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and spin-flip time-dependent density functional theory

Xing Zhang and John M. Herberta)

Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA

(Received 17 May 2014; accepted 22 July 2014; published online 8 August 2014)

We revisit the calculation of analytic derivative couplings for configuration interaction singles (CIS),
and derive and implement these couplings for its spin-flip variant for the first time. Our algorithm
is closely related to the CIS analytic energy gradient algorithm and should be straightforward to
implement in any quantum chemistry code that has CIS analytic energy gradients. The additional
cost of evaluating the derivative couplings is small in comparison to the cost of evaluating the
gradients for the two electronic states in question. Incorporation of an exchange-correlation term
provides an ad hoc extension of this formalism to time-dependent density functional theory within
the Tamm-Dancoff approximation, without the need to invoke quadratic response theory or evalu-
ate third derivatives of the exchange-correlation functional. Application to several different conical
intersections in ethylene demonstrates that minimum-energy crossing points along conical seams
can be located at substantially reduced cost when analytic derivative couplings are employed, as
compared to use of a branching-plane updating algorithm that does not require these couplings. Ap-
plication to H3 near its D3h geometry demonstrates that correct topology is obtained in the vicin-
ity of a conical intersection involving a degenerate ground state. © 2014 AIP Publishing LLC.
[http://dx.doi.org/10.1063/1.4891984]

I. INTRODUCTION

Most electronic structure methods are based on the Born-
Oppenheimer approximation, in which the motions of elec-
trons and nuclei are separated. The nuclei move on an adi-
abatic potential energy surface (PES), obtained by solving
the electronic Schrödinger equation, and the PES is para-
metrically dependent on the nuclear coordinates. No elec-
tronic transitions can be induced by nuclear motion within the
Born-Oppenheimer approximation. Nonadiabatic dynamics
methods can be applied to go beyond the Born-Oppenheimer
approximation,1 but in order to compute transition probabili-
ties between electronic states, most of these methods require
first-order derivative couplings

dIJ = 〈�I |∇̂|�J 〉. (1)

These are related to the nonadiabatic coupling vector

hIJ = 〈�I |(∂Ĥ/∂x)|�J 〉, (2)

such that dIJ = hIJ /(EJ − EI ), if |�I 〉 and |�J 〉 are exact
eigenfunctions of the electronic Hamiltonian, Ĥ . Defining

gIJ = ∇̂(EI − EJ ), (3)

the vectors gIJ and hIJ comprise a basis for the two-
dimensional branching space around a two-state conical
intersection.2 For approximate wave functions, terms in ad-
dition to hIJ arise when evaluating the nuclear derivatives in
Eq. (1).3–6

In principle, hIJ could be calculated via finite differ-
ence, but in the interest of efficiency it is desirable to com-

a)herbert@chemistry.ohio-state.edu

pute it analytically. This facilitates both nonadiabatic ab ini-
tio molecular dynamics simulations7 as well as optimization
of minimum-energy crossing points (MECPs) along conical
seams.2 The latter are key features in the study of nonadia-
batic phenomena in cases where dynamics simulations are not
affordable. Analytic formulations of the derivative couplings
dIJ

x , where x represents a nuclear coordinate, have been de-
veloped and implemented only for a few ab initio methods,
primarily multireference configuration interaction (MRCI).3–6

In small molecules, MRCI has the advantages of a fully-
balanced treatment of ground and excited states as well as
including a large fraction of electron correlation, but its com-
putational cost limits its application to molecules with <20
atoms. Analytic derivative couplings for equation-of-motion
coupled-cluster (EOM-CC) theory have been introduced more
recently,8, 9 but EOM-CC methods are also limited to small
molecules.

As computationally inexpensive alternatives, analytic
derivative couplings for single-reference methods including
configuration interaction singles (CIS) and time-dependent
density functional theory (TDDFT) have been developed
recently.10–13 Unfortunately, these methods suffer from an
imbalance in the treatment of ground- versus excited-state
electron correlation, which makes them suitable only for de-
scribing electronic transitions between excited states. This is
especially true near the important “funnel” regions along con-
ical seams.14 For any conical intersection involving the ref-
erence state (which is usually the ground state) in CIS or
TDDFT, it is readily shown that the branching space is one-
dimensional rather than two-dimensional.14 The same is true,
for the same reason, in the case of EOM-CC methods.15
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The simplest extensions of CIS and TDDFT that cor-
rect these problems are spin-flip (SF) methods: SF-CIS16 and
SF-TDDFT, the latter in its “collinear” formulation.17 Both
of these two methods use a high-spin reference state and
compute excitations that include a SF transition, so that, for
example, a singlet ground state can be obtained from a self-
consistent field (SCF) calculation of a Sz = 1 state. Re-
cent computational studies have shown good performance
of collinear SF-TDDFT in describing the electronic struc-
ture in both Franck-Condon regions and in crossing seam
regions.19–23

In the present work, we show that the existing formal-
ism for CIS analytic derivative couplings13 can be extended
to SF-CIS and (collinear) SF-TDDFT. The resulting equa-
tions amount to relatively minor modifications of the CIS or
TDDFT analytic gradient formalism, hence computer imple-
mentation is straightforward, and the additional cost is mod-
est. Although the extension from CIS to TDDFT is ad hoc,
numerical examples presented herein demonstrate the accu-
racy and efficiency of this approach.

II. THEORY

The following notation is used throughout this work. Oc-
cupied and virtual molecular spin orbitals are labeled i, j,
k, l, . . . and a, b, c, d, . . . , respectively, whereas p, q, r, s,
. . . index arbitrary (occupied or virtual) molecular spin or-
bitals. Greek letters μ, ν, λ, σ , . . . index atomic orbitals.
The symbol x represents a nuclear coordinate and derivatives
with respect to x will be indicated as, e.g., Ĥ [x] = ∂Ĥ/∂x

and |�[x]
I 〉 = |∂�I/∂x〉. (We use “[x]” to indicate the full

derivative with respect to coordinate x, which includes dif-
ferentiation of the molecular orbitals, rather than a “skele-
ton derivative,”18 which does not.) Two-electron integrals are
written in physicists’ notation.

A. Analytic derivative couplings for SF-CIS

1. Formalism

In this section, we revisit the analytic formulation of
derivative couplings for CIS13 and extend it to SF-CIS. (An
equation-of-motion formulation of the CIS derivative cou-
plings has appeared recently,24 but we follow the approach
in Ref. 13.) The CIS wave function for excited state I is
described as a linear combination of singly-excited Slater
determinants:

|�I 〉 =
∑
ai

t Iai |�a
i 〉. (4)

For SF-CIS, the Slater determinant |�a
i 〉 is formed by single α

→ β SF excitations from a high-spin Hartree-Fock reference
state (e.g., Sz = 1 or Sz = 3/2) to a low spin target state (e.g.,
Sz = 0 or Sz = 1/2).16 Since spin-conserving CIS calculations
use an ansatz identical to Eq. (4) but with spin-conserving
Slater determinants, we will use the notation |�a

i 〉 to mean
either a spin-conserving or a spin-flipping determinant, de-
pending on whether we wish to consider CIS or SF-CIS. The
formalism derived below is valid for both.

The Hellmann-Feynman expression for the derivative
coupling is

〈�I |�[x]
J 〉 = 〈�I |Ĥ [x]|�J 〉

EJ − EI

. (5)

However, this equation holds only when |�I 〉 and |�J 〉 are
eigenfunctions of Ĥ . As suggested in Ref. 13, we can use a
projection operator

P̂ =
∑
ia

∣∣�a
i

〉〈
�a

i

∣∣ (6)

to project the electronic Hamiltonian Ĥ onto the single-
excitation subspace. Upon subtracting out the Hartree-Fock
reference state energy, E0, the projected Hamiltonian is
defined as

Ĥ = P̂(Ĥ − E0)P̂. (7)

The CIS wave function in Eq. (4) is an eigenfunction of the
model Hamiltonian Ĥ, with an eigenvalue equal to the CIS
excitation energy, ωI . Thus, the derivative coupling between
CIS excited states |�I 〉 and |�J 〉 is

〈
�I |�[x]

J

〉 = 〈�I |Ĥ[x]|�J 〉
ωJ − ωI

. (8)

To derive working equations from Eq. (8), we need the
derivative of Ĥ. Using the definition of P̂ we obtain

Ĥ[x] =
∑
ijab

[∣∣�a
i

〉〈
�a

i

∣∣(Ĥ − E0)
∣∣�b

j

〉〈
�b

j

∣∣][x]

=
∑
ijab

(
Aai,bj

∣∣�a[x]
i

〉〈
�b

j

∣∣ + A
[x]
ai,bj

∣∣�a
i

〉〈
�b

j

∣∣
+Aai,bj

∣∣�a
i

〉〈
�

b[x]
j

∣∣), (9)

where

Aai,bj = 〈
�a

i

∣∣(Ĥ − E0)
∣∣�b

j

〉
(10)

is the matrix element in conventional CIS theory.25 Substi-
tuting Eq. (9) into Eq. (8), and using Eq. (4) along with the
orthonormality of Slater determinants, we obtain

(ωJ − ωI )
〈
�I |�[x]

J

〉
=

∑
ijab

〈
�I |�a[x]

i

〉
Aai,bj

〈
�b

j |�J

〉
+

∑
ijab

〈
�I |�a

i

〉
A

[x]
ai,bj

〈
�b

j |�J

〉
+

∑
ijab

〈
�I |�a

i

〉
Aai,bj

〈
�

b[x]
j |�J

〉
=

∑
ijab

〈
�I |�a[x]

i

〉
Aai,bj t

J
bj +

∑
ijab

t IaiA
[x]
ai,bj t

J
bj

+
∑
ijab

t IaiAai,bj

〈
�

b[x]
j |�J

〉
. (11)
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Using the nuclear derivative of the molecular spin-orbitals’
creation and annihilation operators,13 we next obtain

〈
�I |�a[x]

i

〉 =
particles∑

c

t Ici〈c|a[x]〉 +
holes∑

k

t Iak〈k|i[x]〉 (12)

and

〈
�

b[x]
j

∣∣�J

〉 =
particles∑

c

tJcj 〈c|b[x]〉 +
holes∑

k

tJbk〈k|j [x]〉. (13)

Next, recall that the CIS equations for states I and J are∑
ia

t IaiAai,bj = ωI t
I
bj ,

∑
jb

Aai,bj t
J
bj = ωJ tJai .

(14)

Combining Eq. (14) with the results above, we obtain a gen-
eral expression for the derivative coupling that is valid for
both spin-conserved and spin-flip CIS,

(ωJ − ωI )〈�I |�[x]
J 〉

=
∑
ac

∑
i

(
t Ici t

J
aiωJ + tJci t

I
aiωI

)〈c|a[x]〉

+
∑
ik

∑
a

(
t Iakt

J
aiωJ + tJakt

I
aiωI

)〈k|i[x]〉

+
∑
ijab

t IaiA
[x]
ai,bj t

J
bj . (15)

Overlap integrals between virtual orbitals and their dis-
placed counterparts are given by

〈c|a[x]〉 =
∑
μν

Cμc〈μ|ν[x]〉Cνa +
∑
μν

Cμc〈μ|ν〉C[x]
νa . (16)

The derivatives C
[x]
νa of the molecular orbital (MO) coeffi-

cients can be expanded in the unperturbed MO basis,26

C
[x]
νa =

all∑
p

CνpU
[x]
pa . (17)

The virtual–virtual coefficients U
[x]
ba are redundant, and can be

expressed as18

U
[x]
ba = − 1

2S
[x]
ba , (18)

where

S
[x]
ba =

∑
μν

CμbS
[x]
μν Cνa (19)

is a so-called skeleton derivative18 of a MO overlap inte-
gral, meaning that it is evaluated for fixed MO coefficients.
In contrast, the quantity S

[x]
μν = ∂〈μ|ν〉/∂x is simply an over-

lap derivative in the atomic orbital (AO) basis. Equation (19)
follows from the fact that U[x] + (U[x])† = −S.18

Putting all of this together, we have

C
[x]
νa =

occ∑
i

CνiU
[x]
ia − 1

2

virt∑
b

CνbS
[x]
ba . (20)

However, the term involving U
[x]
ia vanishes when this equation

is inserted into Eq. (16), because 〈c|i〉 = 0, and thus 〈c|a[x]〉
can be evaluated without the need to solve coupled-perturbed
equations. Instead, we obtain

〈c|a[x]〉 =
∑
μν

Cμc〈μ|ν[x]〉Cνa

− 1

2

∑
μν

virt∑
d

Cμc〈μ|ν〉CνdS
[x]
da . (21)

A similar expression can be derived for the terms 〈k|i[x]〉 that
appear in Eq. (15):

〈k|i[x]〉 =
∑
μν

Cμk〈μ|ν[x]〉Cνi

− 1

2

∑
μν

occ∑
j

Cμk〈μ|ν〉CνjS
[x]
ji . (22)

2. Discussion

Equation (15) is a compact expression for the CIS deriva-
tive couplings. The non-Hellman–Feynman (or “response”)
terms in this expression are easily evaluated using Eqs. (21)
and (22), while the Hellman–Feynman term is analogous to
the conventional CIS energy gradient expression,27

ω
[x]
I =

∑
ijab

t IaiA
[x]
ai,bj t

I
bj , (23)

but with different excitation eigenvectors on the right and left
in Eq. (15). As such, we can calculate CIS analytic deriva-
tive couplings using the same algorithm for as for CIS an-
alytic energy gradients,27, 28 and very little extra coding is
required. Actually, our Eq. (15) for the derivative couplings
is equivalent to Eq. (A23) in Ref. 13, although our deriva-
tion is somewhat more compact. Our algorithm is also anal-
ogous to that used to compute analytic derivative couplings
for MRCI wave functions,3–6 where the Hellman-Feynman
term is sometimes called the “CI contribution” and the non-
Hellman–Feynman terms are the “configuration state function
(CSF) contribution.”6 Following the convention in MRCI, we
identify only the Hellman–Feynman contribution as the nona-
diabatic coupling

hIJ
x =

∑
ijab

t IaiA
[x]
ai,bj t

J
bj . (24)

Because we have only approximate wave functions in CIS
theory, the nonadiabatic coupling is not simply equal to dIJ

times the energy gap, i.e., the relationship between Eqs. (1)
and (2) is not respected.

The explicit form of A
[x]
ai,bj is derived in the Appendix.

Note also that the wave function ansatz in Eq. (4) is invariant
to unitary transformations of the occupied orbitals and, sepa-
rately, to unitary transformations of the virtual orbitals, hence
Eq. (15) for the derivative couplings is also invariant to such
transformations.

A long-known problem with derivative couplings,
but one that is sometimes overlooked, is their lack of
translational invariance.3, 29–32 In a nonadiabatic dynamics
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simulation, this allows constant-velocity motion of the entire
system to stimulate transitions between adiabatic electronic
states, behavior that is ultimately an artifact of using real-
valued Born-Oppenheimer electronic states for the coupled
electron–nuclear dynamics.13, 29 Motivated by earlier litera-
ture on atom–atom scattering calculations,29 Fatehi et al.13, 32

recently introduced electron translation factors (ETFs) for an-
alytic derivative couplings computed using atom-centered ba-
sis sets. These authors suggest that the magnitude of the ETFs
may be significant for high-symmetry molecules.32

ETFs are intended to restore translational invariance in
the nonadiabatic nuclear dynamics. This can be realized
by introducing complex phase factors into the AO basis
functions,13 which allow the electrons to propagate alongside
the nuclei and which render the nonadiabatic equations of mo-
tion rigorously translationally invariant. To achieve this, the
CIS derivative coupling that appears in the equations of mo-
tion is replaced by a ETF-corrected derivative coupling of the
form13

〈�I |�[x]
J 〉ETF = 〈�I |�[x]

J 〉 +
∑
μν

S̃
[x]
μν

(∑
iab

Cνat
I
ai t

J
biCμb

+
∑
ija

Cνi t
I
ai t

J
ajCμj

)
, (25)

where

S̃
[x]
μν = 1

2

(〈μ|ν[x]〉 − 〈ν|μ[x]〉). (26)

Interestingly, it is easy to show that the first two terms in
Eq. (15) can be rewritten as∑

ac

∑
i

(
t Ici t

J
aiωJ + tJci t

I
aiωI

)〈c|a[x]〉

+
∑
ik

∑
a

(
t Iakt

J
aiωJ + tJakt

I
aiωI

)〈k|i[x]〉

= (ωI − ωJ )
∑
μν

S̃
[x]
μν

(∑
iab

Cνat
I
ai t

J
biCμb

+
∑
ija

Cνi t
I
ai t

J
ajCμj

)
. (27)

Thus, the ETF-corrected derivative coupling in Eq. (25) is ac-
tually identical to the final term in Eq. (15),〈

�I |�[x]
J

〉
ETF = (ωJ − ωI )−1

∑
ijab

t IaiA
[x]
ai,bj t

J
bj . (28)

In other words, the ETF correction precisely cancels the non-
Hellman–Feynman terms in the expression for the derivative
coupling!

Within CIS theory, the elements hIJ
x of the nonadiabatic

coupling vector are

hIJ
x = (ωJ − ωI )

〈
�I |�[x]

J

〉
ETF. (29)

Thus, we find that the ETF-corrected derivative couplings in
CIS theory may actually be more useful than the full deriva-
tive couplings formulated in Eq. (15). This observation may
have implications in the context of derivative couplings for

non-variational, correlated wave function methods such as
EOM-CC.9

B. Analytic derivative couplings for SF-TDDFT

SF-TDDFT (with a collinear spin density) was originally
introduced by Shao et al.17 Unlike the conventional linear-
response TDDFT, and also unlike SF-TDDFT with a non-
collinear spin density,33 collinear SF-TDDFT resembles a
modified SF-CIS ansatz wherein Kohn-Sham MOs and the
Kohn-Sham effective Hamiltonian are used in place of their
Hartree-Fock counterparts. We therefore propose an ad hoc
modification to the CIS formalism, in which matrix elements
〈�a

i

∣∣Ĥ ∣∣�b
j 〉 are replaced by their TDDFT counterparts. The

latter are given by〈
�a

i

∣∣ĤKS

∣∣�b
j

〉 = EKSδij δab + fabδij − fij δab

+〈aj |ib〉 − CHF〈aj |bi〉 + 〈aj |ξ̂xc|ib〉, (30)

where EKS is the Kohn-Sham SCF energy, f̂ is the Kohn-
Sham Fock operator, CHF is the fraction of Hartree-Fock ex-
change in the exchange-correlation functional, and

〈aj |ξ̂xc|ib〉 =
∫

drdr′ φa(r)φi(r)
δ2fxc

δρ(r)δρ(r′)
φb(r′)φj (r′)

(31)
is a matrix element of the exchange-correlation kernel. From
Eq. (30), it is clear that Eqs. (15), (28), and (29) are valid for
collinear SF-TDDFT except that the matrix elements A

[x]
ai,bj

must be modified according to the SF-TDDFT analytic energy
gradient.17 Details are shown in the Appendix.

Effectively, we are “grafting on” an exchange-correlation
term to SF-CIS, which at some level amounts to taking se-
riously the Kohn-Sham determinant as a wave function and
will need to be validated with benchmark studies. Ou et al.34

recently introduced derivative couplings for spin-conserving
TDDFT within the Tamm-Dancoff approximation (TDA),35

based on the same ad hoc modification applied to a version of
Eq. (15). There is some evidence that the TDA may be better
suited for exploration of potential energy surfaces, as com-
pared to full TDDFT, owing to triplet instabilities in the latter
method.36

III. NUMERICAL EXAMPLES

Both Eq. (15) for 〈�I |�[x]
J 〉, as well as Eq. (28) for the

ETF-corrected derivative coupling, have been implemented
in a locally modified version of the Q-CHEM program,37, 38

for both spin-conserved CIS, spin-flip CIS, and collinear SF-
TDDFT. For the spin-conserving cases, both spin-restricted
and unrestricted reference states have been implemented,
though a restricted open-shell reference is not yet imple-
mented. Finite-difference results are in excellent agreement
with the analytic implementations of all three methods (see
the supplementary material39), which is compelling evidence
of the validity of our implementation. In addition, the deriva-
tive couplings computed using Eqs. (15) and (28) are ex-
actly the same as the corresponding couplings computed
using the formalism introduced in Ref. 13 for spin-conserved
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CIS, which was implemented in Q-CHEM by the authors of
Ref. 13. This agreement is not surprising, since the two ap-
proaches are formally equivalent for spin-conserved CIS, but
provides additional evidence in support of the correctness of
our implementation. Illustrative numerical examples of the
new SF-CIS and SF-TDDFT derivative couplings are pre-
sented below.

A. H3 potential surfaces near a conical intersection

Levine et al.14 have shown that spin-conserved CIS and
TDDFT cannot provide correct topology of the PES in the
vicinity of a conical intersection that involves the reference
state (usually the ground state), and numerical examples
have been presented.14, 40 This is mainly due to the single-
excitation nature of spin-conserved CIS and TDDFT as well
as the unbalanced treatment of ground and excited states. For
CIS calculations, the combination of this imbalance along
with Brillouin’s theorem means that the CIS method fails to
provide a correct description of degenerate ground states.

SF-CIS and SF-TDDFT, on the other hand, can provide
correct PESs near conical intersections, because these meth-
ods contain some determinants that look like double excita-
tions relative to the ground state. Thus, the ground state is
treated on a more balanced footing with respect to the ex-
cited states. In other words, conical intersections with double-
excitation character (e.g., twisted-pyramidalized ethylene19)
can be described by SF-CIS and SF-TDDFT, and there is fur-

thermore no fundamental problem in describing a degenerate
ground state.

Our first test system is H3 in D3h symmetry, which re-
quires the D0 and D1 states to be degenerate, and we will
compare SF-CIS and collinear SF-TDDFT results to restricted
open-shell CIS (ROCIS) and spin-conserving TDA-TDDFT.
In this particular case, spin-conserving, unrestricted CIS fails
to describe this system due to significant spin contamina-
tion, necessitating the use of a restricted open-shell refer-
ence state. Furthermore, spin-conserving TDDFT fails in the
presence of the near-degeneracy, owing to imaginary roots
(triplet instabilities) in the orbital Hessian. For this reason, the
spin-conserving TDDFT calculations were performed within
the TDA. The latter calculations employ the B3LYP func-
tional, while SF-TDDFT calculations employ the BH&HLYP
functional (50% Hartree-Fock exchange plus 50% Becke
exchange41 with Lee-Yang-Parr correlation42), and we abbre-
viate this method as SF-BH&HLYP.

We scanned over the bond length of all D3h geometries
for H3, using the 6-31G* basis set for all energy scans, find-
ing minimum-energy conical intersections at R = 1.35 Å (SF-
CIS), R = 1.19 Å (SF-BH&HLYP), R = 1.09 Å (ROCIS),
and R = 1.09 Å (TD-B3LYP). In Fig. 1, two internal coordi-
nates (one angle and one bond length, as shown in the figure)
are varied to depict the PES in the vicinity of the D3h conical
intersection.

The degeneracy between the D0 and D1 states does not
appear for most equilateral triangular geometries in RO-
CIS calculations because the D0 and D1 states are calcu-
lated within different schemes (i.e., Hartree-Fock SCF versus

FIG. 1. Potential energy surfaces around the conical intersections of D3h H3 calculated by restricted open-shell CIS, unrestricted TD-B3LYP within the Tamm-
Dancoff approximation, SF-CIS, and SF-BH&HLYP. All calculations employ the 6-31G* basis set, and energies are shown in atomic units.
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(a) PY (b) HM

(c) ET (d) C3v-ET
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FIG. 2. Geometries for the MECPs of ethylene: (a) twisted-pyramidalized
(PY), (b) hydrogen-migration (HM), (c) ethylidene (ET), and (d) C3v

ethyli-
dene (C3v–ET).

configuration interaction). Moreover, the D1 surface shows
an unphysical sharp cusp near the intersection. This has
been observed in spin-conserving TDDFT calculations as
well,14 and is confirmed by the TDA-B3LYP results in Fig.
1, wherein D1 exhibits multiple, unphysical cusps. SF-CIS
and SF-BH&HLYP calculations, on the other hand, clearly
provide the correct double-cone shape, and the surface varies
smoothly away from the intersection.

Although this particular symmetry-required degeneracy
between doublet states is correctly reproduced by SF-CIS and
SF-TDDFT, not all possible single and double excitations are
contained in the SF set of excitations, and as such there cer-
tainly exist systems where a degenerate ground state is not
correctly reproduced by these methods. For example, SF-CIS
and SF-BH&HLYP fail to produce the symmetry-required
degeneracy in linear H–O–H (D∞h symmetry). Symmetry-
required degeneracies that involve the ground state (e.g.,
Jahn-Teller problems) may be problematic in general for
these methods, as significant spin contamination can lead to

TABLE II. Relative energies (in eV) for the four critical points of ethy-
lene that are depicted in Fig. 2, as calculated at the SF-CIS/6-31G(d,p), SF-
BH&HLYP/6-31G(d,p), and MR-CISD/aug′-cc-pVTZ levels. (MRCI values
are taken from Ref. 43.)

SF-CIS SF-BH&HLYP MRCI

MECP S0 S1 S0 S1 S0 S1

S0min 0.00 9.07 0.00 8.35 0.00 8.02
PY 5.88 5.88 4.85 4.85 4.83 4.83
HM 6.51 6.51 5.49 5.49 5.38 5.38
ET 4.71 4.71 4.62 4.62 4.49 4.49
C3v–ET 4.86 4.86 4.70 4.70 4.59 4.60

a lifting of what should properly be a symmetry-imposed
degeneracy.

B. Minimum-energy crossing points for ethylene

In contrast to the symmetry-imposed degeneracy in H3,
we next consider some accidental degeneracies in ethylene.
We have used SF-CIS and SF-TDDFT to locate four critical
points (see Fig. 2) on the S0/S1 crossing seam, for which we
can compare our results to a previous MRCI study.43 Three of
these critical points are local MECPs, whereas structure HM
in Fig. 2 is actually a saddle point on the crossing seam.43

Critical points were optimized using the projected-gradient al-
gorithm of Bearpark et al.,44 which involves optimizing along
the gradient

g = 2(EJ − EI )x + Pgmean. (32)

The quantity

gmean = 1
2 ∇̂(

EI + EJ

)
(33)

is the average energy gradient for states I and J,

x = ∇̂(EJ − EI )∣∣∣∣∇̂(EJ − EI )
∣∣∣∣ (34)

is the normalized gradient difference vector, and

P = 1 − xx† − yy† (35)

TABLE I. Geometric parameters for the four ethylene critical points depicted in Fig. 2, optimized by SF-CIS/6-31G(d,p), SF-BH&HLYP/6-31G(d,p), and
MR-CISD/aug′-cc-pTVZ levels. (MRCI values are taken from Ref. 43.)

PY HM ET C3v–ET

Spin-flip Spin-flip Spin-flip Spin-flip

Parameter CIS BH&HLYP MRCI CIS BH&HLYP MRCI CIS BH&HLYP MRCI CIS BH&HLYP MRCI

C1–C2 1.415 1.384 1.399 1.363 1.338 1.360 1.452 1.434 1.448 1.456 1.437 1.452
C2–H5 1.082 1.098 1.096 1.054 1.056 1.063 1.056 1.060 1.068 1.050 1.056 1.064
C2–H6 1.209 1.140 1.163 1.231 1.162 1.180
C1–H3 1.089 1.098 1.098 1.092 1.108 1.105 1.090 1.094 1.096 1.090 1.095 1.097
� C1C2H5 123.6 113.4 118.6 168.9 162.1 164.1 156.3 157.3 155.1
� C1C2H6 66.9 89.7 82.8 62.7 75.5 72.8
� H5C2H6 98.3 92.2 94.4 128.4 122.5 121.9
� H3C1C2H5 23.1 39.3 35.2 − 88.1 − 93.7 − 76.3
� H4C1C2H6 108.0 120.0 114.7 − 89.7 − 85.5 − 88.1
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TABLE III. Efficiencies of two different algorithms for locating ethylene
MECPs, at the SF-BH&HLYP/6-31G** level. The same convergence criteria
and starting structures were used for both algorithms.

Using g onlya Using g and hb

MECP Iterations time/s Iterations time/s

PY 49 1126 21 566
ET 20 429 8 201

aBranching-plane updating method of Ref. 45.
bProjected-gradient method of Ref. 44.

projects out the vector x and also the vector

y = (1 − xx†)hIJ∣∣∣∣(1 − xx†)hIJ
∣∣∣∣ (36)

from the mean gradient.
Some selected internal coordinates were compared with

the MRCI results in Table I. The SF-BH&HLYP and MRCI
geometries are in good agreement, and the SF-CIS geometries
agree qualitatively with the MRCI results, except that for the
PY and HM structures optimized by SF-CIS, the extent of hy-
drogen migration is slightly overestimated as compared with
the SF-BH&HLYP and MRCI results.

The relative energies of the four critical points are shown
in Table II. SF-BH&HLYP energies agree well with the MRCI
results in all four cases. However, SF-CIS energies differ by
more than 1 eV (as compared to the MRCI energies) for S0min,
PY, and HM. This likely reflects the lack of dynamical corre-
lation in SF-CIS.

Finally, we compare the efficiency of the aforementioned
projected-gradient optimization algorithm,44 which uses both
gIJ and hIJ , to that of a branching-plane updating algorithm45

that requires only gIJ . (We find the latter algorithm to
be much more efficient as compared to penalty-constrained
approaches46 that also do not require derivative couplings.)
Performance data for ethylene MECPs are shown in Table III,
from which we see that the branching-plane updating algo-
rithm requires more than twice as many iterations to converge
as compared to the projected-gradient algorithm. Calculation
of hIJ adds only a very small cost per iteration, hence the
projected-gradient algorithm based on analytic derivative cou-
plings affords significantly faster timings.

IV. SUMMARY

We have formulated and implemented analytic first
derivative couplings for SF-CIS, which are simple extensions
of previous work on derivative couplings for spin-conserved
CIS but have the advantage that the SF methods describe
ground and excited states in a more balanced way. Ad hoc in-
troduction of an exchange-correlation term in the Hamiltonian
then affords derivative couplings for (collinear) SF-TDDFT.
Numerical examples demonstrate that these SF methods pro-
vide correct topologies in the vicinity of conical intersections
and reasonable energetics across the PES, as we saw in a pre-
vious study as well.23 As such, these methods seem like good
choices for nonadiabatic ab initio molecular dynamics sim-
ulations, especially in the case of SF-TDDFT, which incor-

porates dynamical electron correlation. (Static correlation is
handled via the SF formalism.)

Although spin contamination becomes problematic for
some systems,23 these SF methods can in principle be ex-
tended to their spin-complete counterparts.47–49 The SF-
extended CIS method,49 for example, is the spin-complete
version of SF-CIS, and analytic derivative couplings can be
derived without difficulty using the formalism described here.
Collinear SF-TDDFT can be similarly extended, and a re-
stricted open-shell formulation is also possible but has not yet
been implemented. Finally, it is straightforward to extend our
formalism to evaluate derivative couplings for non-collinear
SF-TDDFT within the TDA,33 as the analytic gradient of this
method has recently been reported.50 Extensions along these
lines are currently in progress in our group.
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APPENDIX: DETAILED DERIVATIONS

1. Derivation of hIJ
x for SF-CIS

Following the formalism of the CIS analytic energy
gradient,27, 28 the nonadiabatic coupling vector hIJ

x in Eq. (29)
can be expressed as

hIJ
x =

∑
ijab

t IaiA
[x]
ai,bj t

J
bj (A1)

=
∑
ijab

t Iai

(
F

[x]
ab δij − F

[x]
ij δab + 〈aj ||ib〉[x]

)
tJbj ,

where Fij and Fab are Fock matrix elements. Hereafter, we
will use matrix notation for simplicity.51 Matrix elements of
the Fock operator are

Fμν = 〈μ|f̂ |ν〉 (A2)

and its one-electron part is

Hμν = 〈μ|ĥ|ν〉, (A3)

whereas two-electron integrals are denoted

�μν,λσ = 〈μλ||νσ 〉. (A4)

The overlap matrix is

Sμν = 〈μ|ν〉 (A5)

and

Pμν =
occ∑
k

CμkCνk (A6)
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is the one-electron density matrix. The difference density ma-
trix for the excited state is

P� = 1
2 Cv

(
tI tJ † + tJ tI†

)
C†

v

− 1
2 Co

(
tI†tJ + tJ †tI

)
C†

o, (A7)

where Co and Cv are rectangular matrices containing the oc-
cupied and virtual MO coefficients, respectively.

Next, define

RI = CvtI C†
o (A8)

for state I, with a similar quantity RJ for state J, and

Pz = CvZC†
o + CoZ†C†

v. (A9)

The quantity Z in Eq. (A9) represents the solution to the well-
known coupled-perturbed equations,26 which are

C†
vFCvZ − ZC†

oFCo + Cv(� · Pz)Co

= −C†
v(� · P�)Co

−1

2
C†

v(�′ · RI†)CvtJ − 1

2
C†

v(�′ · RJ †)CvtI

+1

2
tJ C†

o(�′ · RI†)Co + 1

2
tI C†

o(�′ · RJ †)Co. (A10)

(The prime in �′ indicates that the Coulomb contribution to
the electron repulsion integrals vanishes in SF-CIS, due to α

→ β excitation.)
Equation (A10) contains transition amplitudes for both

electronic states, but for I = J it is equivalent to the usual
coupled-perturbed equations that must be solved to obtain the
relaxed density P� + Pz and therefore the excited-state CIS
analytic gradient.27, 51 Evaluation of the difference gradient
gIJ already requires solution of Eq. (A10) for both states (i.e.,
for two different vectors Z), and evaluation of hIJ requires
solution of this equation for a third Z-vector with I �= J in
Eq. (A10). However, all three Z-vectors can be obtained si-
multaneously in the same set of Davidson iterations, and in
our experience this typically requires only one or two itera-
tions beyond what is required for a CIS gradient evaluation.
Relative to the cost of a CIS (or TDDFT) gradient evaluation,
the additional cost for derivative couplings is extremely low.

Finally, Eq. (A1) can be rewritten as

hIJ
x = P′ · H[x] + �1 · �[x] + �2 · �′[x] + W′ · S[x], (A11)

where

P′ = P� + Pz, (A12)

�1 = P′ ⊗ P, (A13)

�2 = RI† ⊗ RJ , (A14)

W′ = −1

2
�′CC† − 1

2 CC†�′†, (A15)

�′ = P′F + P(� · P′)

+ 1

2
RI (�′ · RJ †) + 1

2
RJ (�′ · RI†)

+ 1

2
RI†(�′ · RJ ) + 1

2
RJ †(�′ · RI ). (A16)

2. Derivation of hIJ
x for collinear SF-TDDFT

In Ref. 34, the quantity hIJ
x was derived for spin-

conserving TDDFT within the TDA, based on an ad hoc ex-
tension of the CIS formalism. The collinear SF-TDDFT coun-
terpart of this quantity is even simpler because 〈aj |ξ̂xc|ib〉
vanishes in Eq. (30). Thus, hIJ

x for SF-TDDFT is very sim-
ilar to that in SF-CIS, except that � is now defined according
to

�μν,λσ = 〈μλ|νσ 〉 − CHF〈μλ|σν〉, (A17)

and in addition there are some additional terms arising from
the orbital response of the exchange-correlation part of the
Kohn-Sham Fock matrix, Fxc.

The coupled perturbed equations now read

C†
vFCvZ − ZC†

oFCo + Cv(� · Pz + � · Pz)Co

= −C†
v(� · P� + � · P�)Co

− 1

2
C†

v(�′ · RI†)CvtJ − 1

2
C†

v(�′ · RJ †)CvtI

+ 1

2
tJ C†

o(�′ · RI†)Co + 1

2
tI C†

o(�′ · RJ †)Co, (A18)

where

�μν,λσ = ∂Fxc,μν

∂Pλσ

. (A19)

The final expression for hIJ
x in collinear SF-TDDFT is

hIJ
x = P′ · H[x] + �1 · �[x] + �2 · �′[x]

+ W′ · S[x] + P′ · F[x]
xc , (A20)

where

W′ = −1

2
�′CC† − 1

2
CC†�′† (A21)

and

�′ = P′F + P(� · P′ + � · P′)

+ 1

2
RI (�′ · RJ †) + 1

2
RJ (�′ · RI†)

+ 1

2
RI†(�′ · RJ ) + 1

2
RJ †(�′ · RI ). (A22)

Other matrices have the same definitions as those in SF-CIS,
except for F[x]

xc , which is defined as

F
[x]
xc,μν =

∫ [x] ∂fxc

∂ρ

∂ρ

∂Pμν

dr +
∫

∂fxc

∂ρ

(
∂ρ

∂Pμν

)[x]

dr

+
∫

∂2fxc

∂ρ∂ρ ′
∂ρ

∂Pμν

ρ ′[x]dr. (A23)

Note that within this particular SF-TDDFT formalism, third
functional derivatives of fxc are not required in order to com-
pute derivative couplings.
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