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Understanding the many-body expansion for large systems.
I. Precision considerations
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Electronic structure methods based on low-order “n-body” expansions are an increasingly popular
means to defeat the highly nonlinear scaling of ab initio quantum chemistry calculations, taking
advantage of the inherently distributable nature of the numerous subsystem calculations. Here, we
examine how the finite precision of these subsystem calculations manifests in applications to large
systems, in this case, a sequence of water clusters ranging in size up to (H2O)47. Using two different
computer implementations of the n-body expansion, one fully integrated into a quantum chemistry
program and the other written as a separate driver routine for the same program, we examine the
reproducibility of total binding energies as a function of cluster size. The combinatorial nature of
the n-body expansion amplifies subtle differences between the two implementations, especially for
n ≥ 4, leading to total energies that differ by as much as several kcal/mol between two implementa-
tions of what is ostensibly the same method. This behavior can be understood based on a propagation-
of-errors analysis applied to a closed-form expression for the n-body expansion, which is derived here
for the first time. Discrepancies between the two implementations arise primarily from the Coulomb
self-energy correction that is required when electrostatic embedding charges are implemented by
means of an external driver program. For reliable results in large systems, our analysis suggests that
script- or driver-based implementations should read binary output files from an electronic structure
program, in full double precision, or better yet be fully integrated in a way that avoids the need to
compute the aforementioned self-energy. Moreover, four-body and higher-order expansions may be
too sensitive to numerical thresholds to be of practical use in large systems. © 2014 AIP Publishing
LLC. [http://dx.doi.org/10.1063/1.4885846]

I. INTRODUCTION

The time t required to perform an ab initio quantum
chemistry calculation depends upon both the size of the sys-
tem, NA, and the number of basis functions per atom, NB:

t ∼ O
(
Na

ANb
B

)
. (1.1)

Typically, a ≥ 3 and 2 ≤ b ≤ 4. To defeat this highly nonlin-
ear scaling, and thus extend quantum chemistry to large sys-
tems, further approximations are required. Fragment-based
quantum chemistry methods are an increasingly popular ap-
proach in this respect.1, 2 Such methods decompose the (su-
per)system, whose size is NA, into NF separate subsystems,
the typical size of which we denote as nA � NA. The for-
mal scaling of the total aggregate computer time required is
thereby reduced to

t ∼ NF × O
(
na

ANb
B

)
. (1.2)

Wall times can be dramatically reduced via coarse-grained
parallelization across the NF fragments. As has been pointed
out previously,3–6 the explanation for why this works is ulti-
mately rooted in the “nearsightedness of electronic matter”.7, 8
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Among the litany of fragment-based methods in the lit-
erature, we focus here on the many-body expansion (MBE)
as applied to non-covalent clusters, which amounts to a de-
composition of the cluster (supersystem) energy into a sum of
monomer energies, plus corrections for pairwise interactions,
three-body interactions, etc. This is the simplest example of a
fragment-based method, both conceptually and computation-
ally, and it has the appealing characteristic that the expansion
is formally exact if carried to N-body interactions for an N-
body cluster, at least if all calculations are carried out to ar-
bitrary precision. As such, it is often considered that n-body
expansions (wherein the MBE is truncated at n-body interac-
tions, for some n < N) represent a sequence of converging
approximations to the exact energy. Results presented herein
will call that assumption into question, at least when the elec-
tronic structure calculations and the MBE are implemented
using double-precision arithmetic.

Given the dramatic reduction in wall time that is engen-
dered by the embarrassingly parallelizable nature of the sub-
system calculations, such an approach appears to represent
a metaphorical “free lunch,” in the sense that high-level ab
initio results might be obtained for large systems, with mini-
mal loss of accuracy and for a fraction of the wall time cost.
(Often the total aggregate computer time is significantly re-
duced as well.9, 10) These ideas have been applied, for exam-
ple, to perform MP2 calculations on a system of >24 000
atoms.11 There is no supersystem MP2 benchmark for a

0021-9606/2014/141(1)/014108/14/$30.00 © 2014 AIP Publishing LLC141, 014108-1

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

164.107.235.223 On: Thu, 03 Jul 2014 13:41:18

http://dx.doi.org/10.1063/1.4885846
http://dx.doi.org/10.1063/1.4885846
http://dx.doi.org/10.1063/1.4885846
mailto: herbert@chemistry.ohio-state.edu
http://crossmark.crossref.org/dialog/?doi=10.1063/1.4885846&domain=pdf&date_stamp=2014-07-03


014108-2 Richard, Lao, and Herbert J. Chem. Phys. 141, 014108 (2014)

system of 24000 atoms, and indeed there have been very few
benchmark validation studies of n-body expansions in large
systems (�50–100 atoms, say), and even fewer at respectable
levels of theory. We began this work with the intention of es-
tablishing such benchmarks, but those comparisons are not
the purpose of the present work, because in the course of
that effort we uncovered serious numerical problems with the
MBE as applied to large systems. The present paper describes
issues related to loss of precision that stems from the factorial
growth in the number of subsystem calculations, as a function
of both system size (N) as well as truncation order (n).

II. THEORY

Most fragment-based methods are based at some level
on the n-body expansion.1 If we partition the system into N
disjoint fragments (monomers, for the purposes of this work),
then the MBE amounts to the following expression for the
supersystem energy:

E =
N∑
I

EI +
N∑

I<J

�EIJ +
N∑

I<J<K

�EIJK + · · · . (2.1)

The quantity EI represents the energy of monomer I and the
quantities �EIJ··· are the corrections for n-body interactions,
obtained for each n > 1 by computing the energy EIJ··· of the
appropriate n-mer and subtracting all lower-order corrections
involving the same monomer units. The first few such correc-
tions are

�EIJ = EIJ − EI − EJ , (2.2a)

�EIJK = EIJK − �EIJ − �EIK − �EJK

− EI − EJ − EK, (2.2b)

�EIJKL = EIJKL − �EIJK − �EIKL − �EIJL

− �EJKL − �EIJ − �EIK − �EIL

− �EJK − �EJL − �EKL

− EI − EJ − EK − EL. (2.2c)

Because each new order in the expansion subtracts out
all lower-order terms, Eq. (2.1) is formally exact if carried
through order n = N, where it just becomes E = EIJK···N. In
practice, this expansion is always truncated at some n � N,
with the idea that corrections for the mutual interaction of n
monomers—that is, genuine n-body interactions that are not
captured at lower orders—should become negligible for suf-
ficiently large n. Combined with the formally exact nature of
Eq. (2.1), this suggests a sequence of convergent approxima-
tions that has led to a widespread belief that the MBE pro-
vides a route to arbitrary accuracy, simply by increasing the
truncation order, n. For molecular clusters—including clus-
ters composed of polar monomers where many-body induc-
tion effects are important—it does generally seem to be the
case that the magnitude of the n-body interactions decreases
with increasing n,12–17 although counterexamples exist for

molecular polarizabilities,18 for which an expansion analo-
gous to Eq. (2.1) can be formulated by taking the appro-
priate derivatives, term-by-term. The situation seems to be
somewhat worse in atomic clusters, where the MBE is slowly
convergent and oscillatory.14, 19, 20 As such, we focus on non-
covalent molecular clusters, for which the MBE has seen a
resurgence in recent years, both in its own right,9, 10, 15–17, 21–25

and as the underpinning of the fragment molecular orbital
(FMO) method.1, 26, 27

In any case, after deciding upon a truncation order, the
n-body approximation to the supersystem energy, E(n), can
be manipulated into a minimal closed form. To the best of
our knowledge, these closed-form expressions have been pub-
lished only through n = 4:19

E(1) =
∑

I

EI , (2.3a)

E(2) =
∑
I<J

EIJ − (N − 2)
∑

I

EI , (2.3b)

E(3) =
∑

I<J<K

EIJK − (N − 3)
∑
I<J

EIJ

+ 1
2 (N − 2)(N − 3)

∑
I

EI , (2.3c)

E(4) =
∑

I<J<K<L

EIJKL − (N − 4)
∑

I<J<K

EIJK

+ 1
2 (N − 3)(N − 4)

∑
I<J

EIJ

− 1
6 (N − 2)(N − 3)(N − 4)

∑
I

EI . (2.3d)

In these expressions, the quantity EIJ···n is the energy
of the n-mer constructed from the union of monomers I, J,
. . . , n. The four particular cases in Eq. (2.3) are derived in
Appendix A, in order to motivate the derivation of more gen-
eral formulas that appear below.

There are a few examples in the literature where the
MBE has been extended beyond four-body terms,12, 14, 18–20

with terms up to n = 7 considered in Ref. 14 and up to
n = 8 (for polarizabilities rather than energies) in Ref. 18.
In these cases, recourse is usually made to an alternative, re-
cursive formula:19

E(n) =
(N

n)∑
K=1

E
(n)
K −

n−1∑
m=1

[
(N − m)!

(N − n)!(n − m)!

]
E(m). (2.4)

Here (
N

n

)
≡ NCn = N

n!(N − n)!
(2.5)

is a binomial coefficient and E
(n)
I is the energy of the Ith

n-body sub-cluster or “n-mer”. Equation (2.4) expresses the
n-body approximation to the energy in terms of the n-mer en-
ergies (the first term) as well as the lower-order approxima-
tions, E(m) (m < n).

The recursive nature of Eq. (2.4) is cumbersome, espe-
cially in the context of the propagation-of-errors analysis that
is presented later in this work, for which it is much more
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convenient to express E(n) explicitly in terms of monomer,
dimer, trimer, . . . , n-mer energies, as in Eq. (2.3). A clear
pattern is emerging in that equation, and in Appendix B, we
derive the general form of an n-body interaction. Then, in
Appendix C, we use this result to show that truncation of
the expansion at order n affords the following closed-form
expression:

E(n) =
n−1∑
m=0

(−1)m
(

N − n − 1 + m

m

) ( N

n−m)∑
K=1

E
(n−m)
K . (2.6)

This is the arbitrary-order generalization of Eq. (2.3). To the
best of our knowledge, this closed-form expression has not
been reported previously.

III. COMPUTATIONAL METHODS

Two different computer implementations of the n-body
expansion are examined and compared in this work, one
that is fully integrated into the Q-CHEM electronic structure
program,28 and another code (FRAGME∩T5, 29) that we have
written as a an independent “driver” to generate and exe-
cute Q-CHEM input files, then read results from Q-CHEM’s
binary scratch files and finally compute E(n). As we will
see, the combinatorial nature of the n-body expansion, which
leads to factorial growth in the number of terms, with re-
spect to both N and n, makes it highly non-trivial to ob-
tain agreement between these two implementations to a level
that would normally be acceptable when comparing different
implementations of the same electronic structure algorithm.
Ultimately, we will obtain acceptable agreement, but the pro-
cess of doing so uncovers several issues of paramount impor-
tance concerning the use of the MBE for large systems, par-
ticularly in regard to the precision and reproducibility of the
results.

In what follows, we apply the MBE to a sequence of wa-
ter clusters ranging in size from (H2O)6 to (H2O)47, the ge-
ometries for which are available in Ref. 30. Each represents
the putative global minimum on the TIP4P31 potential energy
surface, as determined by extensive basin-hopping Monte
Carlo simulations.30 All of the calculations reported here
are performed at the B3LYP/cc-pVDZ level, using the SG-1
quadrature grid32 unless otherwise stated. (Higher-quality in-
tegration grids are considered in Sec. IV D.) This represents
a very modest level of electronic structure theory, but is sim-
ilar in quality to many other large-scale applications of the
MBE, particularly in the context of the FMO approach. FMO
calculations on water clusters as large as (H2O)64 have been
reported at the Hartree-Fock and B3LYP levels, in small basis
sets such as STO-3G, 3-21G, 6-31G*, and 6-31++G**,33, 34

and both two- and three-body expansions for (H2O)26 have
been reported at the density-functional level in various small
basis sets.35 In terms of the number of fragments, these studies
represent some of the largest benchmark calculations reported
to date, but few systematic studies (as a function of either N
or n) are available.

A major focus of the present work is the reproducibil-
ity (or lack thereof) of n-body energies between the afore-
mentioned two implementations of the MBE, each of which

uses the same electronic structure program at its core. Except
where noted, the self-consistent field (SCF) convergence cri-
terion is set to τSCF = 10−5 a.u., and τints = 10−9 a.u. is used
for the integral screening and shell-pair formation threshold.
(This is true, in particular, for the calculations presented in
Sec. IV A, but in Sec. IV D we examine the effects of system-
atically tightening both thresholds.) We use fragments con-
sisting of a single H2O molecule, and use Eq. (2.6) to compute
two-body (2B), three-body (3B), and four-body (4B) energies
for the aforementioned sequence of water clusters, both with
and without electrostatic embedding (EE).

It will emerge that additional complications arise in the
case of using EE, so it is worth describing this procedure
in some detail. The idea is to accelerate convergence of the
MBE by embedding the n-body calculations in some clas-
sical representation of the electrostatic potential due to the
rest of the system. Often, this embedding consists simply of
atom-centered point charges on those monomer units not in-
cluded in the subsystem electronic structure calculation.15 In
the present work, we use Mulliken charges calculated inde-
pendently for each monomer unit, at the B3LYP/cc-pVDZ
level, for the geometry that the monomer exhibits in the clus-
ter. Arguably, Mulliken charges may not be the best choice
for high accuracy, but they actually work surprisingly well in
many cases,15, 22, 29, 36 including for water clusters, and serve
here as a representative example of point charges that are de-
rived from the monomer wave functions.

In a script- or driver-based implementation of the electro-
statically embedded n-body expansion15 (EE-nB in our nota-
tion), point charges must be added to the electronic structure
calculation via the input file. In Q-CHEM and other electronic
structure programs, the Coulomb self-interaction of these “ex-
ternal” point charges is (quite sensibly) added into the final
SCF energy, but this is undesirable in the present context be-
cause the embedding charges are only supposed to polarize
the n-mer electronic structure calculations, and should not
contribute directly to the energy. Therefore, self-interaction of
the embedding charges must be removed, which has dramatic
consequences that we shall document.

For an n-body expansion, Li et al.36 have shown that the
self-energy E

(n)
self that must be subtracted from the total en-

ergy, E(n), can be written as the total Coulomb interaction be-
tween the embedding charges for all N monomers, ECoul, mul-
tiplied by a combinatorial coefficient that counts the number
of subsystems of each size. That coefficient is easy to ratio-
nalize in light of Eq. (2.6), and the ratio E

(n)
self/ECoul is strictly

combinatorial:36

E
(n)
self

ECoul
= −1 +

n−1∑
m=0

(−1)m
(

N

n − m

)(
N − n − 1 + m

m

)
.

(3.1)

This formula has previously been used to remove the
Coulomb self-interaction of the embedding charges.29, 36–38

Our FRAGME∩T-based implementation of the n-body expan-
sion computes E

(n)
self according to Eq. (3.1) and then subtracts

it from E(n) in Eq. (2.6) to obtain the total energy.
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IV. RESULTS AND DISCUSSION

A. Reproducibility of n-body approximations

In this section, we focus on whether full numerical agree-
ment can be obtained between the Q-CHEM and FRAGME∩T

implementations of the MBE. We begin our analysis by com-
puting binding energies of (H2O)N clusters, N = 6–47, using
two- and three-body expansions; signed errors in the binding
energies, relative to the supersystem benchmark at the same
level of theory, are shown in Fig. 1(a). The data are plotted
in this way in order to highlight differences between the two
implementations of the MBE, on a scale relevant to the ac-
curacy of either approximation. Plots of the energy differ-
ence between the two implementations are available in the
supplementary material (see Fig. S1),39 and indicate that the
two implementations agree to within 0.5 kcal/mol for all of
these calculations. Thus, the two implementations are indis-
tinguishable on the scale set by the overall errors depicted
in Fig. 1(a). These plots serve as a “control experiment” to
demonstrate that the two implementations are working and
results are reproducible between them.

Figure 1(b) presents an analogous plot using electro-
static embedding for the two- and three-body approximations.
(Numerical differences between the two implementations are
plotted explicitly in Fig. S2 of the supplementary material.39)
For N < 30, the agreement between the two implementations
is quite good, and perhaps unremarkable, although the magni-
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FIG. 1. Signed errors in the total binding energies of water clusters, for (a)
two- and three-body approximations and (b) electrostatically embedded 2B
and 3B expansions, comparing two different computer implementations of
these methods. Errors are measured with respect to a supersystem calculation
at the same level of theory (B3LYP/cc-pVDZ). No embedding charges are
used in (a), whereas in (b) the embedding consists of non-iterative Mulliken
point charges, the values of which were rounded to six decimal places (in
a.u.) in calculations using the FRAGME∩T code.

tude of the errors is noteworthy. In much smaller water clus-
ters, the EE-3B method has been shown to afford quite good
accuracy,9, 10, 15, 40, 41 whereas for N > 10 we see that even this
approach affords errors of � 5 kcal/mol, and for the largest
cluster considered here, (H2O)47, errors exceed 20 kcal/mol.
As shown below, a significant part of this error arises from ne-
glect of four-body terms, inclusion of which reduces the error
to a still-sizable 6 kcal/mol.

Of foremost importance at present is the fact that there
is a marked difference between the EE-3B results obtained
using the two different implementations of this method.
The two implementations differ noticeably starting around
N = 30, and by N = 40 their predictions are dramatically
different. To understand why this might be, one must note
that the self-energy correction E

(n)
self can be extremely large

when N and/or n is large, e.g., E
(4)
self ∼ 105 hartree for (H2O)40

described at the four-body level. As such, very small differ-
ences can be magnified factorially. As an example, we intro-
duced an error of 10−7 a.u. in a Bohr-to-Ångstrom conver-
sion factor that is used to compute ECoul and therefore E

(n)
self in

Eq. (3.1). Figure 2 shows the extent to which this ostensibly
small modification changes the EE-nB energy. The discrep-
ancy grows sharply as a function of N, exceeding 1 kcal/mol
for (H2O)30 at the four-body level. Note also how the sign of
the discrepancy oscillates as a function of n, as a consequence
of the (−1)m factor in Eq. (3.1) and the fact that higher-order
terms in the n-body expansion carry significant combinatorial
coefficients.

A fully integrated implementation of the MBE, in con-
trast, can avoid calculating the self-energy in the first place, a
luxury not presently available to most practitioners because
the n-body expansion is not yet widely available in tradi-
tional electronic structure program packages. (A pilot imple-
mentation is available in Q-CHEM v. 4.2,42 however.) Even if
this method were more widely available, there is an undeni-
able practical appeal in writing a simple driver program, and
thus the consequences of that choice warrant investigation.
Section IV B aims to identify the origin of the EE-3B differ-
ences between Q-CHEM and FRAGME∩T implementations.
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FIG. 2. Energetic discrepancies (on a logarithmic scale) between two dif-
ferent calculations of the FRAGME∩T-based EE-nB energy of several wa-
ter clusters, using two slightly different values of the Bohrs-to-Ångstrom
conversion factor in the calculation of E

(n)
self. The two values differ by

only ∼10−7 a.u. Electronic structure calculations were performed at the
B3LYP/cc-pVDZ level with Mulliken embedding charges, and with τSCF
= 10−5 a.u. and τints = 10−9 a.u.
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TABLE I. Energetic quantities needed to compute the supersystem energy of (H2O)42, using two different im-
plementations of the EE-3B method. All quantities are computed at the B3LYP/cc-pVDZ level. Subscripted data
values are non-significant figures assuming an uncertainty of 10−5 hartree (equal to the SCF convergence crite-
rion) in each individual energy calculation.

Value/hartree

Quantity Q-CHEM FRAGME∩Ta

∑
IJK E

(1)
IJK −2 632 377.5002549 854 −2 646 723.3854620 224∑

IJ E
(1)
IJ −131 618.2975241 274 −132 723.5206750 473

(N − 3)
∑

IJ E
(1)
IJ −5 133 113.60344097 −5176217.306326 845∑

I E
(1)
I −3210.1882750 287 −3265.5341072 462

1
2 (N − 3)(N − 2)

∑
I E

(1)
I −2 503 946.854 522 386 −2 547 116.603 652 036

E(3) −3210.7513 364 022 598 −17 622.68278 721 394

ECoul 0.0 −1.35196265

E
(3)∗
Coul

b 0.0 −1.35196355

E(3) − E
(3)
self −3210.7513 364 022 598 −3210.7609 382 139 417

E(3) − E
(3)∗
self

b −3210.7513 364 022 598 −3210.7513 442 139 407

aIncludes the Coulomb self-energy of the embedding charges.
bValue needed to make FRAGME∩T agree with Q-CHEM.

B. Sensitivity to precision

Results in Sec. IV A suggest that the primary differ-
ence between the Q-CHEM and FRAGME∩T implementations
of the MBE is how electrostatic embedding is treated. As
such, we next consider in detail the energetic quantities re-
quired for such a calculation, focusing on (H2O)42, which is
arguably the smallest cluster in which the difference is appre-
ciable (see Fig. 1(b)). These values are shown in Table I. Bear
in mind that energies obtained from the FRAGME∩T imple-
mentation contain the point-charge self-interaction, whereas
those obtained directly from Q-CHEM do not. Given the ex-
cellent agreement between the two implementations for the
non-embedded case [Fig. 1(a)], it is reasonable to assume that
the disagreement occurs as a result of the self-interaction cor-
rection; therefore, Table I also lists the “theoretical” Coulomb
interaction value,

E
(3)∗
Coul = E(3)(FRAGME∩T) − E(3)(Q-CHEM)(

N

3

) − (N − 3)
(
N

2

) + N
(
N−2

2

) − 1
, (4.1)

defined as the value that exactly cancels the theoretical self-
interaction, E

(3)∗
self , which is itself defined as the difference be-

tween the Q-CHEM and FRAGME∩T EE-3B binding energies.
Simply comparing ECoul and E

(3)∗
Coul, the 6 kcal/mol differ-

ence between the Q-CHEM and FRAGME∩T EE-3B binding
energies appears to arise from disagreement in the seventh
decimal place (in hartree) of ECoul. This implies that in the
process of correcting for the self-energy of the point charges,
we have lost approximately four digits of precision. Put an-
other way, if we want our final answer to be precise to within
1 kcal/mol, we need to know ECoul to a precision of at least
10−7 hartree.

Although a proper propagation-of-errors analysis of these
calculations is presented below in Sec. IV C, the use of sig-
nificant digits is a ubiquitous shortcut for estimating precision
and error propagation, and is thus worth considering here.
Within Table I, we have indicated non-significant digits with

subscripts, under the assumption that the SCF convergence
threshold of 10−5 hartree sets a limit of this value on the
precision of each individual energy calculation. (The uncer-
tainty in E

(3)
Coul is more difficult to determine, so we assume

it is the same. However, since E
(3)
Coul is a wave function prop-

erty and the wave function convergences more slowly than the
energy, this estimate may actually be slightly optimistic.) Re-
gardless of how the uncertainties are obtained, the following
discussion pertains to any set of energies, combined within
the MBE, that have an uncertainty of 10−5 hartree.

Particularly due to the large prefactors on the one-
body term and E

(3)
self, our significant-figure analysis suggests

that the final energy has an uncertainty of 10−2 hartree or
about 6 kcal/mol. A proper propagation-of-errors analysis
(Sec. IV C) actually suggests that the situation is much worse.
The point is that even though the individual energies may be
computed to high precision, the combinatorial nature of the
MBE engenders a significant loss in precision for large sys-
tems. Our estimate based on significant digits suggests that
it is the loss in precision in ECoul specifically that leads to
the 6 kcal/mol difference in the EE-3B binding energies for
(H2O)42.

To understand the origin of this loss in precision in the
Coulomb energy, note that quite a few implementations of the
MBE operate at a script or driver level, creating the neces-
sary input files for the various subsystem calculations, and
then calling the binary executable of the electronic struc-
ture program for each independent calculation.15, 29, 41, 43 This
step opens up the possibility for precision mismatches be-
tween the driver routine and the electronic structure program,
unless the driver routine prints and uses all values to the
same precision that they are stored internally in the elec-
tronic structure program, presumably double precision. Other
aspects of the calculations may also inadvertently be differ-
ent when a driver rather than a fully integrated approach is
taken. For example, our integrated implementation makes use
of monomer SCF calculations to construct an initial guess for
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larger subsystems, whereas our driver-based approach does
not.

That said, we suspect that our FRAGME∩T code is more
closely interfaced with its electronic structure code than are
most driver-based implementations of the MBE, in the sense
that FRAGME∩T reads Q-CHEM’s binary scratch files in order
to obtain the Mulliken embedding charges (and therefore cal-
culate E

(n)
self) in full double precision. Even so, when Q-CHEM

input files are generated for the subsystem calculations, these
embedding charges must be written to the input files in full
double precision, else a mismatch occurs. In what follows, we
demonstrate that just such a mismatch is the primary cause of
the discrepancies between our Q-CHEM and FRAGME∩T im-
plementations of the MBE.

Initially, we generated Q-CHEM input files (via
FRAGME∩T) with embedding charges rounded to six deci-
mal places in atomic charge units. Naïvely and a priori, this
seemed like sufficient precision; the same rounding scheme
was used in previous work,5, 9, 10, 29 and was also used to gen-
erate the EE-2B data in Fig. 1(b), for which no significant dis-
crepancy between the Q-CHEM and FRAGME∩T implemen-
tations is observed. If instead all significant digits are printed
to the input files (about 15 digits, in double precision44), then
we obtain the EE-3B results plotted in Fig. 3. In this case,
excellent agreement between the two implementations is ob-
tained, with a maximum discrepancy of <0.15 kcal/mol, al-
though it is worth noting that the EE-3B discrepancies do gen-
erally appear to be growing larger with system size, although
not in a strictly monotonic way (see Fig. S3 of the supplemen-
tary material39).

Although the source of discrepancy for these EE-3B cal-
culations is ultimately traceable to what is arguably an over-
sight (namely, failure to write the electronic structure input
files in full double precision), this example serves as an im-
portant cautionary tale. The fact that intermediate rounding in
the input files can lead to huge discrepancies in the final en-
ergy, while preserving six significant digits in ECoul, is a cause
for concern. From this point forward, all FRAGME∩T-based
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results will use all meaningful digits in an effort to maximize
reproducibility.

At the EE-4B level, even this measure proves insuffi-
cient to afford complete agreement between Q-CHEM and
FRAGME∩T results, as shown in Fig. 4. For “loose” thresh-
olds of τSCF = 10−5 a.u. and τints = 10−9 a.u., size-dependent
errors follow similar trends for both implementations but
for N � 30 there are noticeable quantitative differences.
These must be a function of the self-energy correction, as
the two approaches use the same subsystem energies. On the
other hand, tightening the thresholds to τSCF = 10−9 a.u. and
τints = 10−14 a.u. affords (slightly) different subsystem ener-
gies, yet very different errors with respect to a supersystem
calculation at the same level of theory. We should emphasize
that the benchmark value of the supersystem energy is far less
affected by this change in the thresholds: e.g., for (H2O)40 the
“tight” and “loose” values differ only by 5.5 × 10−4 hartree
(=0.35 kcal/mol). This is slightly larger than the looser value
of τSCF, as a result of the fact that τints is modified as well,
but “tight” and “loose” EE-4B energies for the same system
differ by >4 kcal/mol. This observation underscores the fact
that the main issue is propagation of errors in an n-body cal-
culation that requires summing a large number of terms, each
multiplied by a binomial coefficient that is growing factori-
ally with respect to both N and n. Error propagation is ex-
plored further in Sec. IV C, while the role of the numerical
thresholds is examined in more detail in Sec. IV D.

C. Error propagation

The significant-figure analysis discussed above (Table I)
represents an approximate way of propagating uncertainties,
but more rigorous ways can be envisaged. One such method,
used in a previous study of the numerical stability of elec-
tronic structure algorithms,45 is to inject random noise into
the calculation. Such an approach could be used in the context
of the MBE as well, but as an alternative we will investigate
precision issues by means of a propagation-of-errors (PoE)
analysis.

Given a function f that depends on a set of independent
variables, {xi}, with corresponding uncertainties {dxi}, the
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uncertainty in f is defined as

df =
[∑

i

(
df

dxi

)2

(dxi)
2

]1/2

. (4.2)

In Sec. II, we provided a closed-form expression for E(n), the
n-body approximation to the total energy. If we assume that
the energy calculation for each individual subsystem has the
same uncertainty (δE), then the uncertainty in the total energy
(dE) is

dE =
⎡
⎣n−1∑

m=0

( N

n−m)∑
I=1

(
dE(n)

dE
(n−m)
I

)2

(δE)2

⎤
⎦

1/2

. (4.3)

The derivatives appearing in this equation are trivial to evalu-
ate since the total energy is a sum of independent subsystem
energies:

dE(n)

dE
(n−m)
I

= (−1)m
(N − n − 1 + m)!

m!(N − n − 1)!
. (4.4)

As a result, the total uncertainty as estimated by PoE anal-
ysis is proportional to the uncertainty δE in each subsystem
calculation:

dE =
[

n−1∑
m=0

(
N

n − m

) (
(N − n − 1 + m)!

m!(N − n − 1)!

)2
]1/2

δE.

(4.5)
For an SCF calculation with a convergence threshold

of 10−α hartree, it seems reasonable to assume that the
(α + 1)st decimal digit in the energy is a random number,
hence we anticipate δE ∼ 10−(α + 1) hartree. Taking α = 5
(the default SCF convergence criterion in Q-CHEM) and set-
ting δE = 10−6 hartree, we have used Eq. (4.5) to compute
the uncertainty in a truncated n-body expansions as a func-
tion of the system size, N, for various values of n. The results
are plotted in Fig. 5(a). Note that the PoE analysis does not
depend on the identity of the monomers, but for consistency
with the water cluster data presented here, we plot PoE results
ranging from N = 6–47.

Uncertainty in the two-body results remains �1 kcal/mol
through N = 47, but uncertainty in the three-body results is
about 4 kcal/mol for N = 45, and much larger for the four-
and five-body treatments. This is a rather grim result. Insofar
as we desire an accuracy of � 1 kcal/mol, which the two-body
expansion is fundamentally incapable of delivering (see, e.g.,
Fig. 3), the precision demands of higher-order expansions will
require us to compute each subsystem calculation to a preci-
sion better than 10−6 hartree even though we do not desire
that level of precision with respect to the supersystem energy.
This will increase the computational cost of each subsystem
calculation.

Perhaps more significantly, these results undercut the
long-standing notion that one can obtain arbitrary accuracy
simply by extending the n-body expansion to higher orders.
In finite-precision arithmetic, the combinatorial nature of the
expansion causes errors to accumulate faster (with respect to
system size) for larger n. As n increases, more precision is
therefore required from the subsystem calculations in order
to obtain a specified level of precision in the total energy.
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FIG. 5. (a) Total and (b) per-monomer uncertainties in the n-body approxi-
mation, E(n), as estimated using propagation-of-errors analysis. Each subsys-
tem energy calculation is taken to have an uncertainty of 10−6 hartree.

As shown below, this situation becomes even worse when we
consider error propagation in E

(n)
self.

Previous studies have suggested that errors engendered
by the n-body expansion are size-extensive (i.e., linear func-
tions of N), at least as N → ∞.17, 29, 41, 46 PoE analysis, how-
ever, suggests that error accumulation due to finite precision
grows nonlinearly as a function of N, and that the rate of
growth increases as a function of n. Perhaps due to assumed
size-extensivity, it is common to plot errors on a per-monomer
basis, although it should be clear from the mathematics that
linear growth in the number of monomers will not keep pace
with the highly nonlinear growth in the PoE uncertainties.
This is underscored by plots of the per-monomer PoE un-
certainties in Fig. 5(b). Per-monomer uncertainties rise ex-
tremely rapidly at the four- and five-body levels, exceeding
1 kcal/mol/monomer at N = 42 and N = 23, respectively.

On the other hand, the per-monomer uncertainties re-
main small (<0.1 kcal/mol/monomer) at the three-body level,
and negligible at the two-body level, all the way out to the
largest systems considered here (N = 47). In conjunction with
screening and discarding of distant interactions, as will ulti-
mately be necessary anyway for N � 50, this may be suffi-
cient to sidestep precision problems at the three-body level,
although further testing is needed. The relative insensitivity
of these results to system size, at least when measured in per-
monomer units, is probably the reason why precision issues
have not been carefully considered in previous work on the
n-body expansion.

However, the four- and five-body results in Fig. 5 give
pause, as even the per-monomer uncertainties are large in
these cases, suggesting that precision problems may doom
any attempt to use n > 3 for large systems. This observation
calls into question the assumption that the n-body expansion
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is systematically improvable as a function of n. Moreover, the
large errors observed in total binding energies (e.g., in Fig. 4)
suggests that these methods may not afford a uniform descrip-
tion of the potential energy surface. Although one might argue
that total binding energies are not a useful figure of merit, in-
sofar as they are probably not experimentally observable ex-
cept for very small clusters, in another sense the total binding
energy is just the relative energy between two very different
points on the potential energy surface. As such, the total bind-
ing energy provides a measure of how well relative energies
are described across the global potential surface.

Up to this point, our PoE analysis has not included the
effects of electrostatic embedding. To understand the conse-
quences of embedding, we performed a separate PoE analysis
on the E

(n)
self term, rather than the total energy. The result is

dEself =
∣∣∣∣∣
n−1∑
m=0

(−1)m
(

N

n − m

)(
N − n + 1 + m

m

)∣∣∣∣∣ δECoul,

(4.6)
where δECoul is the uncertainty in ECoul, the mutual Coulomb
interaction of all embedding charges. In Sec. IV B, we showed
that the disagreement between FRAGME∩T and Q-CHEM was
on the order of 10−6 hartree for E

(n)
Coul, so we take δECoul

= 10−6 hartree and plot the uncertainty in E
(n)
self in Fig. 6(a).

Combining this uncertainty with a finite precision of δE
= 10−6 hartree in the subsystem energies, as above, the to-
tal uncertainty in the EE-nB energy is plotted in Fig. 6(b).

As we have already essentially written off the four- and
five-body approaches, we focus on EE-3B results. In this case,
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FIG. 6. Total uncertainty in (a) E
(n)
self and (b) E(n) for EE-nB approximations,

assuming an uncertainty of 10−6 hartree in ECoul. In (b), we also assume an
uncertainty of 10−6 hartree for each subsystem energy calculation, consistent
with the PoE analysis of non-embedded n-body expansions in Fig. 5(a).

the total uncertainty rises about twice as quickly as it does
for the non-embedded 3B expansion [compare Fig. 5(a) to
Fig. 6(b)], reaching almost 10 kcal/mol for N = 47. Although
this is only about 0.2 kcal/mol/monomer, it does raise ques-
tions about the reproducibility of EE-3B results for large sys-
tems. That said, PoE analysis does represent something of a
worst-case scenario with regard to error cancellation, so we
next wish to return to actual electronic structure calculations
and investigate the performance of the n-body expansion as a
function of various numerical thresholds.

D. Numerical thresholds

In the PoE analysis presented above, we assumed an un-
certainty of δE = 10−6 hartree in each subsystem energy
calculation, corresponding to an SCF convergence threshold
τSCF = 10−5 hartree. We next examine the effect of system-
atically tightening this threshold and/or the integral screening
threshold, τints.

Table II lists errors in EE-nB calculations on (H2O)40 as
a function of both thresholds, computed at the B3LYP/cc-
pVDZ level. EE-2B results are essentially insensitive to the
value of either threshold, at least within the range of thresh-
olds that might reasonably be used in a typical SCF calcu-
lation, whereas higher-order expansions are more sensitive.

TABLE II. Errors in EE-nB calculations on (H2O)40 as a function of
the thresholds τints and τSCF, computed at the B3LYP/cc-pVDZ level and
compared to a supersystem benchmark computed using τints = 10−14 a.u.
and τSCF = 10−9 a.u. Mulliken embedding charges are used in all EE-nB
calculations.

− log10(τ/a.u.) Error/kcal mol−1

τints τSCF EE-2B EE-3B EE-4B

9 5 − 10.37 17.34 1.91
10 5 − 10.35 18.19 − 1.64
11 5 − 10.37 18.40 − 1.16
12 5 − 10.33 18.54 − 1.32
13 5 − 10.35 18.75 − 1.91
14 5 − 10.35 18.89 − 2.42

9 6 − 10.38 17.30 1.62
10 6 − 10.35 18.15 − 1.93
11 6 − 10.37 18.36 − 1.45
12 6 − 10.33 18.50 − 1.61
13 6 − 10.35 18.71 − 2.20
14 6 − 10.36 18.85 − 2.71

9 7 − 10.38 17.30 1.63
10 7 − 10.35 18.14 − 1.92
11 7 − 10.37 18.36 − 1.44
12 7 − 10.33 18.50 − 1.60
13 7 − 10.35 18.71 − 2.19
14 7 − 10.36 18.85 − 2.70

9 8 − 10.38 17.30 1.63
10 8 − 10.35 18.14 − 1.92
11 8 − 10.37 18.36 − 1.44
12 8 − 10.33 18.50 − 1.60
13 8 − 10.35 18.71 − 2.19
14 8 − 10.36 18.85 − 2.70
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Unfortunately, errors in total binding energies remain quite
large at the EE-2B level, although the converged EE-2B error
of −10.4 kcal/mol is <0.3 kcal/mol/monomer. It remains to
be seen whether such errors are achieved consistently across
the potential surface (and some reason to think they might not
be, owing to differences in basis-set superposition error10).
However, the insensitivity with regard to thresholds under-
scores the importance of attempts to develop accurate two-
body methods for non-covalent clusters.6, 47, 48

For EE-3B and EE-4B calculations, the errors are sen-
sitive to thresholds, although for a fixed value of τints, any
value τSCF ≤ 10−6 a.u. appears to yield converged errors. It
is not clear, however, that the errors have converged with
respect to τints, although in the EE-3B case the differences
between values τints ≤ 10−11 a.u. are <0.5 kcal/mol, in a to-
tal error whose magnitude exceeds 18 kcal/mol (or about
0.5 kcal/mol/monomer), hence there is no reason to tighten
τints beyond this point. It is also worth noting that the EE-3B
error is actually larger than that obtained at the EE-2B level.

Similar convergence of the EE-nB errors, with respect to
the thresholds τSCF and τints, is observed when TIP3P embed-
ding charges are substituted for Mulliken charges; see Table
S1 of the supplementary material.39 However, in the TIP3P
case the errors are more like ∼2 kcal/mol/monomer at the EE-
2B level.

At the EE-4B level, noticeable variation in the total bind-
ing energy persists even as τints → 10−14 a.u., which is a hard-
coded lower limit in the release version of Q-CHEM. Modify-
ing the code to remove this limitation, we have performed a
few calculations with τints = 10−15 a.u. (see Table S3 in the
supplementary material39), but convergence is still not ob-
tained and there is no justification to decrease τints any fur-
ther, as there are fewer than 16 digits of decimal precision
available in double-precision arithmetic.44 Detailed analysis
of the thresholding reveals that the subsystem calculations are
too small to be impacted by Cauchy-Schwarz screening,49 as
we have verified by setting the Schwarz screening threshold
to 10−15 a.u., leading to negligible differences in the n-body
results. Rather, the role of τints in these calculations mani-
fests at the level of forming and screening the shell pairs
(see Table S3).

Note from Fig. 4 that the energy differences between tight
and loose thresholds at the EE-4B level do not manifest in
any significant way until N > 20, which emphasizes the im-
portance of large-system benchmarks. However, based on the
data in Tables II and S3, we are forced to recommend a value
of τints = 10−15 a.u. at the EE-4B level, a choice that will
prove extremely costly if a correlated wave function method is
used for the subsystem calculations. This represents another
way in which four-body calculations for large systems may
not be feasible in practice.

For the DFT calculations pursued here, a separate thresh-
olding issue is the choice of DFT quadrature grid. We there-
fore repeated the B3LYP/cc-pVDZ calculations on (H2O)40

at the EE-4B level, since the results presented above suggest
that n = 4 is high enough in the n-body expansion to see vari-
ous precision problems emerge, whereas many of these prob-
lems are greatly suppressed for n ≤ 3. Table III shows the
EE-4B errors with respect to a supersystem benchmark, us-

TABLE III. Errors (in kcal/mol, with respect to a supersystem calculation at
the same level of theory) for EE-4B calculations of (H2O)40, computed at the
B3LYP/cc-pVDZ level using TIP3P embedding charges with various DFT in-
tegration grids. All calculations (including the supersystem benchmark) were
performed with τints = 10−14 a.u. and τSCF = 10−9 a.u.

Nrad

Nang 50 75 100

194 0.49 0.45 0.33
230 0.50 0.44 0.32
266 0.51 0.44 0.32
302 0.48 0.41 0.29

ing tight thresholds of τints = 10−14 a.u. and τSCF = 10−9 a.u.
(These calculations use TIP3P embedding charges, where the
EE-4B errors are slightly smaller than those obtained using
Mulliken charges, although the EE-2B errors are much larger;
compare Tables S1 and S2 in the supplementary material.39)
The quadrature grids are defined in terms of a certain number,
Nrad, of radial shells per atom, with each radial shell consist-
ing of Nang angular (Lebedev) grid points.50 Errors with re-
spect to a supersystem calculation span a narrow range from
0.3–0.5 kcal/mol (see Table III), even as the quality of the grid
is changed significantly from (Nrad, Nang) = (50, 194) up to
(100, 302).

For comparison, the SG-1 grid that is used in all other cal-
culations affords an EE-4B error of 0.53 kcal/mol for (H2O)40

with TIP3P embedding charges (see Table S1). The SG-1 grid
is constructed starting from (Nrad, Nang) = (50, 194) but then
“pruned” by using a smaller Lebedev grid for some of the ra-
dial shells.32 The fact that the SG-1 error is not significantly
larger than the errors obtained with higher-quality grids sug-
gests that the quality of the integration grid is not a major
contributor to the precision issues raised in this work. Further-
more, Table S4 in the supplementary material39 shows that
significant size-dependent errors remain at the Hartree-Fock
level, where there is no quadrature grid.

E. Floating-point errors

Both Q-CHEM and FRAGME∩T use double-precision
floating point arithmetic, and the analysis above suggests that
the possibility of floating-point round-off errors needs to be
examined, though this turns out not to be a serious issue. To
wit, if we take the subsystem energies E

(n−m)
I that are needed

in Eq. (2.6) as computed by Q-CHEM in double-precision
arithmetic, but then compute the binomial coefficients and
perform the summation in Eq. (2.6) using octuple-precision
arithmetic (≈70 decimal digits of precision44), the difference
is negligible as compared to a calculation in which these op-
erations are performed in double precision.

To understand this lack of sensitivity, let us consider a
simple model. Assume that we compute each subsystem en-
ergy to a precision of 10−α hartree. Summing the subsystem
energies results in a value that, if stored as a floating-point
value of precision p (in decimal), has at most p significant dig-
its. In order for the αth decimal place to be stored accurately
in memory, we can have at most p − α digits in the mantissa
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before one of the α digits will be lost. In other words, the sum
of the energies can have at most p significant figures, includ-
ing the α decimal place. Considering for simplicity only the
sum of the n-mer energies (since these are the most numer-
ous subsystems in an n-body expansion), this sum may start
to lose precision once

p − α � log

∣∣∣∣∣∣
(N

n)∑
I=1

E
(n)
I

∣∣∣∣∣∣ . (4.7)

Let us next assume, for simplicity, that the energy of each
n-body subsystem of (H2O)N is simply n times the energy of a
single water monomer. This allows for an order-of-magnitude
estimate of the right side of Eq. (4.7), and a contour plot of this
approximate energy, as a function of n and N, is presented in
Fig. 7. Our default SCF convergence criterion corresponds to
α = 5, implying that the energetic sum in Eq. (4.7) cannot ex-
ceed ∼1010 hartree if we want to preserve five decimal digits
(in hartree) of precision. Conversely, for α = 5, any combi-
nation of n and N that lies below the 10+10 hartree contour in
Fig. 7 exists in a regime where we can store the total energy
as a double-precision value, yet preserve five decimal digits
of precision (in hartree). Specifically, this simple model sug-
gests that three-, four-, and five-body expansions cannot be
extended beyond N = 150, N = 90, and N = 50, respectively,
without incurring loss of precision due to round-off error. All
of these bounds are greater than the largest system size con-
sidered here, explaining the agreement between double- and
octuple-precision implementations of Eq. (2.6). Furthermore,
according to this argument all combinations of n and N that
are shown in Fig. 7 are “safe” if the summation is performed
in quadruple precision, for which one can expect almost 34
decimal digits of precision.44

V. CONCLUSIONS

The quantum chemistry community has long prided itself
on the ability to reproduce the results of a well-defined theo-
retical model, to extremely high precision, from one software

package to the next. Results presented herein suggest that this
may be especially difficult in the case of n-body expansion
methods, and requires particularly careful attention to issues
such as numerical thresholds. Comparing a driver-based im-
plementation of the n-body expansion, which is the most com-
mon way to implement this method, to an implementation that
is fully integrated within a quantum chemistry program, re-
veals discrepancies between the two methods, starting at the
three-body level, specifically when electrostatic embedding
point charges are used in an effort to accelerate convergence
of the expansion. These issues are absent at the two-body
level, at least for the system sizes consider here (N ≤ 47).

These discrepancies are ultimately traced to the fact that
the driver-based approach requires the calculation and sub-
traction of the (very large) Coulomb self-energy of the var-
ious embedding charges, and this component of the energy
is especially susceptible to loss-of-precision problems. At the
very least, the driver-based implementation must read and uti-
lize energies and embedding charges from binary scratch files
generated by the electronic structure program, in full double
precision, rather than reading from a text-based output file
where the values of various quantities (including in particular
the embedding charges) are often rounded off. Better yet, the
n-body expansion can be fully integrated into one’s electronic
structure code of choice, sidestepping the need to compute the
self-energy.

We also find that errors in the n-body expansion (as de-
fined with respect to a supersystem calculation at the same
level of theory) can be quite sensitive to the shell-pair screen-
ing threshold. Again, the two-body method is largely im-
mune to such problems, and at the three-body level it is a
small effect, but starting at the EE-4B level it is not clear
that convergence is reached even as this threshold is tight-
ened to 10−15 a.u., the smallest meaningful value in a double-
precision electronic structure program. The use of such a tight
threshold will add significantly to the cost of the individual
subsystem calculations, especially for correlated wave func-
tion calculations requiring a four-index integral transforma-
tion. This, combined with a propagation-of-errors analysis
that suggests runaway precision problems at the four-body
level, even for relatively modest system sizes, indicates that
n-body expansions with n > 3 may not be viable in practice
except for rather small systems.

This analysis challenges the very dogma of the n-body
expansion, namely, the assumption that the supersystem en-
ergy can be reproduced to arbitrary accuracy if only the trun-
cation order, n, is increased sufficiently. Results presented
here demonstrate that this is clearly not the case when the
electronic structure calculations are carried out in double pre-
cision, as they invariably are in general-purpose electronic
structure programs. The loss-of-precision problems docu-
mented here amount to a “death by ten thousand (or more)
cuts” that actually grows worse at higher orders in the ex-
pansion, since the number of subsystems grows exponentially
with n. For large systems, one would in practice want to im-
plement distance-based cutoffs designed to limit the number
of subsystems,51 and it is possible that this kind of threshold-
ing may rectify some of the problems encountered herein, or
at least delay their onset as a function of system size. Note,
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however, that the largest cluster examined here, (H2O)47, is
only about 10 Å (five or six water molecules) in diame-
ter, so cutoffs more aggressive than 5 Å would be required
to reduce the number of subsystems for this example. As
such, distance-based cutoffs are unlikely to be a panacea for
loss of precision, so the development of high-accuracy meth-
ods that do not require four-body terms is therefore desir-
able. One promising approach is to use larger, overlapping
fragments,5, 6, 29, 36, 43, 52–57 in conjunction with a generalized
many-body expansion.5, 6, 29 Such an approach can provide ac-
curate results at the two-body level, albeit at increased cost per
subsystem calculation.

In summary, our recommendations are as follows.

� Script- or driver-based implementations of the n-body
expansion need to read and write subsystem ener-
gies and (where applicable) embedding charges in full
double precision. This likely requires reading binary
scratch files generated by the electronic structure pro-
gram, rather than simply the text-based output file.

� For electrostatically embedded n-body calculations, an
implementation that is fully integrated into an elec-
tronic structure code is desirable, as it avoids the need
to compute and subtract the (very large) Coulomb self-
energy of the embedding charges.

� Even for systems of modest size (N = 20–30 monomer
units), accumulated errors due to finite precision in
the subsystem calculations becomes problematic at the
EE-4B level, suggesting that only two- or three-body
approaches are viable in practice, except for rather
small systems.
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APPENDIX A: TRUNCATED MBE THROUGH n = 4

In this appendix, we verify the 1B, 2B, 3B, and 4B ap-
proximations to the energy that are given in Eq. (2.3), starting
from the general form of the MBE in Eq. (2.1). To do so, we
first need to work out formulas for the trimer and tetramer
corrections �E

(n)
IJ ··· in terms of lower-order n-mer energies,

analogous to the dimer correction formula in Eq. (2.2a). The
trimer interaction term is defined by Eq. (2.2b) but upon sub-
stituting Eq. (2.2a), it can be simplified to

�E
(1)
IJK =E

(1)
IJK − E

(1)
IJ − E

(1)
IK − E

(1)
JK + E

(1)
I + E

(1)
J + E

(1)
K .

(A1)

The tetramer is defined analogously to Eq. (2.2) and can be
simplified to afford

�E
(1)
IJKL = E

(1)
IJKL − E

(1)
IJK − E

(1)
IJL − E

(1)
IKL − E

(1)
JKL

+ E
(1)
IJ + E

(1)
IK + E

(1)
IL + E

(1)
JK + E

(1)
JL + E

(1)
KL

− E
(1)
I − E

(1)
J − E

(1)
K − E

(1)
L . (A2)

The proof of the formulas in Eq. (2.3) now simply con-
sists of summing Eqs. (2.2a), (A1), and (A2) over all dimers,
trimers, and tetramers, respectively, and collecting repeated
terms. For example, E(2) = ∑

I E
(1)
I + ∑

I<J (E(1)
IJ − E

(1)
I

− E
(1)
J ) can be simplified by summing the final two monomer

energies over all dimers, recognizing that between E
(1)
I and

E
(1)
J , each monomer energy appears N − 1 times in the sum

over dimers:

E(2) =
∑

I

E
(1)
I +

∑
I<J

E
(1)
IJ − (N − 1)

∑
I

E
(1)
I . (A3)

This leads directly to Eq. (2.3b).
The three-body case can be simplified using Eqs. (2.3b)

and (A1):

E(3) =
∑

I

�E
(1)
I +

∑
I<J

�E
(1)
IJ +

∑
I<J<K

�E
(1)
IJK

=
∑
I<J

E
(1)
IJ − (N − 2)

∑
I

E
(1)
I

+
∑

I<J<K

(
E

(1)
IJK − E

(1)
IJ − E

(1)
IK − E

(1)
JK

+ E
(1)
I + E

(1)
J + E

(1)
K

)
. (A4)

In the final summation over trimers, the sum of dimer energies
can be simplified according to

∑
I<J<K

(E(1)
IJ + E

(1)
IK + E

(1)
JK ) = (N − 2)

∑
I<J

E
(1)
IJ , (A5)

while the monomer energies summed over trimers affords

∑
I<J<K

(
E

(1)
I + E

(1)
J + E

(1)
K

) = 1
2 (N − 1)(N − 2)

∑
I

E
(1)
I .

(A6)
Substituting Eqs. (A5) and (A6) into Eq. (A4) affords
Eq. (2.3c).

The four-body case [Eq. (2.3d)] is derived analogously,
using the simplified three-body formula [Eq. (2.3c)] to sum
everything through trimers, expanding the �E

(1)
IJKL term us-

ing Eq. (A2), and then summing the resulting one-, two-, and
three-body energies over tetramers.

APPENDIX B: n-BODY ENERGY CORRECTION
FORMULA

The form of the two-, three-, and four-body energy cor-
rections [Eqs. (2.2a), (A1), and (A2), respectively] suggest a
pattern. Generalizing, the energy of an n-body sub-cluster can
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be expressed as

�E
(1)
IJ ···n =

n−1∑
m=0

(−1)m
∑

I ′<J ′<···<(n−m)′
∈{I,J,...,n}

E
(1)
I ′J ′ ···(n−m)′ , (B1)

where the notation in the second summation indicates that
one must sum over all unique (n − m)-body sub-clusters that
can be formed from monomers I, J, . . . , n. This is a cumber-
some notation and we introduce the following as a compact
alternative:

�E
(n)
I =

n−1∑
m=0

(−1)m
∑
J⊂I

E
(n−m)
J

= E
(n)
I +

n−1∑
m=1

(−1)m
∑
J⊂I

E
(n−m)
J . (B2)

The notation �E
(n)
I employs a superscript to indicate that this

is an n-body energy correction, and the subscript I indexes
the n-body sub-clusters, I = 1, . . . , NCn. The notation J ⊂ I
in the second summation of Eq. (B2) indicates that the sum
is restricted to (n − m)-body sub-clusters formed from the Ith
n-body cluster, or in other words, that the monomer indices
implicitly contained within J must be a subset of the ones that
constitute I.

It is straightforward to verify that the dimer, trimer, and
tetramer energies worked out in Appendix A do indeed have
the form given in Eq. (B2). Therefore, let us suppose that this
equation is valid, and then derive the corresponding result for
�E

(n+1)
I by induction.
By definition [generalizing Eq. (2.2)], we have

�E
(n+1)
I = E

(n+1)
I −

n∑
m=1

∑
J⊂I

�E
(n+1−m)
J . (B3)

The inductive hypothesis [Eq. (B2)] can be used to substitute
for each �E

(n+1−m)
J in this equation, with the result

�E
(n+1)
I = E

(n+1)
I −

n∑
m=1

∑
J⊂I

[
n−m∑
�=0

(−1)�
∑
K⊂J

E
(n+1−m−�)
K

]

= E
(n+1)
I −

n∑
m=1

n+1−m∑
k=1

(−1)n+1−m−k
∑
J⊂I

∑
K⊂J

E
(k)
K ,

(B4)

where k = n + 1 − m − � has been defined to obtain the
second equality. Now the question is, for a given value of m,
how many times does E

(k)
K appear in Eq. (B4)? Recall that

the quantity in square brackets in this equation represents the
energy of an (n + 1 − m)-mer; therefore, E

(k)
K is the energy

of some k-body sub-cluster of this (n + 1 − m)-mer. Different
subsystems containing n + 1 − m monomer units may contain
the same sub-subsystem with k monomer units, hence the in-
dex K need not be unique, and we need to know what amounts
to the “degeneracy” of the index K. The answer is equal to the
number of ways of choosing n + 1 − m distinct indices from
a set of n + 1, such that k of the indices are common to each

selection. That number is(
n + 1 − k

n + 1 − k − m

)
=

(
n + 1 − k

m

)
. (B5)

Putting this all together,

�E
(n+1)
I = E

(n+1)
I −

n∑
m=1

n+1−m∑
k=1

(−1)n+1−m−k

×
(

n + 1 − k

m

) ∑
J⊂I

E
(k)
J . (B6)

At this point we want to remove the m-dependence from
the upper limit in the sum over k. Since n+1−kCm = 0 for
k > n + 1 − m, we can extend the summation over k all the
way to n (equivalent to adding zero), and then reverse the or-
der of the (now independent) summations over k and m:

�E
(n+1)
I =E

(n+1)
I −

n∑
k=1

∑
J⊂I

E
(k)
J

×
n∑

m=1

(−1)n+1−m−k

(
n + 1 − k

m

)
. (B7)

The final summation in this equation evaluates to simply
(−1)n − k, by making use of the identity

p∑
j=0

(−1)j
(

p

j

)
= 0. (B8)

Thus,

�E
(n+1)
I = E

(n+1)
I +

n∑
k=1

(−1)n+1−k
∑
J⊂I

E
(k)
J . (B9)

Putting m = n + 1 − k affords the (n + 1)-body version of
Eq. (B2), which therefore proves Eq. (B2) in the general case,
by induction.

APPENDIX C: n-BODY APPROXIMATION
FOR ARBITRARY n

We seek to derive the general, closed form expression
for E(n) that was given in Eq. (2.6). The proof proceeds by
induction, supposing that Eq. (2.6) is correct and then deriving
the analogous expression for E(n+1). By definition,

E(n+1) = E(n) +
( N

n+1)∑
K

�E
(n+1)
K

=
n−1∑
m=0

(−1)m
(

N − n − 1 + m

m

)
E (n−m)

+
∑
K

�E
(n+1)
K , (C1)

where in the second equality we have used the inductive hy-
pothesis for E(n) and introduced the notation

E (n) =
(N

n)∑
I=1

E
(n)
I . (C2)
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As in Appendix B, we may replace �E
(n+1)
K with a signed

summation over the energies of smaller sub-clusters. Perform-
ing the summation over K that is required in Eq. (C1), we have

( N

n+1)∑
K

�E
(n+1)
K =

( N

n+1)∑
K

n∑
k=0

(−1)k
∑
J⊂K

E
(n+1−k)
J

=
n∑

k=0

(−1)k Tk, (C3)

where

Tk =
( N

n+1)∑
K

∑
J⊂K

E
(n+1−k)
J . (C4)

Let us carefully consider the two summations that define
Tk. The monomer indices that constitute J [an (n + 1 − k)-
body cluster] are a subset of those that comprise K [an (n
+ 1)-body cluster], thus for a given k, the energy E

(n+1−k)
J in

question depends on only n + 1 − k of the monomer indexes.
The other k indices can be summed to produce an overall co-
efficient. For an (n + 1 − k)-body sub-cluster of the N-body
supersystem, there are N − n − 1 + kCk ways of choosing the k
indexes that are not common to the (n + 1 − k)-body sub-
cluster. Thus,

Tk =
(

N − n − 1 + k

k

)
E (n+1−k). (C5)

Substituting this result into Eq. (C3) affords

( N

n+1)∑
K

�E
(n+1)
K =

n∑
k=0

(−1)k
(

N − n − 1 + k

k

)
E (n+1−k). (C6)

Comparison to Eq. (C1) shows that the result derived in
Eq. (C6) has precisely the form that is needed for the
(n + 1)-body term. This proves Eq. (2.6), by induction.
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