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Analytic derivative couplings in time-dependent density functional theory:
Quadratic response theory versus pseudo-wavefunction approach
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We revisit the formalism for analytic derivative couplings between excited states in time-dependent
density functional theory (TDDFT). We derive and implement these couplings using quadratic
response theory, then numerically compare this response-theory formulation to couplings imple-
mented previously based on a pseudo-wavefunction formalism and direct differentiation of the
Kohn-Sham determinant. Numerical results, including comparison to full configuration interaction
calculations, suggest that the two approaches perform equally well for many molecular systems,
provided that the underlying DFT method affords accurate potential energy surfaces. The response
contributions are found to be important for certain systems with high symmetry, but can be
calculated with only a moderate increase in computational cost beyond what is required for the
pseudo-wavefunction approach. In the case of spin-flip TDDFT, we provide a formal proof that
the derivative couplings obtained using response theory are identical to those obtained from the
pseudo-wavefunction formulation, which validates our previous implementation based on the latter
formalism. C 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4907376]

I. INTRODUCTION

The Born-Oppenheimer approximation breaks down
when the energy gap between electronic states becomes small,
where electronic and nuclear degrees of freedom are strongly
coupled and nuclear motions can induce electronic transi-
tions. Nonadiabatic dynamics methods can be applied to go
beyond the Born-Oppenheimer approximation and describe
these non-radiative transitions,1 and in these methods, transi-
tion probabilities between electronic states are governed by
the first-order nonadiabatic coupling matrix elements (deriv-
ative couplings). Derivative couplings are also important for
methods designed to locate minimum-energy crossing points
along conical seams.2,3 Such methods are useful to investigate
photochemical processes in cases where ab initio nonadiabatic
dynamics simulations are not affordable.

Analytic formulations of the derivative couplings can be
obtained in straightforward fashion for wavefunction-based
methods, via direct differentiation of the electronic wavefunc-
tions with respect to the nuclear coordinates. Derivative cou-
plings for multireference configuration interaction4–7 (MRCI)
and equation-of-motion coupled-cluster theory8,9 have been
derived in this way. However, these are computationally expen-
sive electronic structure models that can only be applied to
small systems. Recently, analytic derivative couplings have
also been implemented for the configuration-interaction sin-
gles (CIS) method,3,10 which is computationally inexpen-
sive but fails to provide even a qualitatively correct descrip-
tion in many cases, owing to lack of dynamical correlation.
Time-dependent density functional theory (TDDFT) is another
inexpensive ab initio method for excited states, which often
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provides reasonable excited-state properties at a cost compa-
rable to CIS.

The development of analytic derivative couplings for
TDDFT is therefore important insofar as nonadiabatic ab
initio molecular dynamics methods based on TDDFT may
be efficient and accurate enough for large molecules. The
most popular implementation of TDDFT is the version based
on linear response (LR) of the electron density or density
matrix for the noninteracting Kohn-Sham (KS) reference sys-
tem.12–14 As such, the electronic wavefunction is not defined
in LR-TDDFT, which prevents the use of direct differentiation
to calculate the derivative couplings. Development of the
formalism for TDDFT derivative couplings has been quite
active recently,3,15–25 but among these developments, only
Send and Furche19 and Li et al.20,21 have put forward consis-
tent formulations of TDDFT derivative couplings by using
response theory exclusively. These formulations capture all of
the “Pulay terms” arising from atom-centered basis functions.
Send and Furche19 have implemented their formalism to obtain
the TDDFT derivative couplings between the ground and
excited states, whereas Li and Liu20 presented a conceptual
derivation (but no implementation) of the TDDFT derivative
couplings between excited states. Very recently (while the
present work was under review), the first implementation was
reported.21

It is known that TDDFT fails to provide the correct dimen-
sionality of the branching space for conical intersections that
involve the reference state (which is usually the ground state),26

which is caused by the imbalanced treatment of ground- versus
excited-state electron correlation. No such topological issue
exists for conical intersections between excited states.26 As
such, there is merit in implementing formally exact analytic
derivative couplings between TDDFT excited states that are
derived solely from quadratic response theory.
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In this work, we derive and implement the derivative
couplings between TDDFT excited states based on quadratic
response theory. Numerical examples will compare these
couplings to those derived based on a pseudo-wavefunction
approach3,25,27 (PWA), in which one treats the KS determinant
as a many-electron wavefunction and computes analytic
derivative couplings by direct differentiation.3,25,27 Finally, we
show that for spin-flip TDDFT,28 the PWA formalism for
the derivative couplings is formally equivalent to quadratic
response theory. This validates our recent implementation of
the spin-flip TDDFT derivative couplings.3

II. THEORY

The following notation is used throughout this work.
Occupied and virtual KS orbitals are labeled φi, φ j, φk, φl, . . .
and φa, φb, φc, φd, . . ., respectively, whereas φp, φq, φr , φs, . . .
index arbitrary (occupied or virtual) KS orbitals. Greek letters
µ, ν,λ,σ, . . . index atomic orbitals. All two-electron integrals
will be written in physicists’ notation.

A. Analytic derivative couplings between TDDFT
excited states

In this section, we present a compact derivation of the ana-
lytic formulation of derivative couplings between two TDDFT
excited states, based on the density matrix response theory.
Similar derivations have been given previously by Send and
Furche19 and by Li and Liu.20

1. Quadratic response functions for exact states

The derivative coupling between two exact electronically
excited states |I⟩ and |J⟩ is

dI J = ⟨I |∇̂R|J⟩ = ⟨I |∇̂RĤ |J⟩
EJ − EI

, (1)

where R represents the nuclear coordinates, and |I⟩ and |J⟩ are
the orthonormal eigenfunctions of the electronic Hamiltonian,
Ĥ , with eigenvalues EI and EJ.

For any time-independent operator Â, the transition
properties ⟨I | Â|J⟩ can be extracted from the residues of the
quadratic response functions of Â.20,29 The response functions
of Â are those characterizing the time evolution of the average
values

A(t) = ⟨0(t)| Â|0(t)⟩, (2)

where |0(t)⟩ is the time-dependent electronic ground state
when a general time-dependent field W (t) is applied to the
electronic system. The interaction between the field and the
electronic system can be resolved into Fourier components Vω

according to29

V (t) =
 +∞

−∞
Vωe−iωt dω (3)

and the quadratic response functions of Â at frequencies ωα

and ωβ are then29

⟨⟨A; Vωα,Vωβ⟩⟩
= P̂(α, β)


I,J

 

0
�
Â
�
I
�


I
��

Vωα − ⟨0|Vωα |0⟩��J�
J
�
Vωβ

�
0
�

(ωα + ωβ − ωI)(ωβ − ωJ)

+



I
�
Â
�
0
�


J
��

Vωα − ⟨0|Vωα |0⟩��I�⟨0|Vωβ |J⟩
(ωα + ωβ + ωI)(ωβ + ωJ)

−


0
�
Vωα

�
I
�


I
��

Â − ⟨0| Â|0⟩��J�⟨J |Vωβ |0⟩
(ωα + ωI)(ωβ − ωJ)


. (4)

In this equation, |0⟩ is the static electronic ground state, without
the perturbation from the external field W (t); Vωα and Vωβ

are the Fourier transform of V (t) in Eq. (3) at frequencies ωα

and ωβ, respectively; P̂(α, β) is the permutation operator that
generates all the permutations of α and β; and ωI and ωJ are
the excitation energies for the excited states |I⟩ and |J⟩.

For I , J, the quantity ⟨I | Â|J⟩ can be obtained from the
residue of the quadratic response function

⟨I | Â|J⟩

=

− lim
ωα→−ωI

(ωα + ωI) lim
ωβ→ωJ

(ωβ − ωJ)⟨⟨A; Vωα,Vωβ⟩⟩
⟨0|V−ωI |I⟩⟨J |VωJ |0⟩ .

(5)

If we choose Â = ∇̂R as the nuclear derivative operator, then
the derivative coupling dI J in Eq. (1) can be calculated using
Eq. (5).

2. Quadratic response functions in time-dependent
Kohn-Sham theory

In order to calculate the derivative coupling dI J between
TDDFT excited states, we need to derive the quadratic
response functions of ∇̂R for time-dependent Kohn-Sham
(TDKS) systems, whereas Eq. (4) gives the response function
for exact states. In the TDKS system, the time-dependent
ground state is approximated as a single determinant Φ(t)
that provides the correct electron density at time t, and the
expectation value of ∇̂R can be expressed as

DKS
R (t) ≡ ⟨Φ(t)|∇̂R|Φ(t)⟩ =


i

⟨ψi(t)|∇̂R|ψi(t)⟩, (6)

where the |ψi(t)⟩ are the occupied TDKS orbitals.
Given the perturbation from the external scalar potentials,

V (t) = λαV (α)e−iωαt + λβV (β)e−iωβt, (7)

the TDKS orbitals may be expanded up to the second order in
λ,19

|ψi(t)⟩ = e−iϵit
(|φi⟩ + λα |ψ(α)

i (t)⟩ + λβ |ψ(β)
i (t)⟩

+ λαλβ |ψ(αβ)
i (t)⟩) , (8)

where the |φi⟩ are the static KS orbitals, with orbital energies
ϵ i in the absence of the perturbation. Hereafter, we will set
λα = λβ = 1 for simplicity.

The orbital |ψ(α)
i (t)⟩ in Eq. (8) may be expanded in the

basis of virtual static KS orbitals |φa⟩,19

|ψ(α)
i (t)⟩ =


a

�
X (α)
ai eiωαt + Y (α)

ai e−iωαt
�|φa⟩, (9)

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

128.146.98.90 On: Wed, 11 Feb 2015 16:02:26



064109-3 X. Zhang and J. M. Herbert J. Chem. Phys. 142, 064109 (2015)

where X(α) and Y(α) are the virtual-occupied (VO) and
occupied-virtual (OV) blocks of the linear density matrix
response. These response functions satisfy the TDKS linear
response equations13

(Λ − ωα∆)�X(α),Y(α)� = −
�
P(α),Q(α)�. (10)

Here,

Λ = *
,

A B
B A

+
-

(11)

is the orbital Hessian14 whose matrix elements are

Aai,b j = (ϵa − ϵ i) δi jδab + ⟨φaφ j |φiφb⟩
−CHF⟨φaφ j |φbφi⟩ + ⟨φaφ j | f xc|φiφb⟩ (12)

and

Bai,b j = ⟨φaφb |φiφ j⟩ − CHF⟨φaφb |φ jφi⟩ + ⟨φaφb | f xc|φiφ j⟩
(13)

for a hybrid functional within the adiabatic approximation.30

In Eqs. (12) and (13), CHF is the fraction of the Hartree-Fock
(HF) exchange, and f xc is the exchange-correlation functional
kernel. The matrix ∆ in Eq. (10) is defined as

∆ = *
,

1 0
0 −1

+
-

(14)

and |P(α),Q(α)⟩ represents the perturbation potential whose
matrix elements are

P(α)
ai = ⟨φa |Vωα |φi⟩, (15)

Q(α)
ai = ⟨φi |Vωα |φa⟩. (16)

Similarly, the quantity |ψ(αβ)
i (t)⟩ in Eq. (8) may be

expanded as

|ψ(αβ)
i (t)⟩ =


a

(
X (αβ)
ai ei(ωα+ωβ)t + Y (αβ)

ai e−i(ωα+ωβ)t
) |φa⟩

−

a j

(
X (α)
ai Y (β)

a j ei(ωα+ωβ)t

+Y (α)
ai X (β)

a j e−i(ωα+ωβ)t
) |φ j⟩, (17)

where X(αβ) and Y(αβ) satisfy the TDKS quadratic response
equations13

�
Λ − (ωα + ωβ

�
∆
��

X(αβ),Y(αβ)� = −
�
R(αβ),S(αβ)�. (18)

More details about Eq. (18) are presented in the Appendix.
The TDKS density operator can be calculated from the

TDKS orbitals as

γ̂(t) =

i

|ψi(t)⟩⟨ψi(t)|. (19)

Using Eqs. (8), (9), and (17), it is easy to calculate the linear
and the quadratic response functions of the density operator.
The linear response can be obtained by collecting the terms
which are multiplied by eiωαt,

γ̂(α) =

ai

(
X (α)
ai |φa⟩⟨φi | + Y (α)

ai |φi⟩⟨φa|
)
. (20)

Likewise, collecting the terms that are multiplied by ei(ωα+ωβ)t
gives us the quadratic response function

γ̂(αβ) =

ai

(
X (αβ)
ai |φa⟩⟨φi | + Y (αβ)

ai |φi⟩⟨φa |
)

−

i ja

(
X (α)
ai Y (β)

a j + X (β)
ai Y (α)

a j

) |φ j⟩⟨φi |

+

abi

(
X (α)
ai Y (β)

bi
+ X (β)

ai Y (α)
bi

) |φa⟩⟨φb |. (21)

Equations (20) and (21) have the correct idempotent forms of
the linear and the quadratic response functions of the density
operator,13 which validates the expansions in Eqs. (8), (9), and
(17).

The quantity DKS
R (t) in Eq. (6) can now be calculated by

direct differentiation, using the formulas presented in Eqs. (8),
(9), and (17). In order to get the quadratic response function
of DKS

R (t), we collect all the terms multiplied by ei(ωα+ωβ)t as
before, which gives us

D(αβ),KS
R =


ai

�
X (αβ)
ai − Y (αβ)

ai

�⟨φi |∇̂R|φa⟩

−

i ja

�
X (α)
ai Y (β)

a j + X (β)
ai Y (α)

a j

�⟨φi |∇̂R|φ j⟩

+

abi

�
X (α)
bi

Y (β)
ai + X (β)

bi
Y (α)
ai

�⟨φa |∇̂R|φb⟩

−

ai

�
X (α)
ai ∇̂RY (β)

ai + Y (β)
ai ∇̂RX (α)

ai

�

+

ai

�
Y (α)
ai ∇̂RX (β)

ai + Y (β)
ai ∇̂RX (α)

ai

�
. (22)

3. Derivative couplings between TDDFT excited states

Having derived the quadratic response function of DKS
R (t),

we just need to extract the derivative couplings from the resi-
dues of D(αβ),KS

R in Eq. (22) following the same procedure
shown in Eq. (5).

It is well known12 that by using Eq. (10) and the spectral
expansion, the quantity |X(α),Y(α)⟩ can be expressed as

|X(α),Y(α)⟩ =

I

( |XI ,YI⟩⟨XI ,YI |
ωα − ωI

− |YI ,XI⟩⟨YI ,XI |
ωα + ωI

)
|P(α),Q(α)⟩, (23)

where |XI ,YI⟩ and |YI ,XI⟩ satisfy the following pseudo-
eigenvalue equations:

(Λ − ωI∆)|XI ,YI⟩ = 0,
(Λ + ωI∆)|YI ,XI⟩ = 0,

(24)

subject to the orthonormality conditions

⟨XI ,YI |∆|XJ,YJ⟩ = δI J,

⟨YI ,XI |∆|YJ,XJ⟩ = −δI J . (25)

From Eqs. (15), (16), and (23), the residues of |X(α),Y(α)⟩ and
|X(β),Y(β)⟩ at frequencies −ωI and ωJ can be written as12,20

lim
ωα→−ωI

(ωα + ωI)|X(α),Y(α)⟩
= −|YI ,XI⟩⟨YI ,XI |P−ωI ,Q−ωI⟩
= −|YI ,XI⟩⟨0|V−ωI |I⟩ (26)
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and

lim
ωβ→ωJ

(ωβ − ωJ)|X(β),Y(β)⟩ = |XJ,YJ⟩⟨XJ,YJ |PωJ,QωJ⟩
= |XJ,YJ⟩⟨J |VωJ |0⟩. (27)

Finally, we can extract the derivative coupling between
two TDDFT excited states from the residues of D(αβ),KS

R in
Eq. (22) by using Eqs. (26), (27), and |XI J,YI J⟩ as derived
in the Appendix. The result is

dKS
I J =


ai

�
X I J
ai − Y I J

ai

�⟨φi |∇̂R|φa⟩

−

i ja

�
X J
aiX

I
a j + Y I

aiY
J
a j

�⟨φi |∇̂R|φ j⟩

+

abi

�
X J
biX

I
ai + Y I

biY
J
ai

�⟨φa |∇̂R|φb⟩

+

ai

lim
ωβ→ωJ

(ωβ − ωJ)(X I
ai∇̂RX (β)

ai − Y I
ai∇̂RY (β)

ai )
⟨J |VωJ |0⟩ .

(28)

The last term in Eq. (28) can be calculated following the proce-
dure given by Li and Liu;20 details are shown in the Appendix.
By substituting Eq. (A14) into Eq. (28), the final expression
for the derivative coupling between two TDDFT excited states
reads

dKS
I J =


ai

�
X I J
ai − Y I J

ai

�⟨φi |∇̂R|φa⟩

−

i ja

�
X J
aiX

I
a j + Y I

aiY
J
a j

�⟨φi |∇̂R|φ j⟩

+

abi

�
X J
biX

I
ai + Y I

biY
J
ai

�⟨φa|∇̂R|φb⟩

+

i jab


X I
ai(∇̂RAai,b j)X J

b j + Y I
ai(∇̂RAai,b j)Y J

b j

+ X I
ai(∇̂RBai,b j)Y J

b j

+Y I
ai(∇̂RBai,b j)X J

b j

(ωJ − ωI)−1. (29)

In Eq. (29), the nuclear derivatives of the orbital rotation
Hessians ∇̂RA and ∇̂RB can be obtained from the conven-
tional TDDFT gradient formalism.31 The nuclear derivatives
of the KS orbitals, ∇̂R|φp⟩, can be calculated as in previous
work.3,10,27

B. Nonadiabatic coupling vectors between TDDFT
excited states

The nonadiabatic coupling vector (NACV) along with the
energy difference gradient vector can be used to determine the
branching plane at conical intersections.32 For states |I⟩ and |J⟩
that are exact eigenstates of Ĥ , the NACV may be defined as32

hI J ≡ ⟨I |(∇̂RĤ)|J⟩ = dI J(EJ − EI)
=


I
������
*
,
∇̂R

N
i=1

V̂en(i)+
-

������
J

, (30)

where V̂en(i) is the electron-nucleus Coulomb potential for the
ith electron.

Since dKS
I J in Eq. (29) was derived from response theory

and is therefore formally exact, we can simply define the

NACV between TDDFT excited states as

hKS
I J = (ωJ − ωI)dKS

I J . (31)

In addition, we can also derive hKS
I J from response theory, where

we replace the operator ∇̂R in Eq. (6) by ∇̂RV̂en. Following the
same procedure used to derive dKS

I J , we easily obtain

hKS
I J =


ai

�
X I J
ai + Y I J

ai

�⟨φi |(∇̂RV̂en)|φa⟩

−

i ja

�
X J
aiX

I
a j + Y I

aiY
J
a j

�⟨φi |(∇̂RV̂en)|φ j⟩

+

abi

�
X J
biX

I
ai + Y I

biY
J
ai

�⟨φa |(∇̂RV̂en)|φb⟩. (32)

Equations (31) and (32) should be equivalent in the limit
that an exact density functional and frequency-dependent func-
tional kernel are used. Of course, the functionals used in
practice are approximate, and the frequency-independent adia-
batic approximation30 is almost always invoked. As such, the
NACVs obtained from Eqs. (31) and (32) will generally differ.
Note that Eq. (32) does not involve nuclear derivatives of A or
B, which is very different from the NACV defined within the
CIS theory.3

C. Discussion

Equation (29) for the derivative coupling dKS
I J between

two TDDFT excited states is equivalent to the expression
derived by Li and Liu20 [Eq. (125) of Ref. 20]. Those authors
started from the equation-of-motion formalism, and obtained
the derivative couplings for arbitrary excitation subspaces.
Here, for TDDFT, the excitation subspace is limited to single
excitations, considering terms up to second-order response.

The first three lines on the right side of Eq. (29) are the
VO, OV, OO, and VV blocks of the transition density matrix
between two excited states (where O means “occupied” and
V means “virtual”), multiplied by the “half derivative” of
the corresponding KS orbital overlap matrices, ⟨φp |∇̂R|φq⟩.
These terms are similar to the “configuration state function
(CSF) contribution” in the formulation of MRCI derivative
couplings.4–7 The terms involving the nuclear derivatives of the
orbital rotation Hessian in Eq. (29) resemble the “CI contribu-
tion,” in the language of MRCI derivative couplings.

In CIS theory, the VO and OV blocks of the transi-
tion density matrix between two CIS states is zero because
only single excitations are considered. By directly following
the CIS procedure25,27 to calculate TDDFT derivative cou-
plings (pseudo-wavefunction approach), the terms including
|XI J,YI J⟩ are neglected. This affords derivative couplings

dPWA
I J = −


i ja

�
X J
aiX

I
a j + Y I

aiY
J
a j

�⟨φi |∇̂R|φ j⟩

+

abi

�
X J
biX

I
ai + Y I

biY
J
ai

�⟨φa |∇̂R|φb⟩

+

i jab


X I
ai(∇̂RAai,b j)X J

b j + Y I
ai(∇̂RAai,b j)Y J

b j

+ X I
ai(∇̂RBai,b j)Y J

b j

+Y I
ai(∇̂RBai,b j)X J

b j

(ωJ − ωI)−1. (33)
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Interestingly, for spin-flip TDDFT (SF-TDDFT) with
either collinear28 or non-collinear33 kernels, the right side of
Eq. (A9) vanishes. [For spin-flipping excitations, it is straight-
forward to show that ∂Fpq/∂Pr s = 0 and ∂2Fpq/∂Pr s∂Pr ′s′

= 0 in Eqs. (A6) and (A7).28,33] Thus, the VO and OV blocks
of the transition density matrix between two SF-TDDFT states
is zero. In other words, for SF-TDDFT, the derivative coupl-
ing calculated by the PWA3 is exactly the same as the one
calculated by the quadratic response approach (QRA) shown
in Eq. (29).

The cost of computing dKS
I J in Eq. (29) is greater than

the cost of computing dPWA
I J , since an additional set of linear

equations [namely, Eq. (A9)] needs to be solved. The cost of
solving Eq. (A9) is about the same as a single TDDFT excited-
state gradient calculation. As such, it is important to quantify
any differences between dKS

I J and dPWA
I J , in order to determine

situations in which the PWA is capable of providing accurate
derivative couplings. This is the topic of the next section.

III. NUMERICAL EXAMPLES

TDDFT derivative couplings dKS
I J from quadratic response

theory [Eq. (29)] have been implemented in a locally modified
version of the Q-C program,34 whereas derivative cou-
plings with the PWA have been implemented previously.3,25,27

Here, we numerically compare the QRA and PWA results in
order to determine the importance of the contribution from the
VO and OV blocks of the transition density matrix between
TDDFT excited states.

We will also compare TDDFT derivative couplings to full
configuration interaction (FCI) results, and to CIS results. The
effects of the Tamm-Dancoff approximation35 (TDA) on the
TDDFT results are also considered. For derivative couplings
dKS
I J , we take the TDA to mean that the vectors YI , YJ, and

YI J in Eqs. (29) and (A9) are set to zero.
The CASSCF module36,37 of the M program38 was

used to perform the FCI calculations. The derivative couplings
between the FCI excited states were calculated using finite
central differences with a step size of 0.01 a.u. All the other
calculations were performed using Q-C.34

A. Difference between dKS
IJ and dPWA

IJ

When the energy gap between states I and J becomes
small, the “CI contribution,” equal to the final summation in
Eq. (29), should dominate dKS

I J , since this term is proportional
to (ωJ − ωI)−1. It has also been proven previously that the PWA

FIG. 1. Differences between dKS
I J and dPWA

I J at various energy gaps. The
derivative couplings were calculated by TDDFT/TDA at the PBE0/6-31G**
level. Full (non-TDA) TDDFT results are similar and are omitted here. The
magnitude difference is defined in Eq. (34) and cosθ in Eq. (35). Note that
the horizontal scale is not linear, but rather consists of the 16 different gaps
that were computed for the 8 molecules in the test set.

and the QRA are identical at the complete basis set limit when
the two states are degenerate.11,27 As such, we may expect that
the difference between dKS

I J and dPWA
I J is small in the curve-

crossing regions.
To examine the energy-gap dependence of dKS

I J − dPWA
I J ,

we calculated these quantities for a test set that consists of
formaldehyde, ethene, benzene, adenine, thymine, uracil, cyto-
sine, and azulene. Each molecule was distorted slightly from
its global minimum geometry so that all the molecules have
C1 symmetry and we can safely calculate the derivative cou-
plings between any pairs of excited states with the same spin
multiplicity. The S1/S2 and S1/S3 derivative couplings were
calculated for each molecule, at the PBE0/6-31G** level.39 Re-
sults are shown in Fig. 1, where we characterize the difference
between dKS

I J and dPWA
I J in terms of the difference in their norms,

magnitude difference =
∥dKS

I J ∥ − ∥dPWA
I J ∥

∥dPWA
I J ∥ × 100%, (34)

and also in terms of the angle θ between the two derivative
coupling vectors

cos θ =
dKS
I J · d

PWA
I J

∥dKS
I J ∥ × ∥dPWA

I J ∥ . (35)

From Fig. 1, we see that there is almost no difference
between dKS

I J and dPWA
I J for systems with energy gaps <1 eV.

Only for larger gaps does the magnitude difference [Eq. (34)]

TABLE I. Line integrals of the TDDFT derivative couplings along closed circular loops that enclose a conical
intersection. These loops are centered either at the minimum-energy crossing point (Rmex) or at a point displaced
0.1 Å in the gI J direction. Geometric phases φ are given in units of π, and values in parenthesis are computed
using the Tamm-Dancoff approximation.

Centered at Rmex Displaced in gI J direction

Molecule φQRA/π φPWA/π φQRA/π φPWA/π

H2O 0.9997 (1.0001) 1.0003 (1.0000) 0.0043 (0.0119) 0.0110 (0.0120)
Uracil 0.9978 (0.9999) 0.9978 (0.9999) 0.0013 (0.0014) 0.0014 (0.0014)
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FIG. 2. (a) Energies of the 2 1Σ+g and 3 1Σ+g states of H2 computed at the
FCI, CIS, and TDDFT/TDA levels, using the aug-cc-pVDZ basis set and
the PBE0 functional for TDDFT. (b) Absolute value of the z-component of
the derivative coupling between these two states, computed using the same
methods.

exceed 2%, and even in these cases the vectors dKS
I J and dPWA

I J

are nearly parallel. This suggests that for optimizations of
minimum-energy crossing points along conical seams, where
only the direction of the derivative coupling is important, dPWA

I J

can be safely used with lower computational cost. As such, we
conclude that for molecules with low symmetry, dKS

I J and dPWA
I J

can usually be used interchangeably between the states with
energy gaps as large as 6 eV. (For highly symmetric molecules,
such as Li2 as considered below, dKS

I J and dPWA
I J may exhibit

larger differences even for small-gap systems, and the choice
between the two must be considered more carefully.)

B. Geometric phase effect around
conical intersections

According to the geometric phase effect, the nuclear wave-
function accumulates an additional (geometric) phase as it is
transported around a path that encloses a conical intersection.
This compensates for the phase change of the adiabatic elec-
tronic wavefunction.32 The accumulated phase φ is related to
the derivative couplings according to

φ ≡

C

dI J · dR = π, (36)

FIG. 3. (a) Energies of the 2 1Σ+g and 3 1Σ+g states of H2 computed at the
FCI, TDHF, and TDDFT levels, using the aug-cc-pVDZ basis set and the
PBE0 functional for TDDFT. (b) Absolute value of the z-component of
the derivative coupling between these two states, computed using the same
methods.

where the loop C encloses a conical intersection. (Here, we
define φ as the indicated integral aroundC. For exact derivative
couplings, φ = π,32 though a different value of the integral
might be obtained using approximate derivative couplings.)

It has been shown previously that dPWA
I J satisfies Eq. (36)

for both full TDDFT calculations25 and TDDFT/TDA calcula-
tions.27 This is hardly surprising, since the PWA is by nature a
wavefunction-based method. It is not clear whether dKS

I J derived
from response theory should satisfy Eq. (36), although given
that the difference between dKS

I J and dPWA
I J is small near crossing

points, we might anticipate this relationship is satisfied for dKS
I J

as well.
In this work, we calculated the geometric phase φ for

H2O and for uracil. For H2O, we computed φ at the B3LYP/6-
31G** level40,41 for the S3/S4 conical intersection, and for
uracil, we calculated φ at the PBE0/6-31G** level39 for the
S1/S2 intersection. The loop C was chosen as a circle in the
branching plane with a radius of 0.001 Å and a center near
the minimum-energy crossing point, as detailed below. The
branching plane was determined as the span of the vectors gI J

and hI J, where

gI J = ∇̂R(ωJ − ωI) (37)
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FIG. 4. (a) Energies of the 3 1Σ+g and 5 1Σ+g states of He2 computed at the
FCI, CIS, and TDDFT/TDA levels, using the aug-cc-pVDZ basis set and
the PBE0 functional for TDDFT. (b) Absolute value of the z-component of
the derivative coupling between these two states, computed using the same
methods.

is the energy difference gradient vector. The vector hI J is the
NACV, which is given by hKS

I J Eq. (31) within the quadratic
response approach. Within the pseudo-wavefunction approach,

hPWA,TDDFT
I J = dPWA

I J (ωJ − ωI), (38)

or upon invoking the TDA,

hPWA,TDA
I J =


i jab

X I
ai

�
∇̂RAai,b j

�
X J
b j . (39)

Table I lists the geometric phases computed along two
different circular loops, one that is centered at the minimum-
energy crossing point (Rmex) and another whose center is dis-
placed from Rmex by 0.1 Å along a unit vector in the direc-
tion gI J. For the loop centered at Rmex, both dKS

I J and dPWA
I J

afford the correct phase, φ = π. For the loop whose center is
displaced from Rmex, however, both methods afford a phase
φ ≈ 0, indicating that this displaced loop does not enclose a
conical intersection. (This is expected, since we displaced the
center of this path along one of the branching-plane degrees of
freedom.) Overall, the geometric-phase behavior of both dKS

I J

and dPWA
I J is correct.

FIG. 5. (a) Energies of the 3 1Σ+g and 5 1Σ+g states of He2 computed at
the FCI, TDHF, and TDDFT levels, using the aug-cc-pVDZ basis set and
the PBE0 functional for TDDFT. (b) Absolute value of the z-component of
the derivative coupling between these two states, computed using the same
methods.

C. Comparison with FCI derivative couplings

In the previous section, we showed that the QRA and
PWA derivative couplings are almost identical in regions of the
potential surface where energy gaps are small. In this section,
we consider some systems with larger energy gaps, as well
as some molecules with higher symmetry, in order to explore
whether the agreement between the QRA and the PWA still
holds. Specifically, we will examine the derivative couplings
for H2, He2, Li2, and linear H3 using FCI, CIS, time-dependent
Hartree-Fock (TDHF) theory, and TDDFT. For the TDDFT
calculations, similar results are obtained using B3LYP40,41 and
PBE0,39 so only the PBE0 results are shown. As all of these
examples are linear molecules, the z axis is taken to be the
molecular axis, only the z components of the derivative cou-
plings are non-zero.

1. H2

Derivative couplings for the 2 1Σ+g and 3 1Σ+g states of
H2, computed in the aug-cc-pVDZ basis set with and without
invoking the TDA, are shown in Figs. 2 and 3, respectively.
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FIG. 6. (a) Energies of the 1 1Σ+u and 2 1Σ+u states of Li2 computed at
the FCI, CIS, and TDDFT/TDA levels, using the 6-31G basis set and the
PBE0 functional for TDDFT. (b) Absolute value of the z-component of
the derivative coupling between these two states, computed using the same
methods.

For bond lengths larger than 2.25 bohr, both states have strong
double excitation character that cannot be captured by CIS,
TDHF, or TDDFT, thus, our plots terminate at 2.25 bohr.

The CIS and TDHF-PWA methods are formally similar,
in that both are wavefunction-based approaches that include
only Hartree-Fock exchange, with excitation spaces that are
truncated at single excitations. Derivative couplings computed
using the these two methods are similar to one another, and
agree quite well with FCI results for bond lengths ranging from
1.0–1.6 bohr [Figs. 2(b) and 3(b)]. For longer bond lengths,
however, these methods fail to reproduce the increase in dI J,z

as a function of bond length that is observed in the FCI results.
This failure can be understood by examining the potential
energy surfaces (PESs) of the 3 1Σ+g state, whose curvature
is incorrectly predicted by CIS and TDHF calculations for
bond lengths larger than 1.6 bohr. The PBE0-PWA derivative
couplings, both with or without the TDA, agree qualitatively
with the CIS and TDHF-PWA results (and are thus incorrect
for longer bond lengths), owing to the similar wavefunction
ansatz that is used, and the fact that the PESs are very similar
at the CIS, TDHF, and TDDFT levels of theory.

For this pair of states, TDHF-QRA affords almost iden-
tical results as compared to TDHF-PWA, and PBE0-QRA
agrees with FCI a little better than PBE0-PWA [see Fig. 3(b)].

FIG. 7. (a) Energies of the 1 1Σ+u and 2 1Σ+u states of Li2 computed at the FCI,
TDHF, and TDDFT levels, using the 6-31G basis set and the PBE0 functional
for TDDFT. (b) Absolute value of the z-component of the derivative coupling
between these two states, computed using the same methods.

This may indicate that the contribution from |XI J,YI J⟩ is
small for the current system, but full inclusion of the quadratic
response contribution can still improve the derivative
couplings calculated from the PWA. Note that the gap between
the two states considered here is about 6 eV, and the PWA and
QRA derivative couplings agree well with one another.

2. He2

For He2, we examine derivative couplings between the
3 1Σ+g and 5 1Σ+g states, both of which are basically single excita-
tions in character. The 3 1Σ+g state is dominated by a 1σu → 2σu

excitation and the 5 1Σ+g state involves 1σu → 3σu excitation.
Potential energy curves and derivative couplings, with and
without the TDA, are plotted in Figs. 4 and 5, respectively.

The CIS and TDHF methods reproduce all the features of
theFCIpotentials, even though the totalenergiesareabit shifted
from the FCI values. This leads to good agreement among CIS,
TDHF-PWA, and FCI derivative couplings. Interestingly, the
TDHF-QRA derivative couplings are almost identical to the
FCI derivative couplings at bond lengths longer than 2.0 bohr,
whereas the PBE0-QRA results are less accurate, owing to
qualitatively incorrect potential curves at the PBE0 level of
theory [see Fig. 5(a)]. The success of TDHF-QRA for this
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FIG. 8. (a) Energies of the 1 2Σ+g and 2 2Σ+g states of H3 computed at the
FCI, CIS, and TDDFT/TDA levels, using the cc-pVDZ basis set and the
PBE0 functional for TDDFT. (b) Absolute value of the z-component of
the derivative coupling between these two states, computed using the same
methods.

system is due to having a qualitatively correct wavefunction
(leading to qualitatively correct potential curves), as well as full
inclusion of the quadratic response contributions. Note that the
current system has a large energy gap (>10 eV), and the QRA
significantly improves upon the PWA derivative couplings.

At shorter bond lengths, however, the TDHF-QRA deriv-
ative coupling begins to diverge. As explained in the Appendix
and in Ref. 21, this divergence is an intrinsic feature of the QRA
approach in the presence of any excitation |0⟩ → |K⟩ whose
excitationenergyωK approachesdegeneracywith the I J energy
gap, ωK ≈ |EI − EJ |. In the present example, this divergence
appears in the PBE0-QRA derivative coupling as well.

TDDFT potential curves fail to capture the state crossing
between the 3 1Σ+g state and a higher-lying state at bond
lengths of 3.5–4.0 bohr, and moreover, the double-well feature
of the 5 1Σ+g state is also not correctly described in these
calculations. Consequently, the TDDFT derivative couplings
are qualitatively wrong at bond lengths larger than 4.0 bohr,
although PBE0-QRA and PBE0-PWA results are equally
good at shorter bond lengths. Moreover, the TDA makes
almost no difference in the TDDFT derivative couplings for
this particular system, in either the PWA or the QRA.

3. Li2

For Li2, we compute the derivative coupling between
the two lowest 1Σ+u states. These states have single-excitation

FIG. 9. (a) Energies of the 1 2Σ+g and 2 2Σ+g states of H3 computed at
the FCI, TDHF, and TDDFT levels, using the cc-pVDZ basis set and the
PBE0 functional for TDDFT. (b) Absolute value of the z-component of
the derivative coupling between these two states, computed using the same
methods.

character, involving 1σg → 1σu and 1σg → 2σu excitations,
respectively. The calculated potential curves and derivative
couplings are plotted, with and without the TDA, in Figs. 6
and 7, respectively. All methods afford similar potential curves
for both states, and the derivative couplings obtained using
the CIS, TDHF-PWA, and PBE0-PWA methods are about
the same but are very different from the FCI derivative
coupling.

In contrast, application of quadratic response theory shifts
the TDHF and PBE0 derivative couplings closer to the FCI
result. Note that the energy gap between the 1 1Σ+u and 2 1Σ+u
states is <3 eV, yet dKS

I J,z differs from dPWA
I J,z by about 50%.

(This should be compared to the low-symmetry examples
shown in Fig. 1, where the differences are <7% in all cases
and <2% in most cases.) This example, along with that of
He2, may indicate the importance of the contributions from
|XI J,YI J⟩ in some molecules with high symmetry, for reasons
that are not clear to us.

4. H3

For another high-symmetry example, we calculated the
derivative couplings for H3 in D∞h symmetry. For HF and
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density functional theory (DFT) calculations, the ground
state in D∞h symmetry has 2Σ+u symmetry, and we compute
derivative couplings between the 1 2Σ+g and 2 2Σ+g states.

In Figs. 8 and 9, we see that the potential curves obtained
from CIS, TDHF, and TDDFT are very similar to the FCI
potential curves, for both states. Furthermore, the derivative
couplings computed at the CIS, TDHF, and TDDFT levels
are qualitatively correct, and the differences between the
QRA and PWA results are small. By observing the transition
density matrix between FCI states, we found that the OO and
VV blocks dominate, whereas the VO and OV blocks are
negligible. The same is true for the TDDFT transition density
matrix. This explains the similarity between the QRA and
PWA derivative couplings. Note that the current H3 system
has high symmetry and the energy gap between the two chosen
states is large. Thus, in what situations the VO and OV blocks
of the transition density matrix between TDDFT excited states
are important is still unclear and needs further study.

IV. CONCLUSION

In the present study, we have presented a compact
derivation of TDDFT derivative coupling between excited
states that is entirely based on the quadratic response theory;
we call this the quadratic response approach or QRA. Our
previous formulation of the analytic derivative couplings for
spin-flip TDDFT,3 which was based on direct differentiation of
the Kohn-Sham determinant (what is herein called the PWA),
is here shown to be rigorously correct. In other words, for
spin-flip TDDFT, there is no distinction between the QRA and
the PWA, whereas for traditional, spin-conserving TDDFT
there is a distinction, which we have explored numerically
here.

For small-gap systems, we find that the QRA and PWA
can usually be used interchangeably, thus, the PWA may be a
better choice considering its slightly lower computational cost.
In certain cases, however (Li2 in the present work), the VO and
OV blocks of the transition density matrix between excited
states, which are neglected in the PWA, become important.
In these cases, the QRA usually improves the accuracy of the
derivative couplings, despite the latter method’s occasional
divergence.

Overall, the quadratic response formalism for TDDFT
derivative couplings is a potentially useful approach to
calculate these quantities. Derivative couplings computed
within the PWA tend to be qualitatively correct, provided
that the potential energy surfaces for the states in question
are qualitatively correct, and this approach is free of the
divergent behavior encountered by quadratic response theory
in the vicinity of excitations that are quasi-degenerate
with excited-state energy gaps. Hence, for nonadiabatic
dynamics simulations, where continuous derivative couplings
are important, the PWA may be the method of choice.
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APPENDIX: ADDITIONAL DETAILS OF THE
DERIVATION
1. VO and OV blocks of the transition density matrix
between TDDFT excited states

In Eq. (18), the matrix elements of R(αβ) and S(αβ) are

R(αβ)
ai = P̂(α, β)




bck

(
∂Fab

∂Pck
X (α)
ck

X (β)
bi
+
∂Fab

∂Pkc
Y (α)
ck

X (β)
bi

)
−


jck

(
X (β)
a j

∂Fj i

∂Pck
X (α)
ck
+ X (β)

a j

∂Fj i

∂Pkc
Y (α)
ck

)

+
1
2


b jb′j′

∂2Fai

∂Pb j∂Pb′j′

�
X (α)
b j
+ Y (α)

b j

��
X (β)
b′j′ + Y (β)

b′j′
�

+

bc j

∂Fai

∂Pbc

(
X (α)
b j

Y (β)
c j + X (β)

b j
Y (α)
c j

)
−


b jk

∂Fai

∂Pjk

(
X (α)
bk

Y (β)
b j
+ X (β)

bk
Y (α)
b j

)
(A1)

and

S(αβ)
ai = P̂(α, β)


−


jck

(
∂Fi j

∂Pck
X (α)
ck

Y (β)
a j +

∂Fi j

∂Pkc
Y (α)
ck

Y (β)
a j

)
+


bck

(
Y (β)
bi

∂Fba

∂Pck
X (α)
ck
+ Y (β)

bi

∂Fba

∂Pkc
Y (α)
ck

)

+
1
2


b jb′j′

∂2Fia

∂Pb j∂Pb′j′

�
X (α)
b j
+ Y (α)

b j

��
X (β)
b′j′ + Y (β)

b′j′
�

+

bc j

∂Fia

∂Pbc

(
X (α)
b j

Y (β)
c j + X (β)

b j
Y (α)
c j

)
−


b jk

∂Fia

∂Pjk

(
X (α)
bk

Y (β)
b j
+ X (β)

bk
Y (α)
b j

)
, (A2)

where F is the Fock matrix and P is the ground state density
matrix. Derivatives of F with respect to P have matrix elements

∂Fpq

∂Pr s
= ⟨φpφs |φqφr⟩ − CHF⟨φpφs |φrφq⟩
+ ⟨φpφs | f xc|φqφr⟩ (A3)

and

∂2Fai

∂Pb j∂Pb′j′
=


dr dr′ dr′′

δ3Exc[ρ]
δρ(r)ρ(r′)ρ(r′′)

× φa(r)φi(r)φb(r′)φ j(r′)φb′(r′′)φ j′(r′′).
(A4)

From Eqs. (18), (26), (27), (A1), and (A2), it is
straightforward to obtain

lim
ωα→−ωI

(ωα + ωI) lim
ωβ→ωJ

(ωβ − ωJ)�X(αβ),Y(αβ)�

⟨0|V−ωI |I⟩⟨J |VωJ |0⟩
= [Λ − (ωJ − ωI)∆]−1�RI J,SI J

�
, (A5)
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where the matrix elements of RI J and SI J are

RI J
ai =


bck


∂Fab

∂Pck

�
Y I
ckX J

bi + X J
ckY

I
bi

�

+
∂Fab

∂Pkc

�
X I
ckX J

bi + Y J
ckY

I
bi

�

−

jck


∂Fj i

∂Pck

�
Y I
ckX J

a j + X J
ckY

I
a j

�

+
∂Fj i

∂Pkc

�
X I
ckX J

a j + Y J
ckY

I
a j

�

+

bc j

∂Fai

∂Pbc

�
X J
b jX

I
c j + Y I

b jY
J
c j

�

−

b jk

∂Fai

∂Pjk

�
X I
b jX

J
bk + Y J

b jY
I
bk

�

+

b jb′j′

∂2Fai

∂Pb j∂Pb′j′

�
X I
b j + Y I

b j

��
X J
b′j′ + Y J

b′j′
�

(A6)

and

SI J
ai =


bck


∂Fba

∂Pkc

�
Y J
ckX I

bi + X I
ckY

J
bi

�

+
∂Fba

∂Pck

�
X J
ckX I

bi + Y I
ckY

J
bi

�

−

jck


∂Fi j
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�
Y J
ckX I

a j + X I
ckY

J
a j

�

+
∂Fi j

∂Pck

�
X J
ckX I

a j + Y I
ckY

J
a j

�

+

bc j

∂Fia

∂Pbc

�
X J
b jX

I
c j + Y I

b jY
J
c j

�

−

b jk

∂Fia

∂Pjk

�
X I
b jX

J
bk + Y J

b jY
I
bk

�

+

b jb′j′

∂2Fia

∂Pb j∂Pb′j′

�
X I
b j + Y I

b j

��
X J
b′j′ + Y J

b′j′
�
. (A7)

By comparing to exact response theory,29 one discovers that
the right side of Eq. (A5) constitutes the VO and OV blocks
of the transition density matrix between two TDDFT excited
states |I⟩ and |J⟩. We can define these blocks of the transition
density matrix as

|XI J,YI J⟩ ≡ −[Λ − (ωJ − ωI)∆]−1|RI J,SI J⟩. (A8)

Then, |XI J,YI J⟩ is the solution of the following linear
equations:

�
Λ − (ωJ − ωI)∆�|XI J,YI J⟩ = −|RI J,SI J⟩. (A9)

Note that the quantity [Λ − (ωJ − ωI)∆]−1 in Eq. (A8)
has poles wheneverωK = ωJ − ωI , whereωK is the excitation
energy for some excited state. As such, |XI J,YI J⟩ diverges
when the energy difference between states I and J is close
to the excitation energy of some other excited state. This
divergence in |XI J,YI J⟩, with its concomitant divergence of
the derivative couplings between states I and J, has also been
pointed out recently by Li et al.21

2. The last term in Eq. (28)

We can rewrite the last term in Eq. (28) as
ai

�
X I
ai∇̂RX (β)

ai − Y I
ai∇̂RY (β)

ai

�

=


XI ,YI

�
∆
�
∇̂RX(β),∇̂RY(β)�. (A10)

Taking the nuclear derivative of Eq. (10), we obtain

(Λ − ωβ∆)�∇̂RX(β),∇̂RY(β)�

= −
�
∇̂RP(β),∇̂RQ(β)� − (∇̂RΛ)�X(β),Y(β)�. (A11)

Taking the inner product with ⟨XI ,YI | from the left, then we
obtain



XI ,YI

�(Λ − ωβ∆)�∇̂RX(β),∇̂RY(β)�

= (ωI − ωβ)
XI ,YI

�
∆
�
∇̂RX(β),∇̂RY(β)�

= −


XI ,YI

�
∇̂RP(β),∇̂RQ(β)�

−


XI ,YI

�(∇̂RΛ)�X(β),Y(β)�. (A12)

From this equation, we know that


XI ,YI

�
∆
�
∇̂RX(β),∇̂RY(β)�

= (ωβ − ωI)−1



XI ,YI

�
∇̂RP(β),∇̂RQ(β)�

+


XI ,YI

�(∇̂RΛ)�X(β),Y(β)� . (A13)

After taking the residue of Eq. (A13), we obtain the final
result


ai

lim
ωβ→ωJ

(ωβ − ωJ)�X I
ai∇̂RX (β)

ai − Y I
ai∇̂RY (β)

ai

�

⟨J |VωJ |0⟩
= (ωJ − ωI)−1
XI ,YI

�(∇̂RΛ)�XJ,YJ

�
. (A14)
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