/aQZ does obtain the
correct limit.17 The BSSE will be dealt with below.

In chemistry we are often interested in relative energies
rather than total binding energies, and if two conformations
are of approximately the same shape and size, then it is pos-
sible that the two might exhibit comparable BSSE, such that
a BSSE correction would not be necessary in order to pre-
dict the relative energy. To this end, we have calculated the
relative stabilities of the eight (H2O)6 isomers and compared
them again to MP2/CBS results from Ref. 30. MSEs obtained
from this analysis are plotted as a function of basis set size in
Fig. 3.

Unlike the total binding energies, which fail to converge
to the CBS limit even following extrapolation, owing to resid-
ual BSSE even in the aQZ basis set, the relative energies com-
puted using supersystem MP2 calculations do converge to the
correct limit. These energies are within 0.2 kcal/mol of that
limit already at the MP2/aTZ level. This supports our hy-
pothesis that the BSSE for these systems is similar and thus
cancels in relative energy calculations. Further confirmation
is obtained by computing the CP corrections to these rela-
tive energies. For the aDZ, aTZ, and aQZ basis sets, these
CP corrections are 0.5, 0.3, 0.1 kcal/mol, respectively, and
<0.1 kcal/mol for the CBS-extrapolated result. Comparing
Figs. 2 and 3, where the benchmark is MP2/CBS in both
cases, we see that BSSE cancellation leads to relative ener-
gies that are significantly more accurate as compared to total
binding energies, and various truncated MBEs achieve an ac-
curacy of <1 kcal/mol with respect to relative energies com-
puted at the MP2/CBS level.

That said, the success of this cancellation hinges on the
various isomers being of approximately the same size and
shape, and cannot hold globally across the potential energy
surface. For example, an energy calculation on six sufficiently
well-separated water monomers will afford zero BSSE, and
from this point of view, a calculation of the total binding en-
ergy is just an extreme example of a relative energy calcula-
tion. Moreover, compact (H2O)6 structures are smaller than
the radial extent of the most diffuse atomic orbitals in the aTZ

and aQZ basis sets, suggesting that all isomers may exhibit
roughly comparable BSSE. Calculations performed on a lin-
ear (chain) isomer of (H2O)6 afford CP corrections that are
3.6, 1.8, and 0.83 kcal/mol different from those obtained for
the prism isomer, in the aDZ, aTZ, and aQZ basis sets, respec-
tively, and 0.24 kcal/mol different for the CBS-extrapolated
result. These values are considerably larger than the aver-
age CP corrections quoted above for the compact (H2O)6

structures, reflecting the difference in cluster shape. This un-
derscores the importance of CP corrections in exploring the
global potential energy surface, where the BSSE may not can-
cel from one basin to the next.

In fact, even for stable, hydrogen-bonded cluster isomers,
different regions of the potential surface may be affected dif-
ferently by BSSE, which can be seen by examining larger
clusters where a greater variety of hydrogen-bonding mor-
phologies are available. As an example, we have computed
dual-basis54 RIMP2/CBS energetics (based on a two-point cc-
pVTZ and cc-pVQZ extrapolation) for 80 different isomers
of (H2O)20, corresponding to the 20 lowest-energy structures
from each of four families of isomers, as determined by ex-
tensive basin-hopping Monte Carlo simulations55, 56 on the
TIP4P57 potential surface. Examples of these structural motifs
are depicted in Fig. 4, where we also plot the relative energies
of all 80 isomers. Both CP-corrected and uncorrected results
are shown, and the difference between the two is uniformly
small (�0.2 kcal/mol) for three of the four classes of isomers.
Apparently, the BSSE is approximately the same for all 60
of these isomers. For the dodecahedral isomers, however, the
CP correction shifts the energies by about 1 kcal/mol relative
to the energies of the other three families of isomers, mean-
ing that the BSSE must be about 1 kcal/mol different in the
dodecahedral regions of the potential surface.

2. BSSE-corrected results

In view of these discrepancies for (H2O)20, we next dis-
cuss the use of truncated MBEs in conjunction with BSSE
corrections. As discussed above, BSSE and BSIE are inti-
mately intertwined; nevertheless, it must be the case that the
difference between the BSSE-free MP2/CBS benchmarks in
Ref. 30 and the uncorrected MP2 energy computed in any
finite basis set is equal to the total basis set error (BSE).
That is,

BSE = BSSE + BSIE. (4.5)

BSSE can be reduced (if not eliminated) by means of the CP-
and VMFC-type corrections discussed in Sec. II, while BSIE
is eliminated only by extrapolation to the CBS limit.

Figure 5 plots the MSEs for BSSE-corrected, MP2/aζZ
binding energies of (H2O)6 isomers, with respect to MP2/CBS
benchmarks. We identify the difference between the MP2/aζZ
and the MP2/CBS result as the BSE, which is well-defined
once the CBS limit is established. On the other hand, we do
not consider that any of the BSSE corrections discussed in
Sec. II rigorously defines BSSE, hence only the sum BSSE +
BSIE is well-defined. The BSIE is independent of the BSSE
correction that is used, so its net effect is to shift each one
of the errors by some amount. Thus, the relative difference
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FIG. 4. Relative energies of twenty isomers from each of four structural motifs55 of (H2O)20. Energies were computed at the dual-basis54 RIMP2/cc-pVXZ
level (for X = T and Q), either with or without CP correction, and then extrapolated to the complete-basis limit using an X−3 extrapolation formula. For
three of the four motifs, CP correction alters the relative energies by no more than 0.2 kcal/mol. For the dodecahedral isomers, however, the CP-corrected and
uncorrected results differ by ≈1 kcal/mol.

between errors in Fig. 5 evaluated for the same basis set
but for different BSSE corrections is indicative of the error
inherent to a given BSSE correction. These relative differ-
ences are quite small compared to the total residual BSE,
so we cannot say conclusively, based on this one system,
which BSSE correction is the most accurate. However, the
MBCP(2) [≡ VMFC(2)] method is likely the least accurate,
as it provides results that are significantly different from the
other three BSSE corrections, and upon extrapolation, misses
the established MP2/CBS benchmark by almost 0.2 kcal/mol.
The other three BSSE corrections predict the correct limit to
within 0.05 kcal/mol.

For a given fragmentation method, basis set, and BSSE
correction method, the final error is the sum of the error in-
curred by using a truncated MBE (Fig. 1), which is usually
positive (indicative of underbinding), plus the residual BSE
(Fig. 5), which is also positive. Figure 2 shows us that in
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FIG. 5. MSEs in MP2/aζZ binding energies for isomers of (H2O)6 using
four different BSSE corrections in various basis sets. The error, computed
with respect to MP2/CBS benchmarks, may be identified as the residual basis
set error (BSSE + BSIE).

general all of these methods overbound, when BSSE is not
accounted for, and so error cancellation occurs, particularly
between the BSSE and the fragment approximation making
the uncorrected fragment calculations better estimates of the
benchmark value than the full supersystem calculation. Sim-
ilar error cancellation was observed in an earlier study of the
VMFC(n) method.18

C. (H2O)10F− clusters

In Sec. IV B, we examined various contributions to the
error in a truncated many-body approximation to the bind-
ing energy of (H2O)6, both with and without corrections for
BSSE. Here, we examine a larger and more strongly bound
system, namely, isomers of (H2O)10F− that we have previ-
ously shown to be much more challenging for fragment-based
quantum chemistry, as compared to water clusters.16, 41, 58–60

As will be evident from the timing data presented below, com-
puting CP-corrected MP2/CBS binding energies using tradi-
tional supersystem methods is quite challenging for systems
of this size, and we cannot push the benchmarks too much
larger without considerable effort. In particular, we again use
Eq. (4.1e) to extrapolate to the CBS limit, but for (H2O)10F−,
large-basis MP2-R12 calculations are not available, and
RIMP2/aQZ is the highest level of theory that is feasible
on the hardware available to us. Thus we have no indepen-
dent means to validate the MP2/CBS extrapolations for this
system.

The most straightforward error is that associated with
truncation of the MBE, which we can assess in the same way
that we did for the (H2O)6 clusters, namely, by comparing the
uncorrected supersystem RIMP2/aζZ binding energy to that
obtained using a truncated MBE at the same level of theory.
The MSEs for the 3B and EE-3B methods are shown in
Fig. 6. As with the (H2O)6 clusters we again see a decrease in
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FIG. 6. Convergence of uncorrected RIMP2/aζZ binding energies to the
CBS limit, as measured by the mean signed error (MSE) for ten (H2O)10F−
cluster isomers. The MSE is measured relative to the supersystem RIMP2
energy in the same basis set.

error as a function of ζ , in contrast to FMO results for (H2O)16

using cc-pVζZ basis sets.50 Our (H2O)10F− system is closer
in size to (H2O)16, as compared to the water hexamers exam-
ined above, which suggests that system size does not explain
the deterioration in the FMO results with increasing basis
size. The authors of Ref. 50 suggest that the smaller polariza-
tion function exponents in the larger correlation-consistent
basis sets are a problem for the FMO method, perhaps due
to (unspecified) problems with the self-consistent embedding
scheme when basis functions centered on one monomer
strongly overlap another monomer. Our own (unpublished)
experience with self-consistent “XPol” embedding59 suggests
that larger basis sets can be a problem when proper monomer
densities, as opposed to point charges, are used to compute
the intermonomer Coulomb interactions in a self-consistent
embedding scheme. In any case, the present results show that
this is not a problem for the point-charge embedding used
here, which is stable with respect to expansion of the basis
set, even in the presence of diffuse functions.

Further analysis requires some estimate of the benchmark
quantity. To this end, we assume that the CBS-extrapolated,
CP-corrected RIMP2 binding energies lie closer to the true
RIMP2/CBS values as compared to extrapolation without
BSSE correction, which is the case for all eight of the (H2O)6

isomers.17 We furthermore assume that the CP-corrected
RIMP2 binding energies converge to the CBS limit from
above and that the uncorrected results converge from below,
which is again true of all the (H2O)6 isomers17 as well as other
systems that we have studied, such as tryptamine–water.61 In-
deed, it is this empirical observation that has led to the av-
erage of CP-corrected and uncorrected results, each extrapo-
lated to the basis-set limit, being used as an estimate of the
true CBS result.53, 61 For (H2O)6, extrapolation of the CP-
corrected MP2 results affords very good agreement with an
independently verifiable MP2/CBS limit, but for (H2O)10F−

we have no such independent benchmark, and extrapolation
using only aDZ, aTZ, and aQZ results may or may not achieve
the true CBS limit. As such, we will use a 3:1 weighted
average of the CP-corrected and uncorrected extrapolations
as a benchmark for the MP2/CBS limit. (Thus, the chosen
benchmark lies closer to the CP-corrected extrapolation.) Er-
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FIG. 7. Convergence of the uncorrected RIMP2/aζZ binding energies to the
CBS limit, for ten (H2O)10F− clusters. Convergence is measured using the
mean signed error (MSE) with respect to an RIMP2/CBS benchmark com-
puted as a weighted average of CP-corrected and uncorrected RIMP2 results,
each extrapolated to the CBS limit, as described in the text.

ror bars on this MP2/CBS result will be established by assum-
ing that the unweighted (1:1) average of the extrapolated CP-
RIMP2/CBS and RIMP2/CBS results is a lower bound to the
true MP2/CBS result, and that the CP-RIMP2/CBS extrapo-
lation provides an upper bound. Based on these assumptions,
we conclude that our RIMP2/CBS benchmarks should be ac-
curate to within about 0.4 kcal/mol.

Figure 7 plots MSEs in the uncorrected RIMP2/aζZ bind-
ing energies as a function of basis size, using the weighted av-
erage just described as the RIMP2/CBS benchmark. Based on
Fig. 7, it is apparent that a cancellation of errors (with BSSE
compensating for truncation of the MBE) is again at work,
as EE-3B/aζZ results lie closer to the benchmark as com-
pared to RIMP2/aζZ results. (As a result, reproducing the full
RIMP2/aζZ result in a given basis set is not the best measure
of how well a given fragment method reproduces the binding
energy in the CBS limit.) This shows that the approximate
cancellation between BSSE and higher-order many-body ef-
fects continues to hold in clusters larger than (H2O)6; the
magnitude of both is increasing with system size.

As in the case of the water hexamer, aQZ results—
possibly in conjunction with CBS extrapolation—are required
to get within ∼1 kcal/mol of the benchmark CBS value of the
total binding energy. Accurate prediction of relative energies
is less demanding, as shown in Fig. 8. Errors in EE-3B/aζZ
relative energies are <0.6 kcal/mol in magnitude, as com-
pared to RIMP2/CBS benchmarks, even in the aDZ basis set,
and with a triple-ζ basis the error is <0.2 kcal/mol. As in the
case of (H2O)6 clusters, calculation of the BSSE corrections
for each (H2O)10F− isomer confirms that they are of similar
magnitude and, therefore, cancel in the evaluation of relative
energies. Somewhat surprisingly, these corrections are simi-
lar in magnitude to the values obtained for (H2O)6 isomers,
despite the increased system size.

We next apply the BSSE corrections, and in Fig. 9 we
plot the residual BSE across the aug-cc-pVζZ sequence of ba-
sis sets, using several different BSSE corrections. The differ-
ence in accuracy between the MBCP(3) and VMFC(3) meth-
ods is about 0.2 kcal/mol, smaller than the ≈0.4 kcal/mol er-
ror bar that was established above for the benchmark values.
(Recall, however, that the MBCP(3) method is less expensive
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FIG. 8. Convergence of the relative energies of (H2O)10F− cluster isomers
to the CBS limit. MSEs are measured relative to the RIMP2/CBS benchmarks
that are discussed in the text.

than VMFC(3).) Combined with the similar results for the
(H2O)6 systems, this suggests that both the VMFC(n) and the
MBCP(n) corrections converge rapidly and to nearly the same
value. This implies that basis-set extension effects, which are
absent in the MBCP(n) approach, are negligible.

Given the very similar performance of VMFC(3) and
MBCP(3), we prefer the latter for reasons of cost, as the
MBCP(3) approach requires only a proper subset of the elec-
tronic structure calculations that are required for VMFC(3).
Timing data for a (H2O)10F− cluster are shown in Fig. 10.
These timings represent the total, aggregate computer time
required to compute the CP-corrected [Eq. (2.4)] RIMP2/aζZ
binding energy in each aug-cc-pVζZ basis set, along with
the relative speed-up engendered by using the MBCP(2),
MBCP(3), or VMFC(3) correction. For the purposes of this
comparison, all calculations are run in serial, meaning that the
“embarrassingly parallelizable” nature of the fragment-based
corrections is not exploited. Wall times for the fragment-
based calculations could therefore be trivially and dramati-
cally reduced by running individual jobs on separate proces-
sors; already, however, the MBCP(3) method reduces the cost
by ∼70%, without significant loss of accuracy.
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FIG. 9. Residual basis set error for ten isomers of (H2O)10F−, computed at
the RIMP2 level using various basis sets. The MSE is evaluated with respect
to the RIMP2/CBS benchmarks that are discussed in the text.
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the relative times required to evaluate various low-order BSSE corrections
(to be read from the linear axis on the left). All calculations are performed in
serial on a 2.5 GHz Opteron processor.

V. CONCLUSIONS

The present study has two aims. First and foremost, we
continue our efforts16, 17, 41 to understand the strengths and
weaknesses of fragment-based methods, particularly for high-
accuracy calculations. Considering that a large number of pre-
vious studies using fragment-based quantum chemistry have
focused on results obtained using double-ζ basis sets, we
have explored the ability of truncated many-body expansions
to replicate MP2/CBS results rather than, say, MP2/aug-cc-
pVDZ results. Accuracy of <1 kcal/mol in total binding ener-
gies (with respect to MP2/CBS results) is obtainable by means
of electrostatically embedded three-body expansions, but re-
quires the use of quadruple-ζ basis sets and/or CBS extrapo-
lation. We also find that the three-body result in a given, finite
basis set often lies closer to the MP2/CBS benchmark as com-
pared to full (supersystem) MP2 in the same basis set. This is
ultimately fortuitous, resulting from a cancellation of errors
wherein BSSE partially offsets errors engendered by neglect-
ing higher-order many-body effects. It is worth noting all the
same, as it implies that evaluating the accuracy of fragment-
based methods in small basis sets may not provide a full pic-
ture of how such methods perform in the basis-set limit.

A second focus of this work is on the effects of low-cost
BSSE corrections based on low-order many-body expansions,
including the MBCP(n) method of Ref. 17 and the VMFC(n)
method of Ref. 18. The intertwined nature of BSSE and basis
incompleteness makes it difficult to ascertain which approach
is most accurate, but at the n = 3 level the difference between
the two is comparable to, or smaller than, the intrinsic error
in establishing the CBS limit. On the one hand, this implies
that so-called “basis-set extension” effects, which are not cor-
rected by the MBCP(n) approach, must be quite small, at least
for the (H2O)6 and (H2O)10F− examples considered here. At
the same time, it means that there is no reason not to use
the lower-cost MBCP(n) approach, which results in signifi-
cant computational savings and enables smooth extrapolation
of MP2/aug-cc-pVζZ results (ζ = D, T, Q) to the MP2/CBS
limit, by means of electronic structure calculations on systems
no larger than trimers.

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

64.134.188.125 On: Mon, 09 Dec 2013 18:10:29



224102-11 Richard, Lao, and Herbert J. Chem. Phys. 139, 224102 (2013)

ACKNOWLEDGMENTS

This research was supported by the U.S. Department of
Energy, Office of Basic Energy Sciences, Division of Chemi-
cal Sciences, Geosciences, and Biosciences under Award No.
DE-SC0008550. Calculations were performed at the Ohio Su-
percomputer Center under project PAA0003. J.M.H. is an
Arthur P. Sloan Foundation Fellow and a Camille Dreyfus
Teacher-Scholar.

1S. F. Boys and F. Bernardi, Mol. Phys. 19, 553 (1970).
2F. Jensen, Chem. Phys. Lett. 261, 633 (1996).
3R. M. Balabin, J. Chem. Phys. 132, 211103 (2010).
4F. B. van Duijneveldt, J. G. C. M. van Duijneveldt-van de Rijdt, and J. H.
van Lenthe, Chem. Rev. 94, 1873 (1994).

5R. A. DiStasio, Jr., R. P. Steele, Y. M. Rhee, Y. Shao, and M. Head-Gordon,
J. Comput. Chem. 28, 839 (2007).

6A. E. Shields and T. van Mourik, J. Phys. Chem. A 111, 13272 (2007).
7T. van Mourik, J. Phys. Chem. A 112, 11017 (2008).
8T. van Mourik, Chem. Phys. Lett. 473, 206 (2009).
9J. Cao and T. van Mourik, Chem. Phys. Lett. 485, 40 (2010).

10D. Toroz and T. van Mourik, Phys. Chem. Chem. Phys. 12, 3463 (2010).
11I. Mayer, Int. J. Quantum Chem. 23, 341 (1983).
12I. Mayer, Mol. Phys. 92, 503 (1997).
13F. Jensen, J. Chem. Theory Comput. 6, 100 (2010).
14H. Kruse and S. Grimme, J. Chem. Phys. 136, 154101 (2012).
15M. S. Gordon, D. G. Fedorov, S. R. Pruitt, and L. V. Slipchenko, Chem.

Rev. 112, 632 (2012).
16R. M. Richard and J. M. Herbert, J. Chem. Phys. 137, 064113 (2012).
17R. M. Richard, K. U. Lao, and J. M. Herbert, J. Phys. Chem. Lett. 4, 2674

(2013).
18M. Kamiya, S. Hirata, and M. Valiev, J. Chem. Phys. 128, 074103

(2008).
19D. M. Bates, J. R. Smith, T. Janowski, and G. S. Tschumper, J. Chem. Phys.

135, 044123 (2011).
20K. U. Lao and J. M. Herbert, J. Chem. Phys. 139, 034107 (2013).
21G. S. Tschumper, “Reliable electronic structure computations for weak

noncovalent interactions in clusters,” in Reviews in Computational Chem-
istry, edited by K. B. Lipkowitz and T. R. Cundari (Wiley-VCH, 2009),
Vol. 26, Chap. 2, pp. 39–90.

22L. Turi and J. J. Dannenberg, J. Phys. Chem. 97, 2488 (1993).
23B. H. Wells and S. Wilson, Chem. Phys. Lett. 101, 429 (1983).
24P. Valiron and I. Mayer, Chem. Phys. Lett. 275, 46 (1997).
25G. Lendvay and I. Mayer, Chem. Phys. Lett. 297, 365 (1998).
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