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Periodic boundary conditions for QM/MM calculations: Ewald summation
for extended Gaussian basis sets
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An implementation of Ewald summation for use in mixed quantum mechanics/molecular mechanics
(QM/MM) calculations is presented, which builds upon previous work by others that was limited
to semi-empirical electronic structure for the QM region. Unlike previous work, our implementation
describes the wave function’s periodic images using “ChElPG” atomic charges, which are determined
by fitting to the QM electrostatic potential evaluated on a real-space grid. This implementation is
stable even for large Gaussian basis sets with diffuse exponents, and is thus appropriate when the QM
region is described by a correlated wave function. Derivatives of the ChElPG charges with respect
to the QM density matrix are a potentially serious bottleneck in this approach, so we introduce
a ChElPG algorithm based on atom-centered Lebedev grids. The ChElPG charges thus obtained
exhibit good rotational invariance even for sparse grids, enabling significant cost savings. Detailed
analysis of the optimal choice of user-selected Ewald parameters, as well as timing breakdowns, is
presented. © 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4850655]

I. INTRODUCTION

Periodic boundary conditions (PBC) are an essential in-
gredient in condensed-phase simulations. Without them, one
is relegated to cluster-based approaches whose convergence
must be tested, and where molecular dynamics simulations
may require the use of artificial confining potentials. The aim
of this work is to develop a method for applying PBC to mixed
quantum mechanics/molecular mechanics (QM/MM) simula-
tions. We are interested in electronic process such as solution-
phase ionization potentials and electronic excitation energies,
where long-range Coulomb forces may be especially impor-
tant, and where the use of cutoffs or a minimum-image con-
vention may be questionable. In such cases, Ewald summa-
tion is the preferred approach.1, 2 Although certain artifacts
with Ewald summation have been noted,3 and alternative ap-
proaches have been developed,4 many of these artifacts are
due simply to the artificial nature of introducing PBC in a
disordered system, and therefore disappear in the limit of a
large simulation cell. The important role of long-range elec-
trostatics in obtaining correct macromolecular structures is
well documented.5–7

A method for performing Ewald summation in semi-
empirical QM/MM calculations has been described by Nam
et al.8 and, independently, by Riccardi et al.9 In this approach,
periodic images of the QM electron density are collapsed onto
Mulliken atomic point charges, and then standard Ewald sum-
mation is used to model the interaction between these image
charges. A correction term introduced by the presence of the
images is incorporated into the Fock matrix, such that the self-
consistent field (SCF) procedure remains variational (similar
to the charge embedding used in the variational explicit polar-
ization or “XPol” method10). Nam et al.8 demonstrated that
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this QM/MM-Ewald approach leads to correct long-range be-
havior in the potential of mean force for solvated ions, un-
like calculations in which cutoffs replace Ewald summation.
The QM/MM-Ewald method has since been implemented in
both the AMBER11 and CHARMM9, 12 simulation packages,
but only for semi-empirical wave functions.

Our goal is to generalize this methodology for an arbi-
trary description of the QM region, which might include a
correlated ab initio wave function or any of the arsenal of
modern density functionals, including hybrid and long-range
corrected functionals whose Hartree-Fock exchange compo-
nent remains expensive to evaluate in a plane-wave basis,
despite recent advances.13 We use atom-centered Gaussian
basis sets exclusively, but recognize that basis sets of triple-
ζ quality may be necessary, especially for correlated wave
functions or double-hybrid functionals, and furthermore dif-
fuse basis functions are needed for anions and are also an
effective way to reduce basis set superposition error. How-
ever, these requirements are problematic for a method based
on Mulliken charges. Semi-empirical implementations of the
QM/MM-Ewald method suffer no such problems, as they are
based on minimal basis sets for which Mulliken charges are
well-behaved. Indeed, we find the method of Ref. 8 to be per-
fectly stable for Hartree-Fock and density-functional theory
(DFT) calculations, provided that minimal basis sets are used.

For larger basis sets, however, the charge derivatives
∂Qα/∂Pμν (where Qα is a Mulliken charge and Pμν is a den-
sity matrix element) become unstable, leading to SCF con-
vergence failure. Our group has observed similar instabilities
in the past, in attempts to use Mulliken or Löwdin charges
for self-consistent charge embedding,14 in the context of XPol
calculations. The solution in that context14, 15 is the same one
pursued here, namely, the use of “ChElPG” charges16 de-
rived from the QM electrostatic potential evaluated on a grid.
This approach leads to stable – albeit relatively expensive

0021-9606/2013/139(24)/244108/13/$30.00 © 2013 AIP Publishing LLC139, 244108-1

http://dx.doi.org/10.1063/1.4850655
http://dx.doi.org/10.1063/1.4850655
http://dx.doi.org/10.1063/1.4850655
mailto: herbert@chemistry.ohio-state.edu
http://crossmark.crossref.org/dialog/?doi=10.1063/1.4850655&domain=pdf&date_stamp=2013-12-27


244108-2 Holden, Richard, and Herbert J. Chem. Phys. 139, 244108 (2013)

– derivatives ∂Qα/∂Pμν , and therefore extends the QM/MM-
Ewald method developed by Nam et al.8 to arbitrary basis
sets. As such, our implementation is appropriate for use with
correlated QM wave functions. To reduce the cost of comput-
ing the derivatives ∂Qα/∂Pμν , we modify the ChElPG algo-
rithm for use with atom-centered grids, which dramatically
reduces the required number of grid points without signifi-
cantly deteriorating the rotational invariance of the total en-
ergy or the ChElPG charges themselves.

II. THEORY

A. Ewald summation

Charge–charge interactions decay very slowly with dis-
tance and may not become negligible in a calculation until the
distance is on the order of hundreds of nanometers. As such,
the pairwise sum over such interactions is slowly convergent.
In fact, it is only conditionally convergent in a periodically
replicated simulation cell,2 which is the problem that Ewald
summation is designed to overcome. This section provides a
brief overview of the Ewald summation technique, which also
serves to introduce the notation that we will use.

Traditional charge-charge Ewald summation splits the
pairwise summation into two parts: a real-space portion,
based on a short-range interaction potential whose pairwise
sum converges quickly; and a long-range portion based on a
slowly varying interaction potential whose pairwise sum con-
verges relatively quickly in reciprocal space. The Coulomb
potential is partitioned using the error function (erf) and com-
plementary error function (erfc), according to

1

r
= erf(ηr)

r
+ erfc(ηr)

r
. (1)

Note that erfc(x) = 1 − erf(x). The Ewald parameter η con-
trols the length scale (∼η−1) on which the short-range func-
tion erfc(ηr)/r decays, and thus controls how much of the
pairwise Coulomb sum is performed in real space. As η in-
creases, more of the summation is performed in reciprocal
space, whereas setting η = 0 is the same as performing the
pairwise sum entirely in real space.

In the context of Ewald summation, the Coulomb energy
the simulation cell, Ecell, is traditionally partitioned as

Ecell = Ereal + Eself + Erecip + Echarge + Edipole . (2)

The energy components include the real-space energy,

Ereal =
∑

n

NMM∑
j

NMM∑
k>j

qjqk

erfc(η|rjk + nL|)
|rjk + nL| (3)

(where rjk = rj − rk), the Coulomb self-energy,

Eself = − η√
π

NMM∑
j

q2
j , (4)

and the reciprocal-space energy,

Erecip =
∑
m�=0

|S(m)|2
2Lπ |m|2 exp

(−π2|m|2
η2L2

)
. (5)

In these expressions, L denotes the length of the (cubic) simu-
lation cell, and n and m are real-space lattice vectors, sums
over which extend from negative infinity to positive infin-
ity. The quantity S(m) in Eq. (5) is known as the structure
factor,1 and is discussed below. The quantities qj and qk are
point charges, the total number of which is denoted NMM. For
brevity, we have presented these equations for the case that
the unit cell is cubic. This is not a fundamental limitation of
the Ewald formalism, but the non-cubic case would require,
e.g., splitting the sum over lattice vectors n in Eq. (3) into sep-
arate sums over nx, ny, and nz, with lengths Lx, Ly, and Lz for
each side of the simulation cell.

The final two terms in Eq. (2) warrant some additional
comments. The quantity

Echarge = − Q2
totπ

2L3η2
(6)

is known as the surface charge term, where

Qtot =
NMM∑

j

qj (7)

represents the total charge of the simulation cell. Since the
Coulomb energy is divergent if Qtot �= 0, Ewald summation
can only be used to compute the Coulomb energy for a neu-
tral simulation cell, and Echarge represents the energy required
to surround a charged cell with a charge-compensating mem-
brane of opposite charge. (If the cell is electrically neutral,
then Echarge = 0.) Artifacts due to Ewald simulation of a
charged unit cell have been noted,17–19 but will not concern
us here.

The final component of Ecell is the surface dipole term:20

Edipole = − π

(2ε + 1)L3

NMM∑
j,k

qjqk|rjk|2. (8)

If Qtot = 0 (which is often assumed when this term is dis-
cussed in the literature, as for example in Ref. 4), then Edipole

is proportional to the square of the dipole moment of the sim-
ulation cell. In Eq. (8), we imagine placing the supercell (the
simulation cell along with all of its periodic images) into a
dielectric medium, whose dielectric constant is denoted by ε

in Eq. (8).2, 20, 21 Often, one assumes “tin foil” boundary con-
ditions (ε = ∞, corresponding to placing the supercell inside
of a conductor), in which case Edipole = 0.

The last bit of notation to explain is the quantity |S(m)|2
in Eq. (5). In its most general form, this quantity is defined as

|S(m)|2 =
NMM∑
j,k

qj qk exp

(
2πi

L
(m·rjk)

)
. (9)

Despite the appearance of i = √−1, the quantity |S(m)|2 is
real, as the squared-modulus notation indicates, and can be
rewritten in a way that makes this obvious:

|S(m)|2 =
NMM∑
j,k

qj qk cos

(
2π

L
(m·rjk)

)
. (10)

More often, this quantity is further simplified by separating
rj and rk , which allows the double summation to be recast as



244108-3 Holden, Richard, and Herbert J. Chem. Phys. 139, 244108 (2013)

two identical single summations, with the result1

|S(m)|2 =
⎡
⎣NMM∑

j

qj cos

(
2π

L
(m·rj )

)⎤
⎦

2

. (11)

The latter form requires fewer operations to compute, and is
therefore preferred. For QM/MM applications, however, some
of the rj vectors correspond to QM atoms and some to MM
atoms, hence the simplifications leading to Eq. (11) will not
be possible and Eq. (10) must be used instead.

B. QM/MM and PBC

The QM/MM-Ewald technique introduced by Nam et al.8

is based upon the reasonable assumption that the simulation
cell is large compared to the spatial extent of the QM wave
function. As such, a large MM “buffer” screens the interac-
tion between the electron density and its periodic images, so
collapsing this density onto point charges for the purpose of
computing these long-range Coulomb interactions should not
engender serious error. Once the density is reduced to point
charges, classical Ewald summation can be applied. In this
section, we describe the basic theory behind obtaining PBC
corrections to the SCF energy and Fock matrix. In develop-
ing this theory, we are concerned only with electrostatic in-
teractions, as other QM/MM interactions such as non-bonded
Lennard-Jones interactions operate on shorter length scales
and PBC implementations based on smooth cutoffs should
be fine. Thus, “total” energy will refer to the QM electronic
structure energy plus all MM and QM/MM electrostatic inter-
actions; other MM interactions can simply be tacked on to the
formulas appearing below.

1. Energy corrections

We first write the total QM/MM supersystem (SS) en-
ergy, which includes the interactions between all periodic im-
ages, as

Etotal = ESS
QM-QM + ESS

QM-MM + ESS
MM-MM . (12)

The final term, ESS
MM-MM, can be evaluated using a standard,

classical Ewald summation and need not be discussed further.
It is helpful to partition the other two terms into interactions
between atoms in the simulation cell with other atoms in the
simulation cell, which we will call the real-space (RS) inter-
actions, and also interactions between the simulation cell and
atoms contained in the periodic images (PI). The SS energies
in Eq. (12) can thus be broken down into RS and PI parts:

Etotal =ERS
QM-QM + 	EPI

QM-QM + ERS
QM-MM

+ 	EPI
QM-MM + ESS

MM-MM. (13)

The term ERS
QM-QM (interaction between QM atoms in the sim-

ulation cell with other QM atoms in the simulation cell) is
simply the result of some QM electronic structure calcula-
tion. The term ERS

QM-MM results from some QM/MM interac-
tion scheme; note that Eq. (12) tacitly assumes an “additive”
QM/MM scheme, as opposed to a “subtractive” scheme such
as ONIOM.22 For the latter, there are no QM periodic images

so Ewald summation involves the MM system only, and is
therefore straightforward.

The remaining terms in Eq. (13) are calculated as differ-
ences between a SS calculation and a RS calculation:

	EPI = ESS − ERS. (14)

In particular, 	EPI
QM-MM is obtained using a QM region em-

bedded in a periodically replicated supercell of MM regions,
but without replication of the QM region. This interaction en-
ergy can be decomposed into real- and reciprocal-space parts,
the latter of which will involve only MM atoms provided
that the QM region is fully enveloped by the short-range part
of the Coulomb potential in Eq. (1). The term 	EPI

QM-QM in
Eq. (13) is obtained from a periodic array of point charges
obtained from collapsing the QM electron density onto atom-
centered charges, as described below.

Applying the fundamental assumption that the QM im-
ages are far apart and screened by a wide buffer of MM
charges, the calculation effectively reduces to a series of pair-
wise Coulomb interactions between the atoms in the simu-
lation cell and those contained in the periodic images. It is
therefore expected that 	EPI

QM-QM and 	EPI
QM-MM will have

similar forms:

	EPI
QM-QM = 1

2

NQM∑
α,β

QαQβ ω(rαβ) (15)

and

	EPI
QM-MM =

NQM∑
α

NMM∑
j

Qαqj ω(rαj ) . (16)

For clarity, we use Qα to denote the partial charge on a QM
atom and qj to denote the partial charge on an MM atom.
As in standard Ewald summation, both quantities can be de-
scribed by a potential function, ω(r). For a neutral simulation
cell (Qtot = 0) with tin-foil boundary conditions (ε = ∞), this
potential is

ω(rαβ) =
∑
m�=0

e−π2|m|2/η2L2

Lπ |m|2 cos

(
2π

L
(m·rαβ)

)

+
∑
n �=0

erfc(η|rαβ + nL|)
|rαβ + nL| − erf(η|rαβ |)

|rαβ | . (17)

In obtaining this result, the form of |S(m)|2 in Eq. (10) has
been used in the reciprocal (first) term in Eq. (17). The reason
to prefer this form, as opposed to that in Eq. (11), is that the
latter requires that each of the indices runs over the same sum,
which is not the case for QM/MM interactions where one of
the summation indices in Eq. (9) represents QM atoms while
the other represents MM atoms.

The potential in Eq. (17) warrants some comments. First,
the term containing a sum over m �= 0 is directly analogous to
the reciprocal term in Eq. (5), whereas the erf and erfc terms
are analogous to the real space term in Eq. (3). The different
appearance of the erf term (representing the n = 0 vector) is
due to the fact that an energy ERS

real, with a Coulomb poten-
tial of 1/r, has been subtracted out of ESS

real with a Coulomb



244108-4 Holden, Richard, and Herbert J. Chem. Phys. 139, 244108 (2013)

potential of erfc(ηr)/r , to afford 	EPI
real, with a Coulomb po-

tential of −erf(ηr)/r .
It should also be noted that nothing analogous to the self-

energy is immediately apparent in Eq. (17). In the QM-QM
PI correction [Eq. (15)], there is no restriction on the sum and
so α = β is allowed. For α = β, the Coulomb interaction is
given by

lim
r→0

erf (ηr)

r
= 2η√

π
, (18)

which is in fact the self term. Furthermore, there is no self en-
ergy corresponding to the QM-MM PI correction [Eq. (16)],
since the atom types in the two summations are different.

Finally, it is worth noting that the potential in Eq. (17)
differs from the Ewald potential given by Nam et al.,8 inso-
far as the term in Eq. (17) containing the sum over n �= 0 is
absent in Ref. 8. The authors of Ref. 8 assume that the Ewald
parameter η has been chosen such that only the simulation
cell must be considered in the real-space portion of the Ewald
sum. This is a reasonable assumption but is not assumed
a priori in this work, on the basis that cost considerations
for more general QM/MM calculations might favor a differ-
ent partition of the effort. In the case of a charged system, the
charge term [Eq. (6)] is included in the MM Ewald summa-
tion. We henceforth assume tin-foil boundary conditions and
therefore omit the dipole term in Eq. (2).

2. Fock matrix corrections

The corrections above must now be incorporated into the
Fock matrix, which is computed by taking the derivative of
the energy with respect to the density matrix. Using the chain
rule, this correction can be expressed as

	F PI
μν ≡ ∂	EPI

∂Pμν

=
NQM∑

α

∂	EPI

∂Qα

∂Qα

∂Pμν

, (19)

where 	EPI = EPI
QM-QM + EPI

QM-MM. The energy derivative
with respect to an atomic point charge can be evaluated di-
rectly from Eqs. (15) and (16):

∂	EPI

∂Qα

=
NQM∑

β

Qβ ω(rαβ) +
NMM∑

j

qj ω(rαj ) . (20)

The cost of evaluating Eq. (20) can be significantly re-
duced by recognizing that the Ewald potential depends upon
the positions of the atoms (both QM and MM), but not on any
details of the electronic structure. Those details are encoded
into the QM charges Qβ , which are the only quantities in
Eq. (20) that change from one SCF cycle to the next. Thus,
we can pre-compute the Ewald potential at the relevant inter-
atomic distances prior to entering the SCF iterations. In antic-
ipation of doing this, let us define a column vector

ωα = [
ω(rα1) ω(rα2) · · · ω(rαNQM

)
∑NMM

j qjω(rαj )
]†

. (21)

The final entry in this vector is identical to the second term in
Eq. (20). Next, define another column vector

Q = [ Q1 Q2 · · · QNQM 1 ]†. (22)

(Save for the final entry, the vector Q consists simply of the
QM atomic charges.) Using this new notation, we can rewrite
Eq. (20) as

	F PI
μν =

NQM∑
α

∂Qα

∂Pμν

Q†ωα. (23)

It remains to evaluate the charge derivatives ∂Qα/∂Pμν .
The form of these derivatives depends upon the charge
scheme that is used (Mulliken, Löwdin, ChElPG, etc.). For
Mulliken or Löwdin charges, these derivatives are quite sim-
ple. The Mulliken atomic charges, for example, are defined as

Qα = Zα −
∑
μν∈α

PμνSμν , (24)

hence the requisite derivatives are nothing more than overlap
matrix elements:

∂Qα

∂Pμν

= −Sμν δμν∈α . (25)

Here, δμν∈α is a Kronecker delta-type symbol signifying that
both atomic orbital (AO) basis functions μ and ν must be cen-
tered on atom α, else the derivative is zero by definition. It is
not terribly surprising to discover that the Mulliken charges
are unstable in extended basis sets, and because in this con-
text these charges make their way into the Fock matrix, we
find that the Mulliken-based QM/MM-Ewald scheme is dif-
ficult or impossible to converge in extended basis sets. (Data
to this effect are provided in Sec. III; we encounter similar
difficulties in attempting to use Mulliken or Löwdin charges
in the context of the self-consistent XPol charge-embedding
procedure.14) ChElPG charges, on the other hand, appear to
be stable and robust, but the derivatives ∂Qα/∂Pμν are far
more costly in the ChElPG case. These derivatives will be
given explicitly below, following a discussion of the basic the-
ory behind ChElPG charges.

C. ChElPG charges

1. Basic theory

By construction, the ChElPG atomic charges minimize,
in a least-squares sense, the difference between the QM elec-
trostatic potential (evaluated on a grid) and the electrostatic
potential derived from a set of atom-centered point charges
(evaluated on the same grid), subject to the constraint that the
atomic charges must sum to the molecular charge.16 A com-
plete discussion of the ChElPG formalism, using the same
notation that is used here, can be found in Ref. 15. Briefly, the
ChElPG charges are given by

QA =
NQM∑
B

eB

(
G−1)

BA

−

⎛
⎜⎜⎜⎝

NQM∑
BC

eB(G−1)BC − Qtot

NQM∑
BC

(G−1)BC

⎞
⎟⎟⎟⎠

NQM∑
B

(G−1)BA, (26)
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where

eB =
Ngrid∑

k

wk

|rk − rB |

⎛
⎝NQM∑

J

ZJ

|rk − rJ | −
Nbasis∑
μν

(Ik)μνPμν

⎞
⎠ (27)

and

GAB =
Ngrid∑

k

wk

|rk − rA||rk − rB | . (28)

The indices A, B, . . . index nuclei and k indexes the grid
points on which the electrostatic potential is evaluated; the
quantity wk is the weight assigned to the kth grid point.
We have previously introduced a weighting scheme that en-
sures that the charges are continuous functions of the atomic
coordinates,14, 15 although a different weighting scheme will
be used in this work, as described below. Finally, the quantity

(Ik)μν =
〈
μ

∣∣∣∣ 1

|r − rk|
∣∣∣∣ ν

〉
r

(29)

is a charge–density Coulomb integral. (The subscript r indi-
cates that the electron coordinate r is the integration variable.)

Historically, the nature of the grid on which to evaluate
the electrostatic potential was a source of debate, with various
incarnations of the least-squares fitting algorithm using dif-
ferent types of grids. One early algorithm23 (originally called
“ChElP”) used a set of concentric, atom-centered spherical
grids. However, the charges thus obtained were shown to be
sensitive to molecular conformation,16 which was problem-
atic because a main goal was to use ChElP charges to pa-
rameterize force fields. The ChElPG algorithm16 (so called to
distinguish it from ChElP) consists in replacing these spheri-
cal grids with a Cartesian grid, deleting points within the van
der Waals (vdW) region in order to fit to the long-range parts
of the electrostatic potential. Although this reduced the con-
formational dependence of the charges, it was later demon-
strated that atom-centered grids (including those with icosa-
hedral symmetry) lead to far better rotational invariance of the
charges, as compared to Cartesian grids.24

In the present context, contraction of the integrals (Ik)μν

with certain quantities that arise in the construction of
∂Qα/∂Pμν proves to be a serious bottleneck, and it therefore
behooves us to reduce the number of grid points (Ngrid) as
much as possible. Since atom-centered Lebedev grids of oc-
tahedral symmetry are already ubiquitous in Gaussian-orbital-
based DFT codes, this was the natural choice to explore.

2. Lebedev grid implementation

This section documents our implementation of Eq. (26)
using atom-centered Lebedev grids. (Once the grid is con-
structed, this works like any other ChElPG algorithm, but
there are some numerical aspects worthy of discussion.) It
could be argued that the charges thus obtained should no
longer be called “ChElPG” charges, since the only difference
between the ChElP and ChElPG algorithms is how the grid is
constructed. However, the ChElPG acronym is widely known
and emphasizes the fact that there is a grid-based aspect to the
calculation. Thus, we refer to our algorithm as a Lebedev grid-
based implementation of the ChElPG charges. We will retain

some of the terminology from the original paper on ChElPG
charges.16 Namely, the head space refers to the distance from
the vdW surface to the outermost radial shells that constitute
the grid. (There are no points within the vdW surface.) Also,
let 	x denote the spacing between radial shells. These two pa-
rameters, along with the number of Lebedev points per shell
(Np), serve to define the ChElPG grid. The Lebedev grid with
Np points on the unit sphere is constructed on each atom and
then its radius is scaled by a factor

αi = rvdW + (i − 1)	x (30)

for the ith shell. Radial shells are constructed from rvdW out
to the head space distance. Aside from the symmetry of the
grids, this procedure is similar to that used by Spackman24 to
evaluate Cartesian versus atom-centered grids, and also to one
of the original ChElP algorithms.23

Although it is possible to perform a weighted least-
squares fit of the electrostatic potential using the weights wk

in Eq. (26), the original ChElPG paper of Breneman and
Wiberg16 sets all wk = 1, and the authors in fact emphasize
the importance of using an isotropic grid to reduce conforma-
tional dependence of the charges. The use of atom-centered
Lebedev grids leads to a highly anisotropic coverage of real
space, as is evident from the Lebedev grid for H2, which
is shown in Fig. 1(a). In Fig. 1(b), we plot the number of
grid points contained in each 0.25 Å × 0.25 Å cell, which
shows how each such cell contributes to the ChElPG fit when
all wk = 1. Given the cylindrical nature of the point den-
sity we expect radial anisotropy, which is readily apparent in
Fig. 1(b), but what is perhaps less intuitive is the fact that there
is also anisotropy orthogonal to the bonding plane. The lat-
ter arises from the presence of “seams” where the two atom-
centered grids meet.

To ameliorate this anisotropy, we propose a simple
weighting scheme in which wk = 1/nk , where nk is the num-
ber of grid points contained within the cell where the point
k resides. Figure 1(c) shows that this scheme significantly
reduces the anisotropy of the grid.

(a) Grid

 6

 8

 10

 12

 14

 16

 18

 20
(b) Unweighted

(c) Weighted

FIG. 1. Plots of the Lebedev grid for H2 in a plane containing the internu-
clear axis. (a) Actual grid using Np = 302 points per radial shell and nine
shells per atom. (b) Number of grid points contained in each 0.25 Å × 0.25
Å cell, equivalent to the contribution of each cell to the least-squares fit when
all the weights wk are identical. (c) Each cell’s contribution when a simple
weighting scheme (wk = 1/nk) is used.
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3. Charge derivatives

As compared to the Mulliken or Löwdin charge scheme,
the derivatives ∂Qα/∂Pμν are significantly more complicated
in the case that Qα is a ChElPG atomic charge. To evaluate
these derivatives in the ChElPG case, note that eB is the only
quantity in Eq. (26) that is dependent on Pμν . Using the nota-
tion of Herbert et al.,15

∂QA

∂Pμν

= −
NQM∑
B

(G−1)BA

Ngrid∑
k

wk

|rk − rB | (Ik)μν

+ γA

NQM∑
BC

(G−1)CB

Ngrid∑
k

wk

|rk − rC | (Ik)μν, (31)

where

γA =

NQM∑
B

(G−1)BA

NQM∑
BC

(G−1)BC

. (32)

The quantity (Ik)μν in Eq. (31) contains the integrals in this
derivative; therefore, it is desirable to rearrange the derivative
in such a way so that it needs to be calculated only once for
each atom. Defining

λAk =
NQM∑
B

(
G−1

)
BA

wk

|rk − rB | , (33)

we obtain the following compact result:

∂QA

∂Pμν

=
NQM∑
B

(�B)μν (γA − δBA) . (34)

The quantity

(�B)μν =
Ngrid∑

k

λBk(Ik)μν (35)

consists of charge–density integrals in the AO basis, with
“charges” λBk located at points rk . Combining this with
Eq. (23) and rearranging the order of summations, one obtains
a correction to the Fock matrix in which (�B)μν is evaluated
just once for each B, and thus the integrals (Ik)μν are calcu-
lated exactly once per QM atom.

D. Parameters for the Ewald sums

In addition to the charge scheme, the user-controlled
Ewald parameter, η, can greatly influence the calculation
time. This parameter controls how much of the pairwise
sum is performed in real space, and thus controls how many
vectors are required to converge the vector summations in
the real-space term [Eq. (3)] and the reciprocal-space term
[Eq. (5)]. Both summations converge as Gaussian functions.2

Following Ref. 2, we thus choose a constant, C, such that
exp (C2) is within a specified convergence threshold. We take
this to be the same as the threshold (drop tolerance) used for
the one- and two-electron integrals:

C =
√

−ln(Integral Threshold). (36)

Unless otherwise stated, the integral threshold will be set to
10−8 here.

In real space, the argument of the complimentary error
function [see Eq. (3)] controls the convergence, hence we
want

exp(C2) ≤ exp(η2|rαβ + nmaxL|2), (37)

where the vector nmax = (nmax, 0, 0) specifies how many pe-
riodic boxes one must use in the calculation to achieve a re-
quired level of accuracy. This is equivalent to figuring out how
far away two atoms must be before their pairwise interaction
contributes less than the integral threshold. Thus, we obtain

C ≤ η|rαβ + nmaxL|. (38)

Each of the components of rαβ must be less than the box
length, L. Replacing nmax + 1 with nmax for convenience, one
obtains

C ≤ η|nmaxL| = η nmaxL (39)

and therefore

nmax = ceiling

(
C

ηL

)
. (40)

Equation (40) specifies the largest vector that must be in-
cluded in the real-space sum in order to achieve a certain drop
tolerance. If the integers nx, ny, nz are run from −nmax to nmax,
however, there are unnecessary vectors that are included in
this “supercube.” The farthest distance that needs to be con-
sidered is actually |nmax|, so we need include only those lat-
tice vectors satisfying the condition |n| ≤ |nmax|. Enforcing
the condition creates a “supersphere” where some lattice vec-
tors from the corners of the supercube have been excluded.
Note from Eq. (40) that nmax = 0 when C/ηL < 1/2. This con-
dition leads to a cutoff radius, Rc = C/η < L/2, so that all sig-
nificant interactions are included using the minimum-image
convention (cutoff at half the box length) in the real-space
sum. In this case, the real-space sum is calculated only within
the simulation cell, with the result that the n �= 0 term in
Eq. (17) is zero. This is in accordance with the assumption
made by Nam et al.8 and is often the case for large simulation
cells.

The requisite number of reciprocal-space vectors m is
calculated in the same manner. Since the argument of the ex-
ponential function in Eq. (5) is π2|m|2/η2L2, this quantity re-
places (η|rαβ + nmaxL|)2 in an inequality similar to Eq. (37),
with the result

mmax = ceiling

(
CLη

π

)
. (41)

Each of the elements in m runs from −mmax to mmax with 0
excluded and subject to a constraint that |m| < |mmax|.

Now it is possible to determine the exact number of vec-
tors that will be needed for the calculation, given a particular
value of η. The number of total vectors in the supercube is

vtot = (2nmax + 1)3 + (2mmax + 1)3. (42)

The number of total vectors that satisfy the constraints (i.e.,
the supersphere) is not so easily computed but can be de-
termined through recursion relations. In order to find these
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numbers the reader should consult Sloane’s handbook of in-
teger sequences (specifically, series A000605).25, 26

In this work, we employ standard Ewald summation
as opposed to the particle-mesh Ewald technique27, 28 that
is more common in strictly classical simulations. As such,
the cost of both the real- and reciprocal-space sums scales
quadratically with the number of vectors. As such, the mini-
mum number of vectors leads to the fastest calculation and the
value of η that affords this minimum is the optimal Ewald pa-
rameter. This value can be determined by numerical solution
of the equation

2CL3η3

√
π3

+ L2η2

√
π

− Lη − 2C = 0 . (43)

Alternatively, one may build a table where one finds the
number of total vectors in the supercube and then chooses
the η value corresponding to the smallest number of
vectors.

III. RESULTS

The Lebedev ChElPG method and the QM/MM-Ewald
method described above have been implemented in a locally
modified version of Q-CHEM v. 4.0.29, 30 Here, we describe
various numerical tests designed to evaluate the numerical
performance of the method.

A. Charge schemes

In attempting to implement the algorithm in Ref. 8, we
encountered serious SCF convergence problems that we sus-
pected were due to the use of extended basis sets in conjunc-
tion with Mulliken image charges. Since no such difficulties
have been reported in previous minimal-basis implementa-
tions of the algorithm,8, 11 we first wanted to verify that the
Mulliken version [with charge derivatives given in Eq. (25)]
does indeed work in a minimal basis set. To test this, calcula-
tions were run at the QM = Hartree-Fock (HF)/STO-3G level
of theory, for a single QM water molecule in a box of 215
TIP3P water molecules,31 with L = 18.643 Å corresponding
to ambient liquid density. This calculation converged rapidly
using Mulliken charges, and in comparison to the correspond-
ing calculation using a Cartesian ChElPG grid (head spacing
of 5 Å and 	x = 1 Å), essentially the same energy is obtained.
Moreover, if we compute Mulliken charges using the density
matrix obtained from the ChElPG Ewald calculation, we ob-
tain values within 0.003 a.u. of the Mulliken charges obtained
from the Mulliken Ewald calculation. This confirms that var-
ious charge schemes work equally well in minimal basis
sets.

In order to test extended basis sets, the same cal-
culation was preformed using the 6-31(x+,y+)G* and 6-
311(x+,y+)G* basis sets, where x and y range from 0 to
3, except that the 6-31(3+,+)G*, 6-31(3+,2+)G*, and 6-
311(3+,+)G* basis sets were excluded because in these cases
the Mulliken-based Ewald procedure fails to converge after 50
SCF cycles. Figure 2 shows the final, converged point charge
on the oxygen atom of the QM water molecule as a function
of basis set size. We converge the SCF Ewald calculation us-
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FIG. 2. Converged partial charges for the oxygen atom of a single QM water
molecule in an MM water box, plotted against the number of basis functions
used to describe the QM region, for 6-31(x+,y+)G* and 6-311(x+,y+)G*
basis sets. In (a), the QM/MM-Ewald method uses Mulliken image charges
whereas in (b) it uses ChElPG image charges. In the latter case, Mulliken
charges were also computed upon SCF convergence.

ing either Mulliken image charges [Fig. 2(a)] or else ChElPG
image charges [Fig. 2(b)], and in the latter case we also com-
pute Mulliken charges using the final, converged SCF density
matrix. From Fig. 2(a) we see that the use of Mulliken im-
age charges – when the calculation can be converged – of-
ten leads to a positive partial charge on the oxygen atom in
larger basis sets. Not only is this behavior not observed with
ChElPG charges, but if we use ChElPG image charges to con-
verge the SCF calculation (i.e., the ChElPG charges are used
to construct the Fock matrix correction 	F PI

μν), then the Mul-
liken charges obtained upon convergence are reasonable [see
Fig. 2(b)]. This suggests that the problem lies with instabil-
ities in the Mulliken charge derivatives as the basis set is
expanded, which are exacerbated when these charges are in-
cluded as part of the self-consistent iteration procedure.

These instabilities are borne out by the SCF energies,
plotted as a function of basis size in Fig. 3. When Mul-
liken image charges are employed, the correct SCF energy of
≈−76 hartree is obtained only in small basis sets; in
larger basis sets, the “converged” SCF energy differs from
this value by as much as 5 hartree. For ChElPG image
charges, the SCF energy is stable with respect to basis-set
expansion.

Clearly, Mulliken charges cannot be used for QM/MM-
Ewald calculations in non-minimal basis sets. The remainder
of this work explores the use of ChElPG image charges. In
that case, one must determine electrostatic grid parameters
to ensure that the charges are converged. Tests of how the
ChElPG charges converge with respect to grid parameters are
presented in Sec. III B.
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FIG. 3. Total SCF energy versus the number of basis functions, for a sin-
gle QM water molecule in a box of MM water molecules, using either
(a) Mulliken image charges or (b) ChElPG image charges.

B. Lebedev ChElPG charges

1. Gas phase

Our Lebedev grid-based implementation of the ChElPG
algorithm is new, and here we seek to test it against the orig-
inal Cartesian grid-based version of Breneman and Wiberg.16

The Lebedev version is inherently much more efficient, as it
uses far fewer grid points for the same head space and grid
spacing, so we seek to understand how sparse we can make
the Lebedev grid without adversely affecting the charges that
are obtained. In these tests, we leave the head space set to
2.8 Å (the value recommended by Breneman and Wiberg16),
and use Bondi radii32 to define the vdW surface. Atom-
centered radial Lebedev shells with Np = 590 points per shell
extend from the atomic Bondi radius out to 2.8 Å away from
that surface, in radial increments of 	x. (This value of Np has
previously been shown to provide good rotational invariance,
in the context of polarizable continuum model calculations
where the vdW cavity is discretized with atom-centered Lebe-
dev grids.33) Choosing bins of volume (	x)3, this leaves only
	x as a parameter to test convergence of the ChElPG charges.

We first aim to determine whether the Lebedev ChElPG
charges provide a reasonable representation of the electro-
static potential. To that end, we first examine the convergence
behavior of the Cartesian ChElPG charges, in order to estab-
lish a baseline. Note that the Cartesian ChElPG charges pro-
vide the best possible representation of the electrostatic po-
tential, in a least-squares sense, in the limit that 	x → 0, and
we will take Cartesian ChElPG charges computed using 	x
= 0.05 Å to be the “true” ChElPG charges. (This choice is jus-
tified by the fact that the charges change by only ∼10−3 a.u.
when 	x is increased to 0.10 Å.) Convergence of the Carte-
sian ChElPG charges towards these “true” values, as a func-
tion of 	x, is plotted in Fig. 4 for several small molecules.
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FIG. 4. Convergence of the Cartesian ChElPG charges (atomic units) com-
puted at the HF/aug-cc-pVDZ level, as a function of the Cartesian grid spac-
ing 	x. The reference values were computed using 	x = 0.05 Å. The ver-
tical axis plots the mean unsigned error (MUE) for all of the charges in the
molecule.

Even for 	x = 0.5 Å, the charges are already converged to
about two decimal places.

The convergence of the weighted and unweighted Lebe-
dev ChElPG charges, as a function of 	x, is shown in
Fig. 5. Use of the weighting scheme tends to afford bet-
ter agreement with the Cartesian ChElPG charges, suggest-
ing that an approximately isotropic grid is indeed important
for reproducing Cartesian ChElPG charges. Interestingly, the
slope of errors with respect to 	x is about the same regardless
of whether the weighting scheme is used or not. We take this
to mean that the charges converge at about the same rate with
respect to 	x, but converge to different values depending on
whether the weighting is used. The data in Fig. 5 suggest that
it is reasonable to expect errors of the same order of magni-
tude, or maybe only slightly larger, as those seen for Cartesian
ChElPG charges when using Lebedev ChElPG charges.

Given that we can converge the Lebedev ChElPG charges
to about the same values as their Cartesian counterparts, we
now turn our attention to the rotational invariance of the
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FIG. 5. Convergence of the Lebedev ChElPG charges (atomic units) com-
puted at the HF/aug-cc-pVDZ level, as a function of the grid spacing 	x. The
reference values were computed using a Cartesian grid with 	x = 0.05 Å.
The vertical axis plots the mean unsigned error (MUE) for all of the charges
in the molecule. In (a), the weighting scheme discussed in Sec. II C 2 is em-
ployed (wk = 1/nk), whereas in (b) the weights are all equal.
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FIG. 6. Rotational invariance (a.u.) of the Lebedev and Cartesian ChElPG
charges on the hydroxyl oxygen of glycine as the molecule is rotated by 180◦
about an axis. Charges are computed at the HF/6-31G* level of theory.

ChElPG charges. To this end, we have computed the HF/6-
31G* ChElPG charges of a glycine molecule in the standard
nuclear orientation (principal axes of nuclear charge) and also
after rotation around the x axis from 0 to π rad, in increments
of π /12 rad. We examine the ChElPG charge on the hydroxyl
oxygen atom as a function of this rotation angle, as compared
to the value obtained at 0◦. The mean unsigned error (MUE),
which is a measure of rotational invariance, is plotted in
Fig. 6 as a function of 	x.

For comparison, the actual ChElPG charge on the hy-
droxyl oxygen ranges from −0.78 to −0.80 a.u., whereas the
data in Fig. 6 suggest that both the Cartesian and Lebedev
grids afford charges that are rotationally invariant to within
0.01 a.u. or better, even for 	x = 0.5 Å. For grid spacings
	x < 0.15 Å, no further improvement in the rotational invari-
ance is observed. One interesting point is that the Lebedev
grid exhibits better rotational invariance when 	x is large, but
(slightly) worse invariance when 	x is small. This is seem-
ingly at odds with Spackman’s results for spherical and icosa-
hedral grids.24 However, Spackman24 took care to only com-
pare grids of relatively the same density.

In this particular glycine example, the Cartesian grid has
sides of ≈21 Å, meaning the Cartesian grids occupy a volume
of ≈9300 Å3 and the Lebedev grid (assuming it is constructed
from spheres) has a volume of ≈4800 Å3. At 	x = 0.5 Å, the
Cartesian grid contains about 15 800 points and the Lebedev
grid about 9000 grid points, or point densities of 1.7 Å−3 and
1.9 Å−3, respectively. On the other hand, at 	x = 0.05 Å the
Cartesian grid has about 1.5 × 107 points for a point density

of about 1600 Å−3, while the Lebedev grid has 84 000 points
for a density of 17.5 Å−3. In other words, the Cartesian grid
is about 100 times more dense than the Lebedev grid for 	x
= 0.05 Å. We conclude that for Lebedev and Cartesian grids
of similar densities (e.g., the 	x = 0.5 Å case), the Lebedev
grids exhibit better rotational invariance. For cases where the
point densities are very different (e.g., the 	x = 0.05 Å case),
the more dense grid exhibits the better rotational invariance.
This is consistent with Spackman’s results.24

2. Condensed phase

The results above show that the use of weighted Lebe-
dev grids affords ChElPG charges that are nearly identical
to those obtained using Cartesian grids, but can do so with
far fewer grid points. However, the benchmarks above use
Np = 590 points per radial shell, which will be expensive in
calculations with larger QM regions. Reducing this number
to Np = 50, we have tested the rotational invariance of the
ChElPG charges in the context of a QM/MM-Ewald calcula-
tion, taking as a test system a QM region composed of five
water molecules (B3LYP/6-31+G* level) in a periodic cell
containing 211 MM water molecules (L = 18.643 Å). The
ChElPG charges were computed using a head space of 3.0 Å
with 	x = 0.5 Å. We carried out single-point energy calcu-
lations after rotating the entire simulation cell in increments
of 90◦, leaving fixed the axis system that defines the ChElPG
unit spheres. (That is, the axes of the simulation cell are ro-
tated with respect to the axes that define the grid.)

The results, which are summarized in Tables I and II, use
a sparser grid than was used for the gas-phase calculations,
yet good rotational invariance of both energies (Table I) and
forces (Table II) is observed. The variation in the SCF en-
ergy as a function of rotation angle is smaller than the SCF
convergence threshold (10−5 hartree, for the calculations in
Table I). The convergence threshold was tightened to 10−7

hartree for the gradient calculations (Table II), yet the vari-
ation in different components of the force is no larger than
1.3 × 10−7 a.u. These results suggest that rotational invari-
ance can be achieved in condensed-phase systems using grids
that are far sparser than those used in the gas-phase calcula-
tions presented above.

C. Timings

One drawback to the use of ChElPG charges is the
expense associated with computing the charge derivatives

TABLE I. SCF energies and Lebedev ChElPG charges as the simulation cell (containing 5 QM and 211 MM water molecules) is rotated with respect to the
axes that define the Lebedev unit spheres. The final column is the difference between the maximum and minimum values for the various quantities in each row.
The SCF convergence threshold was set to 10−5 hartree.

0◦ 90◦ 180◦ 270◦ |	max-min|

ESCF (a.u.) − 382.2489807663 − 382.2489808032 − 382.2489806988 − 382.2489807549 0.000000
εHOMO (a.u.) − 0.300498 − 0.300498 − 0.300498 − 0.300498 0.000000
Qoxy (a.u.) − 1.026878 − 1.030694 − 1.035725 − 1.027292 0.008847
Qhyd1 (a.u.) 0.465895 0.468642 0.467734 0.466975 0.001839
Qhyd2 (a.u.) 0.559032 0.560517 0.564779 0.557386 0.007393
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TABLE II. Magnitude of the force on a single oxygen atom as the simulation cell (containing 5 QM and 211 MM water molecules) is rotated with respect to
the axes that define the Lebedev unit spheres. The final column is the difference between the maximum and minimum values for the various quantities in each
row. The SCF convergence threshold was set to 10−7 hartree and the integral threshold to 10−10, with the corresponding value of C determined from Eq. (36).

Force (a.u.)

0◦ 90◦ 180◦ 270◦ |	max-min|

|Ftotal| 0.0318286779 0.0318296463 0.0318290238 0.0318289497 0.0000010
|FQM/MM| 0.0318488287 0.0318484627 0.0318490519 0.0318486728 0.0000006
|FEwald| 0.0000201508 0.0000188163 0.0000200282 0.0000197231 0.0000013

∂Qα/∂Pμν , especially the tensor �B in Eq. (35). The choice
of the Ewald parameter η can also make a large difference in
calculation time, as it controls the number of vectors used in
the real- and reciprocal-space sums. A poor choice for η can
double the calculation time, in our experience.

In order to understand how the Ewald parameter affects
the calculation time, two systems were analyzed. The first is
intended to be indicative of a fairly small QM region, con-
sisting of 11 QM water molecules (B3LYP/6-31+G* level of
theory, for a total of 253 basis functions) in a L = 18.643 Å
simulation cell containing 205 TIP3P water molecules.31 The
second calculation is much larger, and consists of a QM re-
gion containing an aqueous cytidine molecule and all 27 water
molecules that reside within 6 Å of the cytidine molecule. The
QM region is described at the B3LYP/6-31+G* level (970
basis functions) and placed in a L = 50.0 Å simulation cell
containing 4122 TIP3P water molecules. In both cases, the
ChElPG parameters are set to 3.0 Å for the head space, Np

= 50, and 	x = 0.5 Å, since these values afford good rota-
tional invariance for the test case in Sec. III B 2. We compute
the SCF energy of both systems as a function of η. For the
first system, all values of η afford the same energy to within
10−10 hartree, while for the larger system the variation is no
greater than 2 × 10−7 hartree. This implies that we have in-
deed converged both the real- and the reciprocal-space sums
for each value of η, which should be the case if one follows
the recommendations in Sec. II D.

Figure 7 shows the CPU time required to compute the
∂	EPI/∂Qα [Eq. (20)], as a function of η, for these two test
systems. Note that in a single-point calculation, this is essen-
tially a one-time cost insofar as the main cost is in calculat-
ing the Ewald potential, which is done outside of the SCF
iterations. Unless the Ewald parameter is chosen poorly, the
cost of this step is small in comparison to the time required
to compute the ChElPG charge derivatives, ∂Qα/∂Pμν . This is
demonstrated in Fig. 8, where we compare (as a function of
η) the fraction of the total job time that is consumed in com-
puting derivatives ∂	EPI/∂Qα versus the fraction required to
compute the derivatives ∂Qα/∂Pμν . Note that all of these cal-
culations are exact (within the integral drop tolerance), insofar
as we use the criteria given in Sec. II D to decide how many
vectors are necessary to converge the real- and reciprocal-
space sums.

As can be seen in Figs. 7 and 8, a poor choice for η can
make a large difference in the calculation time. This issue is
less important in smaller systems where the time to compute
the Ewald potential is small; however, in a large system (such
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TABLE III. Timings (in seconds) for a single-point QM/MM calculation
of cytidine (QM) in water (MM), with periodic boundary conditions using
η = 0.04 Å−1. The QM region consists of 30 atoms and 349 basis func-
tions (B3LYP/6-31+G*) and the MM region consists of 12 840 point charges
(4160 TIP3P water molecules). The Lebedev and Cartesian ChElPG grids
consist of 885 and 32 598 points, respectively. For the steps that must be re-
peated at each SCF calculation, two columns of timing data are provided, cor-
responding to the second (left column) and ninth (right column) SCF cycles.
The row labeled “other” includes the XC quadrature step and any remaining
overhead associated with the Fock build.

Lebedev Cartesian
One-electron integrals 6.4 6.4
Ewald potential (∂	EPI/∂Qα) 31.5 31.4

Two-electron integrals 17.6 12.2 17.7 12.4
ChElPG charges 0.4 0.4 3.9 3.8
∂Qα /∂Pμν 16.2 16.1 176.4 176.2
Other 6.1 4.8 6.1 4.7
Total Fock build 71.7 33.4 235.4 197.1

Total SCF 348.6 1658.9

as cytidine in 27 QM water molecules), this step can become
the bottleneck if η is chosen too large. This point has not been
emphasized previously in the context of Ewald summation for
QM/MM calculations.

Most classical implementations of Ewald summation are
based on the particle-mesh Ewald method,27, 28 in which the
reciprocal-space summation is faster (scaling as Nvec log Nvec
with respect to the number of reciprocal lattice vectors, Nvec)
than the real-space summation (which scales as N2

MM with re-
spect to the number of point charges). For this reason, a larger
Ewald parameter is generally selected, in order to perform
more of the summation in reciprocal space, which may not
be an effective strategy for the present implementation, where
the cost of the reciprocal-space sum scales as N2

vec. Although a
particle-mesh implementation of QM/MM-Ewald may be in-
teresting to consider (especially in view of the recent quantum
Ewald mesh for evaluation of electron repulsion integrals34),

at present the ∂	EPI/∂Qα term is often not the bottleneck of
the calculation, as can be seen in Fig. 8. As such, there seems
to be little need to accelerate this part of the calculation at
present.

It is beneficial to analyze the complete timings of the
QM/MM-Ewald calculations, and we will present timings for
a variety of aqueous cytidine calculations performed at the
B3LYP/6-31+G* level, using ChElPG charges with a head
space of 3.0 Å, Np = 26, and 	x = 0.5 Å. (Although the con-
vergence tests of the ChElPG charges reported in Sec. III B 1
used a much larger number of Lebedev grid points, numerical
tests of QM/MM-Ewald calculations, comparing Np = 26 to
Np = 590, demonstrate that the converged SCF energies dif-
fer by less than the convergence threshold of 10−5 hartree.)
Table III compares timing data for Lebedev and Cartesian
ChElPG grids in the QM/MM-Ewald procedure, for a cal-
culation in which only the cytidine molecule is treated at a
QM level. The use of Lebedev grids reduces the number of
grid points from 32 598 points to just 885 points, which sub-
stantially reduces the cost of computing the charge derivatives
∂Qα/∂Pμν . At the same time, the difference between the SCF
energies in the two calculations is only 6.663 × 10−6 hartree,
which is smaller than the SCF convergence threshold of
10−5 hartree, so there is every reason to prefer the Lebedev-
based approach.

Timing data are provided in Table IV for a sequence of
related calculations in which the QM region consists of the
cytidine molecule plus all water molecules containing an atom
within some specified distance, R, of the glycosidic nitrogen.
(All calculations contained 4160 QM + MM water molecules
in the simulation cell.) These calculations were performed at
the B3LYP/6-31+G* level with η = 0.04 Å−1. ChElPG grid
parameters are the same as those for the cytidine-only QM
region discussed above.

The data in Table IV reveal that the time needed to calcu-
late the one-electron integrals is almost negligible. (Note that
the one-electron integral timings quoted in the table include
only the QM-MM interactions within the simulation cell. The

TABLE IV. Timing data (rounded to the nearest second) for QM/MM calculations of aqueous cytidine in which the QM region consists of a region of specified
radius, R, around the cytidine molecule, described at the B3LYP/6-31+G* level. All calculations were performed with periodic boundary conditions using η

= 0.04 Å−1 and ChElPG charges. For the steps that must be repeated at each SCF calculation, two columns of timing data are provided, corresponding to the
second (left column) and ninth (right column) SCF cycles. Timings labeled “other” includes the XC quadrature step and any remaining overhead associated
with the Fock build. All calculations were run in serial on a single Intel Xeon x5650 processor with 48 GB RAM with no competing processes on the node.

R = 6 Å R = 7 Å R = 8 Å R = 9 Å

Number of QM atoms 108 174 249 345
Number of MM atoms 12 402 12 336 12 231 12 165
Number of basis functions 947 1453 2028 2764
Number of ChElPG grid points 2700 4194 5683 7642

One-electron integrals 27 44 67 93
Ewald potential (∂	EPI/∂Qα) 104 166 236 324

Two-electron integrals 291 122 943 317 2169 735 4546 1288
ChElPG charges 4 4 11 11 24 24 48 47
∂Qα /∂Pμν 762 763 3476 3477 10 761 10 767 29 930 29 925
Other 45 29 85 63 137 102 207 153
Total Fock build 1206 917 4681 3868 13 327 11 629 35 054 31 417
Total SCF 8363 29 795 86 921 231 248
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time required to calculate the QM-MM image interactions is
included in the ∂	EPI/∂Qα term.) Given the data in Table IV,
it seems that there is little motivation at this point to work on
accelerating the one-electron integral evaluation, e.g., using
asymptotic expansions.35

The data also reveal that the cost of computing
∂	EPI/∂Qα is an order-of-magnitude less than the cost of
computing electron repulsion integrals, except for the smallest
QM regions. As such, the particle-mesh Ewald technique,27

which is generally regarded as the method of choice for im-
plementing PBC in classical simulations, does not appear to
be a promising way forward in the present context, since the
most expensive step in our QM/MM-Ewald algorithm (by a
very wide margin, especially for large QM regions) is calcu-
lation of the charge derivatives ∂Qα/∂Pμν . In particular, the
matrix �B in Eq. (35) must be computed NQM times (once for
each QM atom, B) in order to calculate the charge derivatives
∂Qα/∂Pμν . Each of the �B matrices is independent of one an-
other so this step can be trivially parallelized across NMM pro-
cessors, and further parallelism will be as good as the paral-
lelization of the one-electron integrals (Ik)μν [Eq. (29)]. Even
a factor of two reduction in the time to calculate ∂Qα/∂Pμν

would reduce the total SCF time for the calculations in
Table IV by a minimum of 45%, and by 70% in the case of
the smallest (R = 6 Å) QM region.

IV. CONCLUSION

Although the theory of Ewald summation for QM/MM
calculations has been described before,8, 11 in the context
of semi-empirical QM methods, we have provided a robust
and general way to extend this technique to extended basis
sets, where earlier implementations based on Mulliken im-
age charges for the QM electron density experience stabil-
ity problems. These are alleviated by using ChElPG image
charges instead, and the relatively high cost of computing
such charges is mitigated somewhat by an implementation of
the ChElPG algorithm using atom-centered Lebedev grids for
evaluation of the QM electrostatic potential. These Lebedev
ChElPG charges exhibit good rotational invariance and re-
produce the QM/MM-Ewald results using traditional ChElPG
charges, even for very sparse grids. This is important, because
for large QM regions the cost of evaluating derivatives of the
ChElPG charges with respect to the density matrix becomes
the overwhelming bottleneck in the calculation. (For a more
realistic QM region of 349 basis functions, this cost is compa-
rable to the cost of building the Coulomb and exchange matri-
ces for a hybrid density functional.) In future work, we plan
to explore multipole-based charge embeddings that sidestep
the need for expensive ChElPG charge derivatives. For now,
however – and for QM regions more in line with contem-
porary QM/MM calculations – the Lebedev ChElPG-based
QM/MM-Ewald procedure is a promising way to perform pe-
riodic QM/MM calculations in a Gaussian-orbital-based SCF
electronic structure code. The method works for both HF and
DFT calculations, including functionals of arbitrary complex-
ity. Post-HF correlated wave functions can be built upon HF
molecular orbitals and eigenvalues that are polarized by the
PBC, and the fact that large basis sets can be used means

that QM/MM calculations with correlated wave functions are
possible.
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Erratum: “Periodic boundary conditions for QM/MM calculations: Ewald
summation for extended Gaussian basis sets” [J. Chem. Phys. 139,
244108 (2013)]

Zachary C. Holden, Ryan M. Richard, and John M. Herberta)

Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA

(Received 22 January 2015; accepted 23 January 2015; published online 3 February 2015)

[http://dx.doi.org/10.1063/1.4907623]

In a recent paper,1 we presented a general formulation of Ewald summation for periodic boundary conditions in quantum
mechanics/molecular mechanics (QM/MM) calculations that are based on “ChElPG”2 embedding charges for the image wave
functions, rather than Mulliken charges, as the former are more stable in non-minimal basis sets. A typographical error appears
in Eq. (11) in Ref. 1, which should instead read

|S(m)|2 =


NMM
j

qj cos
(

2π
L
(m · r j)

)
2

+



NMM
j

qj sin
(

2π
L
(m · r j)

)
2

, (11)

in agreement with the structure factor S(m) given in Ref. 3. The correct version of this equation was used in the calculations
reported in Ref. 1.

In addition, while formulating the analytic gradients for the QM/MM-Ewald method, we noticed errors in Eqs. (24) and
(25) of Ref. 1, which define the Mulliken charges. These equations should read

Qα = Zα −

µ∈α


ν

PµνSµν (24)

and
∂Qα

∂Pµν
= −Sµν δµ∈α. (25)

FIG. 2. Converged partial charges for the oxygen atom of a single QM water molecule in a MM water box, plotted against the number of basis functions used
to describe the QM region, for 6-31(x+, y+)G* and 6-311(x+, y+)G* basis sets. In (a), the QM/MM-Ewald method uses Mulliken image charges, whereas in
(b), it uses ChElPG image charges. In the latter case, Mulliken charges were also computed upon SCF convergence.

The summation over atomic orbitals µ in Eq. (24) is restricted to functions centered on atom α, but the sum over ν is unre-
stricted. In Ref. 1, we erroneously restricted ν ∈ α, and this has a noticeable effect on the Mulliken charges Qα. As such, we
present updated versions of Figs. 2 and 3 here.
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FIG. 3. Total SCF energy versus the number of basis functions, for a single QM water molecule in a box of MM water molecules, using either (a) Mulliken
image charges or (b) ChElPG image charges.

As compared to what we published in Ref. 1, the Mulliken charges in Fig. 2(a) behave somewhat better as a function of
basis-set expansion, although unreasonable results (Qoxygen > 0) are still obtained for the 6-31(x+, y+)G* and 6-311(x+, y+)G*
basis sets when x = 3 and y = 2 or 3. From Fig. 3(a), the SCF (QM/MM-Ewald) energy is well behaved except in these cases,
where it is too small by more than a hartree.

The use of multiple diffuse shells is somewhat unusual, so we performed additional tests in which the QM region consists
of seven H2O molecules (in a box of classical waters), as opposed to the single QM water molecule that is used in Figs. 2 and
3. For these larger QM regions, the QM/MM-Ewald procedure with Mulliken embedding charges affords reasonable results in
the 6-31G*, 6-31+G*, and 6-311G* basis sets. However, we were unable to converge the SCF calculation in 50 cycles in the
presence of any additional diffuse function; e.g., the 6-31++G∗, 6-311+G∗, and 6-311++G∗ basis sets each led to convergence
failure.

As such, the main conclusions of Ref. 1 are unmodified. Namely, the QM/MM-Ewald procedure with Mulliken embedding
charges can be useful in small basis sets, which is how this procedure was originally designed,4,5 but a general implementation
that is valid for standard basis sets used in all-electron, ab initio electronic structure calculations must move beyond Mulliken
embedding. ChElPG embedding, as introduced in Ref. 1, still appears to be robust in this respect.
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