Supplementary Material for "Symmetry-adapted perturbation theory with Kohn-Sham orbitals using non-empirically tuned, long-range-corrected density functionals"

Ka Un Lao and John M. Herbert*

Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210 (Dated: January 18, 2014)

1. RANGE SEPARATION PARAMETERS

Tables S1 and S2 list the "tuned" value of the range separation parameter, ω , for each of the monomers considered in this work. These values were tuned using the aug-cc-pV6Z basis set for He, the aug-cc-pV5Z basis set for Ne, the aug-cc-pVQZ basis set for the SS41 data set, and the aug-cc-pVTZ basis set for both the S22 and S66 data sets. Optimized values are computed separately for the LRC- ω PBE functional¹ and the LRC- ω PBEh functional.²

2. BENCHMARK ENERGY COMPONENTS FOR THE SS41 DATA SET

Energy components for SS41computed at the SAPT2+(3)/aug-cc-pVQZ level are listed in Table S3 and energy components for S22computed at the SAPT2+(3)/aug-cc-pVTZ level are listed in Table S4. The SAPT2+(3) is defined as follows:³

$$E_{\text{SAPT2+(3)}} = E_{\text{elst}}^{(10)} + E_{\text{elst,resp}}^{(12)} + E_{\text{elst,resp}}^{(13)} + E_{\text{exch}}^{(10)} + E_{\text{exch}}^{(11)} + E_{\text{exch}}^{(12)} + E_{\text{ind,resp}}^{(20)} + E_{\text{exch-ind,resp}}^{(20)} + {}^{t}E_{\text{ind}}^{(22)} + {}^{t}E_{\text{exch-ind}}^{(22)} + \delta E_{\text{int,resp}}^{\text{HF}} + E_{\text{disp}}^{(20)} + E_{\text{exch-disp}}^{(20)} + E_{\text{disp}}^{(21)} + E_{\text{disp}}^{(22)} + E_{\text{disp}}^{(30)}.$$
(S1)

* herbert@chemistry.ohio-state.edu

$$E_{\text{electrostatic}} = E_{\text{elst}}^{(10)} + E_{\text{elst,resp}}^{(12)} + E_{\text{elst,resp}}^{(13)} , \qquad (S2)$$

$$E_{\text{exchange}} = E_{\text{exch}}^{(10)} + E_{\text{exch}}^{(11)} + E_{\text{exch}}^{(12)} , \qquad (S3)$$

$$E_{\rm induction} = E_{\rm ind, resp}^{(20)} + E_{\rm exch-ind, resp}^{(20)} + {}^{t}E_{\rm ind}^{(22)} + {}^{t}E_{\rm exch-ind}^{(22)} + \delta E_{\rm int, resp}^{\rm HF} , \qquad (S4)$$

$$E_{\text{dispersion}} = E_{\text{disp}}^{(20)} + E_{\text{exch-disp}}^{(20)} + E_{\text{disp}}^{(21)} + E_{\text{disp}}^{(22)} + E_{\text{disp}}^{(30)} .$$
(S5)

- ¹ A. W. Lange and J. M. Herbert, J. Am. Chem. Soc. **131**, 3913 (2009).
- ² M. A. Rohrdanz, K. M. Martins, and J. M. Herbert, J. Chem. Phys. **130**, 054112 (2009).
- ³ E. G. Hohenstein and C. D. Sherrill, WIREs Comput. Mol. Sci. **2**, 304 (2012).
- ⁴ J. C. Flick, D. Kosenkov, E. G. Hohenstein, C. D. Sherrill, and L. V. Slipchenko, J. Chem. Theory Comput.
 8, 2835 (2012).

	$\omega/\mathrm{bohr}^{-1}$					
Monomer L	$RC-\omega PBE$	$\mathrm{LRC}\text{-}\omega\mathrm{PBEh}$				
$\text{He}_2 \text{ and } \text{Ne}_2$						
He	1.025	0.900				
Ne	0.800	0.650				
-SS4	1 molecul	es—				
Ar	0.550	0.475				
ethene	0.375	0.300				
methane	0.450	0.400				
borane	0.475	0.425				
ethyne	0.400	0.350				
water	0.500	0.400				
methanol	0.425	0.350				
$\mathrm{CH}_{3}\mathrm{F}$	0.500	0.425				
ethane	0.425	0.375				
F_2	0.675	0.550				
formaldehyde	0.450	0.350				
formamide	0.375	0.300				
formic acid	0.400	0.325				
$\mathrm{CH}_3\mathrm{NH}_2$	0.400	0.325				
ammonia	0.450	0.350				
HCN	0.450	0.400				
HF	0.600	0.500				

TABLE S1: Tuned range separation parameters for various monomers in He_2 , Ne_2 , and SS41 data set. The basis sets used are aug-cc-pV6Z basis set for He, aug-cc-pV5Z for Ne, and aug-cc-pVQZ basis set for the monomers in the SS41 data set.

	$\frac{\omega/\text{bohr}^{-1}}{\text{LRC-}\omega\text{PBE LRC-}\omega\text{PBE}\text{l}}$		
Monomer			
-S22	2 molecules	5	
adenine	0.275	0.225	
2-aminopyridine	0.300	0.225	
benzene	0.275	0.225	
ethyne	0.400	0.350	
ethene	0.350	0.300	
methane	0.450	0.400	
formamide	0.375	0.300	
formic acid	0.425	0.325	
water	0.500	0.400	
HCN	0.550	0.500	
indole	0.275	0.225	
ammonia	0.450	0.350	
phenol	0.300	0.250	
pyrazine	0.375	0.300	
2-pyridoxine	0.300	0.250	
thymine	0.625	0.525	
uracil	0.475	0.375	
— S 66	6 molecules	5	
methylamine	0.400	0.325	
methanol	0.425	0.350	
$AcNH_2$	0.350	0.275	
AcOH	0.375	0.300	
cyclopentane	0.425	0.375	
neopentane	0.300	0.250	
pentane	0.300	0.250	
peptide	0.325	0.250	
pyridine	0.300	0.225	

TABLE S2: Tuned range separation parameters for various monomers. The aug-cc-pVTZ basis set in each case.

system	Elst.	ExchRep.	Ind.	Disp.	Total				
——————————————————————————————————————									
H_2O-NH_3	-10.99	11.25	-3.76	-3.06	-6.57				
H_2O dimer	-7.90	7.59	-2.35	-2.37	-5.03				
HCN dimer	-5.91	4.10	-1.54	-1.74	-5.10				
HF dimer	-6.41	6.04	-2.36	-1.83	-4.56				
NH_3 dimer	-4.75	4.48	-0.86	-2.04	-3.17				
$\mathrm{HF} ext{-}\mathrm{CH}_4$	-1.39	2.51	-1.25	-1.50	-1.62				
NH_3 - CH_4	-0.95	1.42	-0.38	-0.93	-0.83				
H_2O-CH_4	-0.70	1.06	-0.27	-0.80	-0.71				
CH_2O dimer	-6.57	8.43	-2.37	-4.28	-4.78				
$H_2O-C_2H_4$	-3.45	4.38	-1.28	-2.08	-2.42				
$CH_2O-C_2H_4$	-1.70	2.55	-0.49	-2.09	-1.73				
C_2H_2 dimer (TS)	-1.83	2.06	-0.54	-1.31	-1.62				
$NH_3-C_2H_4$	-1.67	2.35	-0.48	-1.51	-1.31				
C_2H_4 dimer (TS)	-0.84	2.11	-0.30	-2.02	-1.06				
CH_4 - C_2H_4	-0.42	0.92	-0.13	-0.87	-0.50				
BH_3 - CH_4	-1.50	3.88	-1.08	-2.68	-1.38				
CH_4 - C_2H_6 (non-linear)	-0.36	1.22	-0.07	-1.66	-0.86				
CH_4 - C_2H_6 (linear)	-0.23	0.87	-0.05	-1.23	-0.64				
CH_4 -dimer	-0.20	0.77	-0.04	-1.09	-0.56				
$\operatorname{Ar-CH}_4$	-0.17	0.59	-0.03	-0.79	-0.41				
$Ar-C_2H_4$	-0.23	0.72	-0.05	-0.74	-0.31				
C_2H_4 - C_2H_2	-0.32	3.68	-0.25	-2.11	1.00				
C_2H_4 dimer (PS)	-0.52	4.45	-0.28	-2.40	1.25				
C_2H_2 dimer (PS)	0.23	3.04	-0.21	-1.89	1.17				
-	-S22 o	limers—							
HCOOH dimer	-32.23	40.78	-18.90	-10.04	-20.38				
HCONH_2 dimer	-25.39	27.79	-11.25	-8.10	-16.95				
-	-S66 a	limers—							
H_2O-CH_3OH	-8.82	9.15	-2.88	-3.11	-5.65				
H_2O-CH_3NH2	-12.07	12.84	-4.31	-3.53	-7.06				
CH_3OH dimer	-8.92	9.67	-3.04	-3.53	-5.84				
CH ₃ OH-CH ₃ NH2	-12.69	14.41	-4.81	-4.66	-7.74				
CH_3OH-H_2O	-7.78	7.78	-2.45	-2.66	-5.11				
CH ₃ NH2-CH ₃ OH	-4.12	4.85	-1.11	-2.77	-3.15				
CH_3NH2 dimer	-5.82	7.04	-1.65	-3.85	-4.28				
CH_3NH2-H_2O	-12.21	13.25	-4.44	-4.00	-7.40				
C_2H_2 - H_2O	-3.93	3.37	-1.01	-1.54	-3.11				
-X40 dimers-									
CH_4 - F_2	-0.37	0.93	-0.13	-0.91	-0.48				
CH_3F-CH_4	-0.37	1.09	-0.11	-1.42	-0.80				
CH_3F dimer	-1.45	1.29	-0.23	-1.33	-1.72				
HF-CH ₃ OH	-13.85	14.04	-6.34	-3.58	-9.74				
$\mathrm{HF} ext{-}\mathrm{CH}_3\mathrm{NH}_2$	-23.29	25.65	-11.82	-5.23	-14.69				
CH ₃ F-CH ₃ OH	-5.18	5.36	-1.39	-2.65	-3.86				

system	Elst.	ExchRep.	Ind.	Disp.	Total
Adenine thymine Watson-Crick complex	-26.58	31.77	-11.90	-10.63	-17.33
Adenine thymine stacking complex	-10.66	18.30	-2.49	-18.28	-13.12
Ammonia dimer	-4.89	4.82	-0.91	-2.09	-3.07
Water dimer	-8.10	8.15	-2.45	-2.42	-4.83
Methane dimer	-0.15	0.59	-0.03	-0.94	-0.53
Ethene dimer	-1.13	2.37	-0.23	-2.48	-1.46
Ethene ethyne complex	-1.77	2.21	-0.57	-1.36	-1.48
Formic acid dimer	-32.22	41.28	-18.97	-9.93	-19.84
Formamide dimer	-25.36	28.14	-11.27	-8.03	-16.52
Benzene water complex	-2.71	3.32	-1.00	-2.91	-3.30
Benzene ammonia complex	-1.74	2.76	-0.53	-2.82	-2.34
Benzene methane complex	-0.96	2.61	-0.31	-2.79	-1.46
Benzene dimer T-shaped	-2.00	4.58	-0.70	-4.78	-2.91
Benzene dimer parallel displaced	-2.54	9.04	-0.93	-8.24	-2.68
Indole benzene T-shape complex	-4.25	7.10	-1.95	-6.70	-5.80
Indole benzene stacking complex	-4.31	13.36	-1.48	-12.40	-4.84
Pyrazine dimer	-4.27	9.71	-1.02	-8.90	-4.47
2-pyridoxine 2-aminopyridine complex	-26.91	32.33	-12.67	-10.21	-17.46
Phenol dimer	-8.57	11.37	-3.22	-6.80	-7.22
Uracil dimer stack	-8.52	11.72	-1.75	-12.17	-10.72
Uracil dimer h-bonded	-29.79	32.00	-14.03	-9.66	-21.47
Benzene HCN complex	-3.84	4.55	-1.91	-3.67	-4.87

TABLE S4: The energy components and total binding energies calculated by SAPT2+(3)/aug-cc-pVTZ method for S22 data set.