Supplementary Material for "Analytic derivative couplings for the spin-flip variants of configuration interaction singles and time-dependent density functional theory"

Xing Zhang and John M. Herbert* Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210 (Dated: May 17, 2014)

Here, we compare our analytic derivative couplings with finite-difference results to validate the formalism. The finite difference formula for derivative coupling to the first order is

$$\left\langle \Psi_{I} \middle| \Psi_{J}^{[x]} \right\rangle = \frac{\left\langle \Psi_{I} \middle| \Psi_{J}(x+\delta x) \right\rangle - \left\langle \Psi_{I} \middle| \Psi_{J}(x-\delta x) \right\rangle}{2\delta x} \tag{S1}$$

Our test system is H₂ with a bond length of R = 1.1Å. The cc-pVTZ basis set was used for all calculations, and CL-SF-TDDFT calculations use the BH&HLYP functional (50% Hartree-Fock exchange plus 50% Becke exchange¹ with Lee-Yang-Parr correlation²). We denote the latter method as SF-BH&HLYP.

The vertical excitation energies of the lowest six singlet states are shown in Table S1. The S_4 state has HOMO \rightarrow LUMO double excitation character, so it is missing in the restricted CIS (RCIS) calculation. Derivative couplings between the states S_1 and S_3 are listed in Table S2.

From Table S2, we can see that the finite difference results agree well with the analytic results for all of the three methods, which confirms the validity of our formalism as shown in Eq. (13). In addition, the derivative couplings calculated by Eq. (13) and Eq. (22) re exactly the same as the ones calculated using the formalism introduced in Ref. 3 for spin-conserved CIS, which comes as no surprise since the two formalisms are intrinsically equivalent for spin-conserved CIS.

¹ A. D. Becke, Phys. Rev. A **38**, 3098 (1988).

³ S. Fatehi, E. Alguire, Y. Shao, and J. E. Subotnik, J. Chem. Phys. **135**, 234105:1 (2011).

² C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B **37**, 785 (1988).

^{*} herbert@chemistry.ohio-state.edu

State	RCIS	SF-CIS	SF-BH&HLYP		
$\overline{S_1}$	10.6756	11.4664	9.7089		
S_2	16.3160	14.8178	13.8764		
S_3	20.7863	19.2544	18.4337		
$S_4(\sigma^0\sigma^{*2})$		19.3603	17.7473		
S_5	23.1458	21.1063	20.3281		
S_6	23.1458	21.1063	20.3281		

TABLE S1: Vertical excitation energies (in eV) for the lowest singlet states of H_2 using RCIS, SF-CIS, and SF-BH&HLYP in the cc-pVTZ basis set.

TABLE S2: $\langle \Psi_1 | \Psi_3^{[x]} \rangle$ derivative couplings (in a_0^{-1}) calculated by RCIS, SF-CIS and SF-BH&HLYP. The H₂ molecule is aligned to the *z*-axis and the derivative couplings vanish in the *x* and *y* directions.

	RCIS			SFCIS			SF-BH&HLYP		
Atom	Analytic	FD	ETF	Analytic	FD	ETF	Analytic	FD	ETF
Н	-0.088057	-0.088057	-0.003857	-0.104717	-0.104718	-0.078036	-0.092725	-0.092725	-0.053895
H	0.088057	0.088057	0.003857	0.104717	0.104718	0.078036	0.092725	0.092725	0.053895