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non-empirically tuned, long-range-corrected density functionals
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The performance of second-order symmetry-adapted perturbation theory (SAPT) calculations using
Kohn-Sham (KS) orbitals is evaluated against benchmark results for intermolecular interactions.
Unlike previous studies of this “SAPT(KS)” methodology, the present study uses non-empirically
tuned long-range corrected (LRC) functionals for the monomers. The proper vxc(r) → 0 asymptotic
limit is achieved by tuning the range separation parameter in order to satisfy the condition that
the highest occupied KS energy level equals minus the molecule’s ionization energy, for each
monomer unit. Tests for He2, Ne2, and the S22 and S66 data sets reveal that this condition is
important for accurate prediction of the non-dispersion components of the energy, although errors
in SAPT(KS) dispersion energies remain unacceptably large. In conjunction with an empirical
dispersion potential, however, the SAPT(KS) method affords good results for S22 and S66, and
also accurately predicts the whole potential energy curve for the sandwich isomer of the benzene
dimer. Tuned LRC functionals represent an attractive alternative to other asymptotic corrections that
have been employed in density-functional-based SAPT calculations, and we recommend the use of
tuned LRC functionals in both coupled-perturbed SAPT(DFT) calculations and dispersion-corrected
SAPT(KS) calculations. © 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4862644]

I. INTRODUCTION

Symmetry-adapted perturbation theory1–5 (SAPT) is a
popular method to calculate dimer interaction energies and
to decompose them into physically meaningful components:
electrostatics, induction, dispersion, and their exchange coun-
terparts. In this approach, the Hamiltonian is partitioned into
monomer Fock operators, Møller-Plesset fluctuation opera-
tors (representing intramolecular electron correlation), and
the intermolecular interaction operators. Unfortunately, high-
order terms in the fluctuation potentials are required in order
to achieve highly accurate interaction energies, which lim-
its the application of SAPT to dimers composed of small
monomer units, or to semi-quantitative results if intramolec-
ular electron correlation is neglected. As such, there has been
considerable interest in combining the wave-function-based
SAPT formalism with a low-cost density functional theory
(DFT) description of the monomers, which would therefore
include intramolecular electron correlation.4, 5

Such a hybrid approach was first tested in 2001,6 simply
by substituting Kohn-Sham (KS) orbitals and energies lev-
els into the SAPT formalism, without further justification.
(Some formal properties of this approach were considered
a short time later.7) This approach, wherein the KS deter-
minant is used as the reference state for an otherwise tra-
ditional SAPT calculation, is known as SAPT(KS), and its
computational cost is essentially the same as the Hartree–
Fock-based approach. (The traditional second-order approach
with Hartree–Fock determinants is usually called SAPT0.3)
Results obtained using SAPT(KS) were disappointing,6, 7

however, which was ultimately attributed to the incorrect
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asymptotic behavior of the exchange-correlation (XC) poten-
tial, vxc, in existing density-functional approximations.6, 8

The proper asymptotic behavior of vxc should be9

vxc(r) ∼ −1

r
+ �∞ (1)

for large r. The limiting value of vxc(r) as r → ∞ should
be9, 10

�∞ = IP + εHOMO, (2)

where IP is the lowest ionization potential and εHOMO is
the KS eigenvalue for the highest occupied molecular or-
bital (HOMO). It was later demonstrated that SAPT(KS)
based on an asymptotically-corrected XC functional is able to
predict the electrostatics, first-order exchange, second-order
induction, and exchange-induction energies with good ac-
curacy, but second-order dispersion and exchange-dispersion
energies remain quite poor.8, 11, 12

Accurate dispersion and exchange-dispersion energies
were ultimately obtained by replacing the MP2-like sum-
over-states dispersion formula (“uncoupled Hartree-Fock”
approximation13) with a formula involving frequency-
dependent density susceptibilities for the monomers ob-
tained from time-dependent coupled Kohn-Sham (TD-CKS)
calculations.14, 15 This method has variously been called DFT-
SAPT or SAPT(DFT).4, 5, 16–19 To address the issue of the
long-range behavior of vxc, two asymptotic correction (AC)
schemes have been employed: the Tozer-Handy splicing
scheme in conjunction with the Fermi-Amaldi asymptotic
potential,9 and the gradient-regulated asymptotic correction
with the van Leeuwen-Baerends asymptotic potential.20, 21

The drawback of these AC schemes is that the corrected
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XC potential, vAC
xc , is not the functional derivative of the XC

energy for any exchange-correlation functional:

vAC
xc �= δExc

δρ
. (3)

Exchange-correlation potentials that are not proper functional
derivatives have been called “stray” potentials. Such poten-
tials may generate spurious forces and torques, causing poten-
tially serious problems with geometry optimizations.22 Only
recently has an AC model potential with vAC

xc = δExc/δρ been
proposed,23 but this functional has not yet been tested in the
context of SAPT(KS). So far, the inconsistency in Eq. (3)
does not seem to cause problems in the context of SAPT(KS)
calculations,24 but it is necessary to resolve this issue in or-
der to derive analytic energy gradients for the extended SAPT
(XSAPT) methods developed by our group,25–29 which are
designed for fast calculations of non-covalent clusters.

As an alternative to traditional AC model potentials,
long-range corrected (LRC) density functionals, also known
as range-separated hybrid functionals, can improve the
asymptotic behavior of the XC potential.30–35 These function-
als partition the electron–electron Coulomb operator, r−1

12 , into
short-range (SR) and long-range (LR) components using the
error function (erf):

1

r12
= 1 − erf(ωr12)

r12︸ ︷︷ ︸
SR

+ erf(ωr12)

r12︸ ︷︷ ︸
LR

. (4)

Here, ω is an adjustable range-separation parameter that de-
termines the length scale (∼ω−1) of SR Coulomb potential,
and is often determined by fitting to some data set.35–38 For a
generalized gradient approximation (GGA) of the form

Exc = Ec + (1 − CHF)EGGA
x + CHFE

HF
x (5)

(which is technically a hybrid functional if the coefficient of
Hartree-Fock exchange, CHF, is different from zero), the cor-
responding LRC function is39

ELRC
xc = Ec + (1 − CHF)ESR,GGA

x + CHFE
SR,HF
x + ELR,HF

x .

(6)

When the electron–molecule distance is large, the functional
in Eq. (6) is dominated by Hartree-Fock exchange, hence the
asymptotic XC potential decays as ∼r−1. As such, LRC func-
tionals exhibit the correct asymptotic distance dependence,
however they do not reproduce the proper limiting value
[Eq. (1)], since �∞ �= 0.

To correct this deficiency, Baer et al.40, 41 proposed a
physically-motivated (non-empirical) “tuning” of ω, in order
to satisfy the condition

εHOMO = −IP , (7)

and thus ensure that �∞ = 0. When “tuned” in this way,
LRC functionals predict both fundamental gaps and excitation
energies quite accurately.42–44

Recently, some conventional (statistically-optimized)
LRC functionals have been used in the context of SAPT(DFT)
calculations, with very poor results.24 This failure is attributed
to the incorrect asymptotic limit of vxc, and the authors of

Ref. 24 even go so far as to suggest that the name “long-
range corrected functional” is inappropriate for functionals
based on Eq. (6). Actually, we had already shown that LRC
functionals with standard, statistically-optimized range sepa-
ration parameters do not correct the dispersion problems in
SAPT(KS) calculations, although they do afford slightly bet-
ter results (as compared to SAPT0) for strongly hydrogen-
bonded systems.26 In the present study, we will show that
the aforementioned non-empirical tuning procedure, when ap-
plied in a monomer-specific way, affords SAPT(KS) energy
components in good agreement with high-level benchmarks,
except for this dispersion energy, which is still poor. The dis-
persion energy, however, can be accurately incorporated via
empirical potentials, as we will demonstrate, yielding high-
accuracy SAPT(KS)+D calculations where the exchange-
correlation functional is well-defined [unlike the situation in
Eq. (3)], and is thus appropriate for the formulation of analytic
energy gradients.

II. THEORY

The traditional second-order SAPT interaction energy
(SAPT0 method3) can be written as

ESAPT0
int,resp = E

(10)
elst + E

(10)
exch + E

(20)
ind,resp + E

(20)
exch-ind,resp

+E
(20)
disp + E

(20)
exch-disp. (8)

The notation E(nl) indicates a term that is nth order in the in-
termolecular interaction and lth order in the monomer fluc-
tuation potentials, hence the E(n0) energy components in
Eq. (8) imply that no intramolecular electron correlation is
included in SAPT0. The “response” (resp) subscripts indi-
cate that the infinite-order response correction for induction
is incorporated by solving coupled perturbed Hartree-Fock
equations.45, 46 In SAPT(KS), the intramolecular correlation
is included implicitly, so the superscript l is dropped and one
has

E
SAPT(KS)
int = E

(1)
elst(KS) + E(1)

exch(KS) + E(2)
ind,resp(KS)

+E
(2)
exch-ind,resp(KS) + E(2)

disp(KS)

+E
(2)
exch-disp(KS) . (9)

The computational cost of either method is about the same.
In the case of traditional (Hartree–Fock-based) SAPT

methods, the induction terms using “uncoupled” and “cou-
pled” monomer densities are identical if the infinite-order in-
tramolecular correlation is included:47

∞∑

l=0

E
(2l)
ind =

∞∑

l=0

E
(2l)
ind,resp . (10)

Since intramolecular correlation is implicitly included in
SAPT(KS), the difference between SAPT(KS) induction en-
ergies based on coupled versus uncoupled monomer densities
is expected to be smaller than in traditional wave function-
based SAPT, and the uncoupled sum-over-states formula
works fairy well for the induction energy.6, 8, 12, 48 Since or-
bital relaxation is present in the CKS static response theory
but not in the uncoupled sum-over-states formula, the CKS
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method should in principle give better results for the induc-
tion energy as compared to an uncoupled calculation, at least
at large intermolecular separation.48 In this study, the orbital
relaxation for the induction and exchange-induction ener-
gies in SAPT(KS) are approximated as the energy difference
between coupled and uncoupled terms calculated by SAPT0,

E
(2)
ind,resp(KS) = E

(2)
ind(KS) + E(20)

ind,resp − E(20)
ind , (11a)

E
(2)
exch-ind,resp(KS) = E

(2)
exch-ind(KS) + E(20)

exch-ind,resp − E(20)
exch-ind .

(11b)

Thorough comparisons to benchmark calculations, as pre-
sented below, support the accuracy and robustness of this ap-
proximation.

When truncating the perturbation series at second order,
as in Eqs. (8) and (9), it is common to incorporate higher-
order polarization effects by means of a correction

δEHF
int,resp = EHF

int − (
E

(10)
elst + E

(10)
exch + E

(20)
ind,resp + E

(20)
exch-ind,resp

)
,

(12)

where EHF
int denotes the supermolecular (dimer) Hartree-Fock

interaction energy, with counterpoise correction. The δEHF
int,resp

term is recommended when the monomers are polar.3, 49–52

III. COMPUTATIONAL DETAILS

To determine the usefulness of SAPT(KS) calculations
using tuned LRC functionals, we will use benchmark energy
components determined from high-level calculations for a va-
riety of small dimers. High-accuracy energy components for
He2 and Ne2 are available,24, 53–55 obtained using highly cor-
related wave functions evaluated near the complete basis set
(CBS) limit. For Ne2, the best available calculations24 were
obtained using the SAPT(CCSD) method.56–59 For He2, ex-
act energy components, obtained with a complete account of
electron correlation (equivalent to full configuration interac-
tion), and with a basis set that is saturated using a Gaussian-
type geminal (GTG), are available;53–55 this method has been
called SAPT(GTG). For the S22 data set,60 benchmark en-
ergy components were computed at the SAPT2+(3)/aug-cc-
pVTZ level using the Psi4 program,69 and are available in the
supplementary material.70 [The SAPT2+(3) method includes
terms beyond second order; see Ref. 3.] Total binding energies
(though not the individual energy components), computed at
the CCSD(T)/CBS level, are available for both the S22 and
S66 data sets.62, 63 In addition, we will use the CCSD(T)/CBS
potential energy curves for the “sandwich” (π -stacked)
isomer of the benzene dimer, from Ref. 64.

In addition to examining the popular S22 and S66
data sets,60, 65 we have assembled a new set of bench-
marks here. This data set, which we designate as SS41,
consists of 41 small systems (dimers) taken from some
existing data sets. Namely, we take the 24 dimers from
the A24 data set;66 the formamide and formic acid
dimers from S22;60 nine dimers from the S66 data
set65 (specifically, H2O · · · CH3OH, CH3OH · · · CH3OH,
CH3OH · · · CH3NH2, CH3OH · · · H2O, CH3NH2 · · · CH3OH,
CH3NH2 · · · CH3NH2, C2H2 · · · H2O, and two isomers

of H2O · · · CH3NH2); and finally, six dimers from the
X40 data set67 (specifically, CH4 · · · F2, CH3F · · · CH4,
CH3F · · · CH3F, HF · · · CH3OH, HF · · · CH3NH2, and
CH3OH · · · CH3F). Benchmark energy components for the
SS41 dimers are reported here for the first time; these were
computed at the SAPT2+(3)/aug-cc-pVQZ level using MP2
natural orbital approximations to accelerate the calculations,
as described in Ref. 68. These calculations were performed
using the Psi4 program,69 and the benchmark energy
components for SS41 are available in the supplementary
material.70

As in our previous work on XSAPT,27, 28 we will use the
LRC-ωPBE71 and LRC-ωPBEh38 functionals for SAPT(KS)
calculations. These functionals are based on the short-range
ωPBE exchange functional,33 augmented with 100% long-
range Hartree-Fock exchange as in Eq. (6). The LRC-
ωPBEh functional also contains 20% short-range Hartree-
Fock exchange (CHF = 0.2), whereas LRC-ωPBE does not
(CHF = 0). Statistically-optimized values of the range separa-
tion parameter have been suggested as either ω = 0.3 bohr−1

or ω = 0.4 bohr−1 for for LRC-ωPBE,71, 72 and ω = 0.2
bohr−1 for LRC-ωPBEh.38 A previous study of LRC func-
tionals for SAPT(DFT) calculations used LRC-ωPBE with
ω = 0.4 bohr−1.24 In this work, however, the value of ω is
determined by monomer-specific tuning to satisfy Eq. (7).
[Monomer-specific AC model potentials have previously been
used in the context of SAPT(DFT) and DFT-SAPT,17, 18 but
monomer-specific LRC functionals have not been used in this
context.] Tuned values of ω, for each monomer appearing in
the dimers examined herein, are available in the supplemen-
tary material.70

We use the aug-cc-pV6Z and aug-cc-pV5Z basis sets for
the SAPT(KS) calculations on He2 and Ne2, respectively, in
order to obtain results near the CBS limit. For SAPT calcula-
tions on the SS41 data set, we use the aug-cc-pVQZ basis set.
The aug-cc-pVTZ basis set was used for S22, S66, and the
benzene dimer potential curve. Except for He2 and Ne2, all of
the total binding energies computed with SAPT methods in-
clude the δEHF

int,resp correction. All SAPT calculations employ
a dimer-centered basis set,73 meaning that monomer wave
functions were converged using the dimer’s basis set. With the
exception of the two rare-gas dimers, we used the resolution-
of-identity approximation (combined with standard auxiliary
basis sets) to accelerate the wave function-based SAPT cal-
culations, performed using Psi4.69 SAPT(KS) calculations
with the resolution-of-identity approximation were performed
using a locally-modified version of Q-Chem.74, 75

We will also report “SAPT(KS)+D” calculations that
use an empirical dispersion potential in place of the E

(2)
disp

+ E
(2)
exch-disp terms in second-order SAPT. This “+D” poten-

tial is taken from Ref. 76 and has been shown to afford good
results for a wide variety of different systems.28, 76

IV. RESULTS AND DISCUSSION

He2 and Ne2 are popular test systems for SAPT-based
methods, as they are small enough to use high-level wave
function-based SAPT methods near the CBS limit. SAPT(KS)
results for these two dimers, using LRC functionals, are
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TABLE I. Interaction energy components for He2 at its equilibrium distance (5.6 bohrs), calculated using the
dimer-centered aug-cc-pV6Z basis. Values in parentheses are the percentage errors with respect to the GTG
benchmarks, whereas other values are actual energies in units of cm−1.

Method E
(1)
elst E

(1)
exch E

(2)
ind E

(2)
exch-ind E

(2)
disp E

(2)
exch-disp Total

Exacta − 7.651
CCSD(T)/CBSb − 7.420
SAPT(GTG) benchmarkc − 1.187 8.540 − 0.196 0.177 − 15.565 0.515 − 7.716
LRC-ωPBEd (ω = 0.3 bohr−1) (114.18) (131.54) (154.71) (149.10) (11.38) (41.46) 0.565
LRC-ωPBEd (tuning ω) (1.67) (1.34) (3.44) (11.95) (21.33) (30.70) − 4.664
LRC-ωPBE+Dd,e (tuning ω) − 7.332
LRC-ωPBEhd (ω = 0.2 bohr−1) (70.17) (94.22) (112.15) (107.25) (5.89) (23.49) − 1.435
LRC-ωPBEhd (tuning ω) (0.13) (0.30) (1.64) (10.30) (20.83) (29.74) − 4.615
LRC-ωPBEh+Dd,e (tuning ω) − 7.211

aFrom Ref. 77.
bFrom Ref. 24.
cFrom Refs. 53–55.
dSAPT(KS) using the indicated density functional.
eSAPT(KS) using the “+D” dispersion correction from Ref. 76.

listed in Table I for He2 and Table II for Ne2. Conventional
(statistically-optimized) LRC functionals, by which we mean
LRC-ωPBE with ω = 0.3 bohr−1 and LRC-ωPBEh with
ω = 0.2 bohr−1, afford large errors for all of the energy com-
ponents. For example, the error in E

(2)
ind using LRC-ωPBE

(with ω = 0.3 bohr−1) is about 150%. The tuning strategy,
on the other hand, reduces errors in E

(1)
elst, E

(1)
exch, E

(2)
ind, and

E
(2)
exch-ind to just a few percent. In the case of the dispersion

interaction, the tuning strategy improves the results for Ne2

but has deleterious effects for He2. Previous studies have
found that SAPT(KS), using the standard second-order, un-
coupled dispersion formula, afford poor dispersion energies
even if AC functionals are employed.14, 15 This observation is
consistent with the results presented here.

SAPT(KS) dispersion energies can be greatly improved
by computing frequency-dependent density susceptibilities
for the monomers and then evaluating the dispersion en-
ergy using a generalized Casimir-Polder formalism.14, 15, 18

The cost of such a calculation, however, scales no better
than O(N5) with respect to monomer size.78 Alternatively,
one can use an empirical dispersion potential designed for
SAPT to obtain the dispersion energy,8, 76, 79, 80 Here, we
report dispersion-corrected SAPT(KS)+D results using the

empirical dispersion potential from Ref. 76 in conjunction
with tuned LRC functionals.

The E
(1)
elst, E

(1)
exch, E

(2)
ind, and E

(2)
exch-ind terms calculated by

SAPT(KS) with AC XC potentials, plus an empirical disper-
sion potential, constitutes an approach that has been called
SAPT(KS)+D.8, 76, 80 Here, we apply this method not with AC
model potentials but rather with LRC functionals. For He2,
SAPT(KS)+D gives very good results for the total binding
energy, although errors are slightly larger for Ne2. Because
the SAPT(KS) method affords good results for the energy
components E

(1)
elst, E

(1)
exch, E

(2)
ind, and E

(2)
exch-ind in both rare-gas

dimers, it seems that the problem lies with the empirical dis-
persion potential. The dispersion energy in SAPT calculations
converges very slowly as a function of the one-particle basis
set,81 thus the parameters in the “+D” potential of Ref. 76 are
fit to dispersion energies for a training set of dimers computed
at the SAPT(DFT) level using the aug-cc-pVTZ basis set with
additional mid-bond functions. It is possible that this basis
is insufficient to afford converged dispersion energies for the
Ne2 system. We note that SAPT(KS)+D results of similar ac-
curacy to those reported here can be obtained with AC model
potentials,8, 48, 80 but at the cost of sacrificing the relationship
between vxc and Exc.

TABLE II. Interaction energy components for Ne2 at its equilibrium distance (3.1 Å), calculated using
the dimer-centered aug-cc-pV5Z basis. Values in parentheses are the percentage errors with respect to the
SAPT(CCSD) benchmarks, whereas other values are actual energies in units of cm−1.

Method E
(1)
elst E

(1)
exch E

(2)
ind E

(2)
exch-ind E

(2)
disp E

(2)
exch-disp Total

CCSD(T)/CBSa − 28.653
SAPT(CCSD)/CBS benchmarka − 8.997 36.317 − 7.533 7.752 − 60.318 3.187 − 29.592
LRC-ωPBEb (ω = 0.3 bohr−1) (89.82) (89.73) (120.48) (120.26) (56.36) (45.84) − 37.370
LRC-ωPBEb (tuning ω) (4.46) (1.63) (9.08) (9.84) (30.83) (26.61) − 48.125
LRC-ωPBE+Db,c (tuning ω) − 23.274
LRC-ωPBEhb (ω = 0.2 bohr−1) (55.14) (55.23) (77.93) (77.68) (54.96) (22.88) − 46.763
LRC-ωPBEhb (tuning ω) (1.99) (3.62) (5.45) (6.20) (32.00) (24.66) − 48.256
LRC-ωPBEh+Db,c (tuning ω) − 22.762

aFrom Ref. 24.
bSAPT(KS) using the indicated density functional.
cSAPT(KS) using the “+D” dispersion correction from Ref. 76.
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TABLE III. Mean unsigned errors (MUEs), in kcal/mol, and percent errors (in parentheses), for interaction
energy components of SS41 data set, with respect to benchmarks computed at the SAPT2+(3)/aug-cc-pVQZ
level. The errors in total binding energies are with respect to CCSD(T)/CBS results.62, 63, 66, 67 The δEHF

int,resp
correction is added to the total binding energies of the SAPT calculations.

Method E
(1)
elst E

(1)
exch E

(2)
ind E

(2)
exch-ind E

(2)
disp E

(2)
exch-disp Total

SAPT2+(3)a 0.14
(4.97)

LRC-ωPBEa,b 0.12 0.20 0.09 0.14 0.23 0.09 0.22
(4.37) (4.33) (3.59) (7.25) (6.65) (15.93) (10.93)

LRC-ωPBEha,b 0.08 0.16 0.06 0.10 0.22 0.08 0.34
(4.44) (3.27) (2.52) (5.50) (6.73) (14.41) (13.29)

SAPT0a 0.26 0.70 0.33 0.19 0.24 0.00c 0.69
(9.04) (9.09) (9.56) (9.56) (7.37) (0.00)c (13.53)

aaug-cc-pVQZ basis set.
bSAPT(KS) results using the indicated density functional and tuning ω.
cSAPT0 and SAPT2+(3) share the same formula for E

(2)
exch-disp.

Turning now to larger systems, in Table III we present
the mean unsigned errors (MUEs) and mean unsigned per-
centage errors (MUPEs) for SAPT(KS) and SAPT0 calcu-
lations of the SS41 data set, as compared to benchmark en-
ergy components computed at the SAPT2+(3)/aug-cc-pVQZ
level. Once again, SAPT(KS) with tuned LRC functionals
gives very good results for the non-dispersion energy compo-
nents and is much better than the SAPT0 results where the in-
tramolecular electron correlation is completely neglected. At
the SAPT0 level, errors in total binding energies range up to
5.4 kcal/mol, with the largest (absolute) error obtained for the
doubly hydrogen-bonded formic acid dimer, a system where
intramolecular electron correlation is known to have a large
effect on the binding energy.82

Surprisingly, SAPT(KS) also gives quite good results
for dispersion components and total binding energies for the
SS41 data set. As proposed by Hobza and co-workers,83 a
complex should be considered to be dominated by electro-
statics if the electrostatic component (E(1)

elst) is at least twice
as large as the dispersion component (E(2)

disp + E
(2)
exch-disp),

and vice versa for a dispersion-dominated complex. Oth-
erwise, the complex is classified as having interactions of
mixed type. According to this classification scheme, the
SS41 data set contains 16 electrostatically-dominated com-
plexes, 12 dispersion-dominated complexes, and 13 mixed-
type complexes. The three largest errors (each about 20%) in
SAPT(KS) dispersion components occur for the dispersion-
dominated complexes, but these 20% errors only translate into
≈0.5 kcal/mol errors since the dispersion component is no
larger than −2.4 kcal/mol [at the SAPT2+(3)/aug-cc-pVQZ
level], even for the dispersion-dominated complexes. Larger
molecules with more electrons are needed in order to obtain
larger dispersion energies.

The S22 and S66 data sets60, 65 are popular for bench-
marking non-covalent interactions. [For the latest, basis-set-
consistent revisions to the CCSD(T)/CBS binding energies,
see Ref. 62 for S22 and Ref. 63 for S66.] These data sets
contain larger molecules, as compared to SS41; the π -stacked
adenine–thymine dimer, for example, has a dispersion interac-
tion of about 18 kcal/mol. For S22, we calculated benchmark
energy components at the SAPT2+(3)/aug-cc-pVTZ level.

These comparisons are listed in Table IV, where the electro-
static, exchange, induction, and dispersion energies are de-
fined according to3, 61

Eelectrostatic = E
(1)
elst, (13a)

Eexchange = E
(1)
exch, (13b)

Einduction = E
(2)
ind,resp + E

(2)
exch-ind,resp + δEHF

int,resp, (13c)

Edispersion = E
(2)
disp + E

(2)
exch-disp . (13d)

The SAPT(KS) method yields smaller errors in elec-
trostatic, exchange, and induction energies as compared to
SAPT0. This suggests that intramolecular electron correla-
tion is important for the molecules in S22. SAPT(KS) results
based on LRC-ωPBE and LRC-ωPBEh afford similar MUEs.
For the dispersion energy, on the other hand, SAPT(KS) cal-
culations afford larger errors as compared to SAPT0, in accor-
dance with previous observations that the use of KS orbitals
and eigenvalues is detrimental to the quality of the MP2-like
sum-over-states dispersion energy.26 The error in the disper-
sion energy for π -stacked adenine–thymine is about 16% or
3 kcal/mol.

Table V shows the MUEs for total binding energies with
respect to CCSD(T)/CBS results for the S22 data set62 and the

TABLE IV. Mean unsigned errors (MUEs), in kcal/mol, and percent errors
(in parentheses), for individual energy components of the S22 data set, with
respect to benchmarks computed at the SAPT2+(3)/aug-cc-pVTZ level. All
calculations were performed at S22 geometries.

Energy components

Method Electrostatic Exchange Induction Dispersion

LRC-ωPBEa,b 0.19 (3.05) 0.59 (5.65) 0.13 (3.65) 1.04 (13.90)
LRC-ωPBEha,b 0.17 (3.46) 0.57 (5.64) 0.13 (3.28) 1.05 (13.97)
SAPT0b 0.42 (6.47) 1.25 (8.05) 0.27 (4.49) 0.72 (9.61)

aSAPT(KS) results using the indicated density functional and tuning ω.
baug-cc-pVTZ basis set.



044108-6 K. U. Lao and J. M. Herbert J. Chem. Phys. 140, 044108 (2014)

TABLE V. Mean unsigned errors (MUEs), in kcal/mol, and percent errors (in parentheses), with respect to
CCSD(T)/CBS benchmarks for the S22 data set62 and the S66 data set63 along with subsets consisting of the
hydrogen-bonded dimers, dispersion-dominated dimers, and dimers of mixed influence. All calculations were
performed at S22 and S66 geometries and the δEHF

int,resp corrections are added to the total binding energies of the
SAPT calculations.

Method H-bonded Disp.-bound Mixed All

—S22—
LRC-ωPBEa,b 0.61 (3.84) 2.60 (54.74) 0.92 (25.09) 1.43 (29.11)
LRC-ωPBE+Da,b,c 0.48 (3.24) 1.33 (19.39) 0.56 (13.00) 0.82 (12.22)
LRC-ωPBEha,b 1.22 (7.00) 2.77 (58.69) 1.13 (30.41) 1.75 (33.25)
LRC-ωPBEh+Da,b,c 0.43 (2.99) 1.53 (25.60) 0.28 (7.96) 0.78 (12.79)
SAPT0b 2.72 (16.91) 2.00 (41.17) 1.01 (26.96) 1.91 (28.93)
SAPT0+Db,c 3.20 (21.08) 1.39 (21.50) 0.95 (23.41) 1.83 (21.98)
SAPT2+(3)b 0.51 (3.62) 0.38 (4.86) 0.12 (3.05) 0.34 (3.89)

—S66—
LRC-ωPBEa,b 0.22 (2.18) 1.52 (43.99) 0.82 (22.99) 0.85 (23.05)
LRC-ωPBE+Da,b,c 0.32 (3.61) 0.63 (14.40) 0.35 (9.15) 0.44 (9.05)
LRC-ωPBEha,b 0.57 (5.56) 1.66 (48.10) 1.02 (28.52) 1.09 (27.34)
LRC-ωPBEh+Da,b,c 0.21 (2.19) 0.69 (15.54) 0.45 (12.22) 0.45 (9.88)
SAPT0b 1.52 (14.55) 1.09 (30.34) 0.89 (24.90) 1.18 (23.19)
SAPT0+Db,c 1.89 (19.25) 0.90 (21.36) 0.83 (22.69) 1.22 (21.03)

aSAPT(KS) results using the indicated density functional and tuning ω.
baug-cc-pVTZ basis set.
cUsing the empirical dispersion potential from Ref. 76.

S66 data set.63 Both sets are divided to three subsets consist-
ing of the hydrogen-bonded complexes (which are dominated
by electrostatics), the dispersion-dominated complexes, and
complexes with mixed influence, according to Hobza’s clas-
sification scheme,83 as discussed above. The main sources of
error for the SAPT(KS) calculations are in the dispersion-
dominated complexes, where the MUEs are 2.6 kcal/mol
(S22) and 1.5 kcal/mol (S66). Substituting the empirical dis-
persion potential developed by Podeszwa et al.76 in place of
the SAPT(KS) dispersion energy, to obtain a SAPT(KS)+D
method based on LRC functionals, the MUEs in total binding
energies are reduced to 0.8 kcal/mol (S22) and 0.4 kcal/mol
(S66).

It has previously been pointed out that the empirical
dispersion potential developed in Ref. 76 and used here af-
fords relatively large errors for the π -stacked uracil dimer
and the π -stacked adenine–thymine complexes.28 In fact, π -
stacked complexes are underrepresented in the training set
used to parameterize this potential; only the sandwich iso-
mer of (C6H6)2 and the pyrazine dimer are included as ex-
amples of π -stacking among the 79 dimers in the training
set.76 For the uracil dimer, this dispersion potential overes-
timates the SAPT2+(3)/aug-cc-pVTZ dispersion energy by
1.5 kcal/mol, and for adenine–thymine by 1.8 kcal/mol. If
we eliminate these two problematic systems from the S22
data set, then the MUE for SAPT(KS)+D using both density
functionals examined here is reduced to about 0.5 kcal/mol
for both the dispersion-dominated subset and the entire set
of 20 complexes (S22 minus two). Similarly for S66, the
MUE for SAPT(KS)+D using both functionals is reduced to
0.4 kcal/mol when the π -stacked uracil dimer is removed
from the data set.

For the SAPT0, however, the use of the dispersion
potential from Ref. 76 does not obviously improve the results

for either S22 or S66. Furthermore, the results for hydrogen-
bonded complexes described at the SAPT0+D level are worse
than the SAPT0 results that use the MP2-type dispersion
formula. This implies that dispersion is not the only term
in SAPT0 that needs improvement: intramolecular electron
correlation is important as well.

Finally, we use these SAPT(KS) methods to compute the
potential energy curve for the dispersion-dominated sandwich
isomer of the benzene dimer, which is regarded as a stringent
test of computational methods. As shown in Fig. 1, SAPT(KS)
methods that use second-order MP2-type dispersion greatly
overestimate the interaction energy across the whole po-
tential energy curve. The SAPT(KS)+D methods slightly
underestimates the binding energy at short intermolecular
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FIG. 1. Potential energy curves for the “sandwich” isomer of (C6H6)2
as a function of the center-to-center distance between the two benzene
rings. Benchmark CCSD(T)/CBS results are taken from Ref. 64. The dimer-
centered aug-cc-pVTZ basis set was used for the SAPT(KS) calculations
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distance, but are very accurate beyond the minimum-energy
distance.

V. CONCLUSIONS

The increasingly-popular non-empirical tuning proce-
dure of Baer et al.41 for LRC (range-separated hybrid) func-
tionals affords an XC potential with not only the correct
asymptotic distance dependence, but also the correct limiting
value as r → ∞. Results presented herein demonstrate that
satisfaction of this condition is very important to obtain quan-
titative results for the non-dispersion energy components in
SAPT(KS) calculations. Although unacceptably large errors
remain in the dispersion energies predicted by SAPT(KS),
we expect that dispersion energies obtained from frequency-
dependent density susceptibilities, computed by solving TD-
CKS equations as in the SAPT(DFT) approach,16–19 should
yield quantitative results for the dispersion energies. Thus,
LRC functionals should be useful as substitutes for AC model
potentials in SAPT(DFT) and DFT-SAPT, while preserving
the relationship vxc = δExc/δρ that is sacrificed when AC
model potentials are employed to “graft on” correct asymp-
totic behavior to some existing density functional. This re-
lationship between functional and potential is crucial where
analytic gradients are needed, which is a direction that our
group is headed with “XSAPT” methods.25–29

As an alternative to SAPT(DFT), in the present work
we used an empirical dispersion potential76 to replace the
second-order dispersion energy in SAPT(KS). The result-
ing SAPT(KS)+D method affords quantitative binding ener-
gies for the S22 and S66 data sets, save for a couple of π -
stacked complexes, for which we have previously argued28

that re-parameterization of the dispersion potential is needed.
Although “conventional” LRC functionals that employ a
statistically-optimized value for the range separation param-
eter, which need not provide the correct limiting value of
vxc, have been shown to afford poor results in SAPT(DFT)
calculations,24 the tuning procedure used here affords good
results for all energy components except dispersion, as
compared to high-level SAPT2+(3) calculations.
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