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The Marcus and Pekar partitions are common, alternative models to describe the non-equilibrium
dielectric polarization response that accompanies instantaneous perturbation of a solute embedded
in a dielectric continuum. Examples of such a perturbation include vertical electronic excitation and
vertical ionization of a solution-phase molecule. Here, we provide a general derivation of the accom-
panying polarization response, for a quantum-mechanical solute described within the framework
of a polarizable continuum model (PCM) of electrostatic solvation. Although the non-equilibrium
free energy is formally equivalent within the two partitions, albeit partitioned differently into “fast”
versus “slow” polarization contributions, discretization of the PCM integral equations fails to preserve
certain symmetries contained in these equations (except in the case of the conductor-like models or
when the solute cavity is spherical), leading to alternative, non-equivalent matrix equations. Unlike
the total equilibrium solvation energy, however, which can differ dramatically between different
formulations, we demonstrate that the equivalence of the Marcus and Pekar partitions for the
non-equilibrium solvation correction is preserved to high accuracy. Differences in vertical excitation
and ionization energies are <0.2 eV (and often <0.01 eV), even for systems specifically selected
to afford a large polarization response. Numerical results therefore support the interchangeability of
the Marcus and Pekar partitions, but also caution against relying too much on the fast PCM charges
for interpretive value, as these charges differ greatly between the two partitions, especially in polar
solvents. C 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4936357]

I. INTRODUCTION

Many important (bio)chemical processes involve excited
electronic states in the condensed phase, which cry out for
effective and reliable computational methods to reproduce
solvation effects on excited states. Here, we are interested in
quantum-mechanical continuum solvation models1–4 in which
the solvent is a structureless, homogeneous dielectric medium
and electrostatic solvation effects are captured by means of a
reaction-field operator that modifies the solute’s Hamiltonian.
We are specifically interested in “apparent surface charge”
models,1 which in quantum chemistry are most often known
as polarizable continuum models (PCMs).1,3,4 Amongst these,
the most common are the conductor-like PCM (C-PCM),5,6

which works well in high-dielectric solvents,7 and the “integral
equation formulation” (IEF-PCM),8 which is a more formally
sound treatment of electrostatics in low-dielectric solvents.
IEF-PCM is also known as the “surface and simulation of
volume polarization for electrostatics” [SS(V)PE] model,9

which was developed independently.10 Consult Refs. 4, 7,
or 11 for a formal discussion of the connections between
these models.

For “static” (equilibrium, ground-state) solvation, it has
been established that PCMs are capable of providing free
energies of solvation with an accuracy of a few kcal/mol for
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small- to medium-size molecules, although additional, non-
electrostatic contributions to solvation must be included to
achieve this level of accuracy.12–15 (Non-electrostatic terms
will not be considered here.) However, there is still a
challenge to deal with dynamic events, e.g., vertical electronic
transitions or vertical ionization. Within the PCM formalism,
two different approaches have been developed for such cases.
The linear response (LR) approach16,17 is derived by adding
the reaction-field operator into the LR Kohn-Sham equation
that is solved in time-dependent density functional theory
(TDDFT), resulting in an extra Coulomb term that is related
to the response of the solvent to the TDDFT transition density.
Alternatively, the state-specific (SS) method computes excited
states as solutions of a nonlinear Schrödinger equation,18–26 in
which the reaction-field operator includes a term describing
how the solute’s excited-state electron density polarizes the
continuum. It is similar to the reaction-field model for the
ground state except that the reaction field includes the
relaxation of electronic polarization of the solvent (represented
in a continuum picture using the solvent’s optical dielectric
constant, εopt) with respect to the excited-state density of the
specific excited state in question.

In vertical excitation or ionization, the solute undergoes an
abrupt change in its charge distribution. Various microscopic
motions of the solvent have characteristic times to reach
certain polarization response. The fast part of the solvent
response (electrons) can follow such a dynamic process while
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the remaining degrees of freedom (nuclei) remain unchanged
as in the initial state. It is this partition the solvent response
that gives rise to non-equilibrium solvation.

In equilibrium, the solvent polarization P(r) is governed
by the static electric susceptibility, χe = (ε − 1) /4π:

P(r) = χeE(r). (1)

Here, ε is the static dielectric constant and E(r) is the electric
field in the dielectric solvent. In a non-equilibrium situation,
the total polarization P(r) is described as the sum of the fast
and slow components,

P(r) = Pfast(r) + Pslow(r). (2)

Two different partition schemes are common in the literature
and are traditionally ascribed to Marcus27,28 and to Pekar.29

In the Marcus partition (MP),27,28,30,31 the fast component
of the solvent polarization remains in equilibrium with the
electric field arising from the solute charge distribution, and
furthermore, the slow component of the polarization remains
unchanged in the “early” (E) time. Thus, the fast solvent
polarization in the “actual” (A) time is given by

Pfast
A = χfastE(ρsolute

A ,Pfast
A ,Pslow

E ), (3)

where χfast =
�
εfast − 1

�
/4π and εfast is the dielectric constant

associated with whatever part of the solvent polarization
responds quickly enough to follow the perturbation. One
can then separate the fast and slow solvent polarizations in
equilibrium:

Pfast = χfastE, (4)

Pslow = χslowE = P − Pfast. (5)

Here, the static susceptibility χe has been separated into two
parts, χe = χfast + χslow, with

χfast = (εfast − 1)/4π, (6)
χslow = (ε − εfast)/4π. (7)

This is consistent with the phenomenological theory of
frequency-dependent dielectric polarization.32

In the Pekar partition (PP),29,33 the fast polarization
equilibrates without taking note of the effect from the “early”
polarization, Pslow:

Pfast,PP
A = χfastE(ρsolute

A ,Pfast,PP
A ). (8)

As such, the slow component of the solvent polarization in
equilibrium is

Pslow,PP = P − Pfast,PP. (9)

Comparing Eqs. (4) and (8), we see that within the Marcus
partition, the fast solvent polarization depends on both ε and
εfast, but within the Pekar partition, it depends on εfast alone.
The quantity εfast is often taken to be the “optical” dielectric
constant, εopt = n2, where n denotes the solvent’s index of
refraction. For most solvents, εopt lies in the range from 1.5 to
3.0.34 For the Marcus partition, the ratio of the fast and slow
polarization in the ground state is

Pfast

Pslow =
εopt − 1

ε − εopt
. (10)

It follows that in highly polar solvents, where ε ≫ εopt, there
is something of an upper bound on the fast contribution
to the ground-state solvent polarization contribution in the
Pekar case, whereas in the Marcus case, the effect of
fast polarization becomes negligible in the same limit.
Only the latter result seems intuitively reasonable, as one
expects that the nuclear (slow) polarization should be
the overwhelming contribution to the electrostatics when
ε ≫ εopt. This counterintuitive feature of the Pekar partition
has been pointed out previously.30,35

Although the two partitions have different physical
descriptions for the fast and slow components of the solvent
polarization, both the total polarization charge and the total
electrostatic free energy for a non-equilibrium situation are
equivalent between these two partitions, in the case of a
linear dielectric medium and a classical Onsager solvation
model consisting of a point dipole in a spherical cavity.36

For a quantum-mechanical solvation model, Marenich et al.37

showed that the solvent polarization charges within the PCM
formalism are partition-independent, and thus, they suggest
that the two partitions should yield identical values for the
total non-equilibrium PCM polarization energy, in the case of
a linear dielectric medium. [Recall that a “linear” dielectric is
one for which P = χE, as for example in Eqs. (4) and (5).]

In the course of developing a general formalism for
non-equilibrium SS-PCM calculations (building upon our
recent work in Ref. 38, which was implicitly based on the
Marcus partition), we discovered that the Marcus and Pekar
partitions are not numerically equivalent, strictly speaking,
for sophisticated PCMs such as IEF-PCM/SS(V)PE, although
they are for C-PCM. The lack of equivalence in the former case
is reminiscent of numerical differences between IEF-PCM and
SS(V)PE, which are formally equivalent at the level of integral
equations. These differences arise due to ambiguities in how
to discretize the integral equations, a topic that has been
investigated previously by one of us.7 However, in contrast to
the total PCM solvation energy, which can be quite sensitive
to this issue, we find that differences between non-equilibrium
vertical excitation and ionization energies are quite small,
when comparing IEF-PCM to SS(V)PE and when comparing
the Marcus partition to the Pekar partition.

In Section II, we review the SS method and provide
a general derivation that is consistent with the PCM
formalism, and which makes clear the relationship between
non-equilibrium SS free energies in the Marcus and Pekar
partitions. We also introduce a practical method for calculating
vertical excitation energies and ionization energies within
a non-equilibrium PCM framework. The test systems are
introduced in Section III, and numerical results are the
presented in Section IV.

II. THEORY

A. State-specific method for excited states

In the SS method, a generic solute excited state Ψi (in
solution) is obtained as a solution of a nonlinear Schrödinger
equation

ĤSS
i |Ψi⟩ = ESS

i |Ψi⟩. (11)
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This equation is nonlinear because the effective Hamiltonian

ĤSS
k = Ĥvac + V̂ slow

0 + V̂ fast
k (12)

depends upon the solute’s charge distribution, ρ
k
(r)

= |Ψk(r)|2, with k = 0 representing the ground state. Here,
Ĥvac is the usual Hamiltonian for the solute in vacuum
and the reaction-field operator V̂k generates the electrostatic
potential of the apparent surface charge density, σ

k
(s). In the

non-equilibrium case, there are two apparent surface charges,
corresponding to slow and fast polarization response, hence,
V̂ slow

0 and V̂ fast
k

in Eq. (12). How σslow
0 and σfast

k
are determined

depends upon the particular flavor of PCM in question. The
corresponding electrostatic potentials are

Vk(r) =

Γ

ds
σk(s)
|r − s| , (13)

where the integral runs over the cavity surface, Γ.
The work to polarize the dielectric is a half of the

electrostatic interaction between solute and solvent,32,39

Wk =
1
2 ⟨Ψk |V̂k |Ψk⟩ = 1

2


V

dr ρk(r) Vk(r). (14)

Unlike Eq. (13), this is a volume integral over all space (V).
Alternatively, Wk can be expressed as

Wk =
1
2


V

dr ρk(r)

Γ

ds
σk(s)
|r − s|

= 1
2


Γ

ds σk(s)


V
dr

ρ
k
(r)

|s − r|
= 1

2


Γ

ds σk(s) φρ
k(s). (15)

Here, we introduce the notation φρ(s) to indicate the
electrostatic potential on the cavity surface that is generated
by the density ρ(r). In the specific case of Eq. (15), this density
is ρ

k
= |Ψk |2.

Having determined the excited-state energy ESS
i from

Eq. (11), the non-equilibrium electrostatic free energy for
state Ψi is

GSS
i = ESS

i −W slow
0 −W fast

i +W0, i. (16)

The final term, which arises only in the Marcus partition,
represents the Coulomb interaction between the fast and
slow polarization charges and describes a physical situation in
which the fast polarization is affected by “earlier,” equilibrium
slow components.19,27,40 Specifically,1,41

W0, i =
1
2


Γ

ds φσ
slow
0 (s)σfast

i (s) − σfast
0 (s) , (17)

where φσ
slow
0 (s) is the slow surface charge potential generated

by the ground-state solvent polarization:

φσ(s) = Ŝσ(s) =

Γ

ds′
σ(s′)
|s − s′| . (18)

The operator Ŝ, which is defined by the second equality
in Eq. (18), generates the electrostatic potential for a
given surface charge distribution.4,11 Finally, the state-specific
vertical excitation energy is defined as the difference between
the SS free energy of state i in Eq. (16) and the equilibrium

ground-state free energy, G0. This excitation energy is

ωSS
i = GSS

i − G0

= (ESS
i −W slow

0 −W fast
i +W0, i)

− (E0 −W fast
0 −W slow

0 +W0,0)
= ∆ESS

i0 −W fast
i +W fast

0 +W0, i. (19)

The final equality follows by defining ∆ESS
i0 = ESS

i − E0 and
by noting that W0,0 = 0 according to Eq. (17).

Within the quantum-mechanical framework, it is not
trivial to obtain the eigenstate solution for Eq. (11). The solute
is polarized self-consistently with respect to the solvent’s
reaction field. In case of vertical ionization (rather than
excitation), both the ionized and non-ionized states can
be treated within a ground-state formalism. For vertical
excitations, self-consistent SS models have been developed
for various excited-state methods, including both TDDFT and
configuration interaction singles (CIS).21,37

B. Partition dependence of the state-specific
excitation energy and free energy

In this section, examine how the SS electrostatic free
energy and the corresponding excitation energy depend upon
the choice of Marcus versus Pekar partition, within the
PCM formalism. We begin with a brief introduction to this
formalism. In a linear dielectric material, the apparent surface
charge density σ(s) satisfies an equation that can be expressed
generically as4,11

K̂ε σ(s) = R̂ε φ
ρ(s). (20)

The integral operators K̂ε and R̂ε depend upon the cavity
surface definition (Γ) and the dielectric constant and have
different forms for different PCMs.4,7,11 Use of the fast
dielectric constant in Eq. (20) affords an equation for the
surface charge σfast corresponding to the fast component of the
solvent polarization for the state i,35,36,41 but the electrostatic
potential that appears on the right depends upon whether the
Marcus or Pekar partition is employed:

K̂εfast
σfast

i (s) = R̂εfast




φρ
i(s) + φσ

slow
0 (s) (Marcus)

φρ
i(s) (Pekar)

. (21)

The slow component of the ground-state solvent polarization
is

σslow
0 (s) =




�
χslow/χe

�
σ0(s) (Marcus)

σ0(s) − σfast
0 (s) (Pekar)

. (22)

It has been shown that the total non-equilibrium apparent
surface charge density is partition-independent37 and is given
by

σi(s) = Q̂εfast
φρ

i(s) + (Q̂ε0
− Q̂εfast

)φρ0(s), (23)

where Q̂ε = K̂−1
ε R̂ε is the PCM solvent response operator

for a generic dielectric constant ε. (We henceforth use ε0 to
denote the ground-state, static dielectric constant.) If ρi in
Eq. (23) is determined self-consistently, then the reaction-
field potentials are identical irrespective of which partition is
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employed;37 thus, the eigenvectors and eigenvalues in Eq. (11)
are partition-independent as well.

However, this is not true in practical implementation for
the SS free energy, nor is it true for the SS excitation energy;
these may differ depending on the partition. To understand
why, let us derive the free-energy difference between the
partitions and then discuss discretization. We begin from the
SS excitation energy in Eq. (19). Since the eigenvalues in
Eq. (11) are partition-independent,37 only the polarization
energy terms need to be considered. For the Pekar partition,
the polarization energy is given by

W PP
i = W fast

i −W fast
0 . (24)

Using Eqs. (15) and (21), we can express this as

W PP
i =

1
2


Γ

ds

φρ

i(s) σfast
i (s) − φρ0(s) σfast

0 (s)

= 1
2


Γ

ds

Γ

ds′ φρ
i(s)Qεfast

(s,s′) φρ
i(s′)

− 1
2


Γ

ds

Γ

ds′ φρ0(s)Qεfast
(s,s′) φρ0(s′). (25)

Here, Q(s,s′) is the kernel of the integral operator Q̂ = K̂−1R̂,
which acts on the surface electrostatic potential at the point s′
to produce the induced surface charge at the point s.

The polarization energy for the MP is

W MP
i = W fast

i −W fast
0 −W0, i, (26)

or equivalently

W MP
i = W PP

i + ∆W MP-PP
i , (27)

where the difference, ∆W MP-PP
i is,

∆W MP-PP
i = 1

2


Γ

ds

Γ

ds′ φ∆ρi(s)Qεfast
(s,s′) φσslow

0 (s′)

− 1
2


Γ

ds

Γ

ds′ φσ
slow
0 (s)Qεfast

(s,s′) φ∆ρi(s′). (28)

We have defined ∆ρi = ρi − ρ0 as the difference density
between excited state i and the ground state; this density
generates an electrostatic potential φ∆ρi = φρ

i(s) − φρ0(s).
Note that φσ

slow
0 is determined by the Marcus scheme in

Eq. (22).
To analyze Eq. (28), let us discretize it by introducing

a finite grid over the cavity surface to convert Eq. (28)
into an equation involving finite-dimensional vectors and
matrices,

∆W MP-PP
i = 1

2 a†Qb − 1
2 b†Qa. (29)

The column vectors a and b are discretized forms of the
surface potentials φ∆ρi and φσ

slow
0 , respectively. Since the

inner product a†Qb is real,

∆W MP-PP
i = 1

2 (a†Qb)† − 1
2 b†Qa

= 1
2 b†(Q† −Q)a. (30)

Formally speaking, the integral operator Q̂ε = K̂−1
ε R̂ε

is self-adjoint;42 hence, ∆W MP-PP
i in Eq. (28) should vanish.

Except in the case of a spherical cavity, however, discretization
of this operator for the IEF-PCM/SS(V)PE approach does
not afford a symmetric matrix Qε = K−1

ε Rε, whereas the

conductor-like (C-PCM) approach does afford a symmetric
matrix, regardless of cavity shape.43 As such, ∆W MP-PP

i

vanishes (and thus, the partition dependence of the SS
excitation energy vanishes) for C-PCM, but in practice, it
does not for IEF-PCM/SS(V)PE. Since G0 remains partition-
independent even in the latter case, it must be that the SS
electrostatic free energy, Eq. (16), is partition-dependent for
IEF-PCM/SS(V)PE. The magnitude of this dependence is
examined with numerical calculations in Sec. IV.

C. State-specific method for vertical ionization
energies (VIEs)

A VIE is the difference between the ground-state energies
of the neutral and ionized molecules, computed at the neutral
molecule’s geometry. In such a case, the ionized state is
described using a ground-state, self-consistent reaction-field
calculation, i.e., by solving Eq. (11). The lowest VIE in solvent
is then calculated using Eq. (19), where ωSS

i is understood to
be the VIE rather than the vertical excitation energy in this
case.

D. First-order approximation for vertical
excitation energies

To obtain solutions of Eq. (11), one needs to consider the
self-consistent polarization of the solute with respect to the
solvent’s reaction field. This requires a priori specification
of the excited state of interest and may exhibit convergence
problems, e.g., in the case of near degeneracies between states.
In particular, the SS approach seems to be fundamentally ill-
posed for describing solvent effects in the vicinity of a conical
intersection, where relaxation of the solvent polarization using
the upper state’s wave function might change the ordering
of the upper and lower states. Such problems have been
encountered before by one of us,44 in the context of excited-
state QM/MM calculations involving polarizable force fields,
and special techniques were developed in order to obtain
sensible results. The SS nature of the correction also impacts
formulas for oscillator strengths.44

The fundamental problem in these cases is that each wave
function Ψi is an eigenfunction of a different Hamiltonian,
since ĤSS

i in Eq. (11) depend upon the specific state of interest.
To avoid such problems, we compute the vertical excitation
energy using a first-order, perturbative approximation to the SS
approach,38,45–47 in what we have termed the “ptSS” method.38

Consistent with conventional first-order perturbation theory,
the wave functions Ψ(0)

i are used to compute the energy
are eigenfunctions of a common, zeroth-order Hamiltonian.
As such, they are mutually orthogonal and many problems
can be avoided. One should note that the ptSS method is
similar to the corrected linear response approach developed
by Caricato et al.47 The difference is that in corrected linear
response, one solves TDDFT equations using the zeroth-order
eigenstates as an initial guess, with inclusion of an explicit
solvent contribution.

In the ptSS method,38 we employ a Hamiltonian

ĤptSS
i = Ĥvac + V̂ slow

0 + V̂ fast
0 + λ

�
V̂ fast
i − V̂ fast

0

�
, (31)
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in which λ is the usual perturbation parameter. The zeroth-
order excited-state wavefunction, Ψ(0)

i , is constructed using
solvent-relaxed molecular orbitals obtained from a ground-
state PCM calculation with the zeroth-order Hamiltonian
Ĥvac + V̂ slow

0 + V̂ fast
0 . The first-order correction to the energy of

state i is

E(1)
i =



Ψ

(0)
i

�
V̂ fast
i(0) − V̂ fast

0

�
Ψ

(0)
i

�
, (32)

and the first-order polarization energy is

W (1)
i = W fast

i(0) −W fast
0 −W

0, i(0). (33)

The vertical excitation energy, corrected to first order for
solvent effects, is then

ω
ptSS,1st
i =

�
G(0)

i + G(1)
i

�
− G0

=
�
E(0)
i −W (0)

i + E(1)
i −W (1)

i

�
−
�
E0 −W0

�

= ∆E(0)
i0 + E(1)

i −W (1)
i . (34)

We have simplified the final expression using the fact that
W (0)

i = W0 because the same reaction field is used to compute
both the ground state and the zeroth-order excited state.

The zeroth-order quantity ∆E(0)
i0 in Eq. (34) is partition-

independent. The first-order energy E(1)
i can be shown to be

partition-independent using Eqs. (15) and (21):

E(1)
i =


Γ

ds

Γ

ds′ φρ
(0)
i (s)Qεfast

(s,s′) φ∆ρ(0)i (s′). (35)

Finally, the first-order polarization energy, W (1)
i , is nearly

identical to the sum of the polarization energies in Eq. (19),
except that Ψi is replaced with Ψ(0)

i . This implies that ωptSS,1st
i

inherits the partition-dependence of ωSS
i .

The ptSS method has been implemented for various
density-based47 and wave function-based38,48 excited-state
methods. Despite the first-order nature of the correction, this
approach does take into account the relaxation of the solvent’s
electronic degrees of freedom in response to excitation of the
solute.45,46 Analysis of a four-level model, in which the solvent
wavefunction can be considered explicitly, demonstrates that
the electronic relaxation term represents the static electronic
response of the solvent to the change in the solute’s dipole
moment between ground and excited states.46 For response-
type excited-state methods such as TDDFT, the zeroth-
order state cannot provide “real” excited-state properties
such as the dipole moment, due to its failure to satisfy the
Hellman–Feynman theorem, and in principle, calculation of
excited-state properties requires solution of coupled-perturbed
equations to obtain a “relaxed” density.49 Formally speaking,
such methods therefore require relaxed densities in order
to obtain the correct ptSS excitation energy.38,47 On the
other hand, in previous work in which the solute wave
functions were described using the algebraic diagrammatic
construction (ADC),50 we obtain reasonable results using
unrelaxed densities obtained from the intermediate state
representation formalism,38 which include significant orbital
relaxation effects51,52 that presumably account for the very
good agreement with the experimental data.

The ptSS method has been suggested to neglect dynamical
correlations between the solute and the solvent, which is
identified as the frequency-dependent perturbation caused by

the solute oscillating at its Bohr frequency.45,46 It has further
been suggested that this dynamic response can be recovered
using the linear response method.45 In our perturbative version
of the linear-response method (ptLR, see also Ref. 38), the
first-order correction to the excitation energy is given by

E(1),LR
i =



Ψ0

�
V̂ fast,dyn
i(0)

�
Ψ

(0)
i

�
, (36)

which is capable of recovering part of the dynamical
correlation.46 The surface charge potential in this equation
is given by

V fast,dyn
i (r) =


Γ

ds
δσfast

i (s)
|r − s| , (37)

where the fast part of the solvent polarization δσfast
i (s) changes

following the variation of the density, i.e., the transition
density for the excitation. This quantity can be computed
using Eq. (21),20

K̂εfast
δσfast

i (s) = R̂εfast
φδρi(s). (38)

Numerical results point to the complementarity of the LR
and SS methods; though for polar solvents or weak transitions,
the SS method has certain advantages. For a weakly polar
solute in a non-polar solvent, the LR method provides more
accurate results.21 Inspired by the results in Ref. 21, we
recently implemented the ptSS and ptLR approaches for use
with both the TDDFT and ADC methods and assessed the
results against a set of experimental benchmarks.38 Detailed
investigation of the ptSS and ptLR contributions provided,
a different perspective on the relation of ptSS and ptLR
formalisms. In the present work, we use one of the molecules
(nitrobenzene) from Ref. 38 to illustrate the LR contribution
to the vertical excitation energy.

III. COMPUTATIONAL DETAILS

A. Systems considered

Because significant solvent shifts are often obtained
for excited states possessing charge-transfer (CT) character,
several such systems will be considered here (see Fig. 1).
These include a dimer composed of ethylene and the
methaniminium cation (C2H4 · · ·CH4N+) and another dimer
consisting of ethylene and tetrafluoroethylene (C2H4 · · ·C2F4).
In both cases, one can identify a purely intermolecular CT state
for which a significant solvent shift is expected. Within the
SS-PCM formalism, the significant change in dipole moment
from ground to excited state generates a significant solvent
shift that is absent in the LR-PCM treatment due to
the vanishing transition moment between ground and CT
state.38,45,46

We also investigate the twisted intramolecular charge-
transfer (TICT) state of 4-(N,N-dimethylamino)benzonitrile
(DMABN) in acetonitrile.53–55 DMABN is a prototypical
example of a molecule that exhibits a TICT state53 in which the
qualitative character of the S1 state is highly dependent upon
molecular geometry. In its ground-state geometry, DMABN
is planar and S1 has very little CT character, whereas S2 has
significant CT character. However, rotation of the amino group
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FIG. 1. Molecular structures considered in this work: (a) two CT dimer
systems, C2H4 · · ·CH4N+ and C2H4 · · ·C2F4 and (b) the DMABN molecule,
illustrating the twisting motion that causes the CT state to switch from S2 at
the ground-state geometry to S1 at the TICT geometry.

by 90◦ [see Fig. 1(b)] reverses the order of the states: the CT
state becomes S1, and the “locally excited” (LE) state is pushed
up to S2. Since Q(s,s′) depends on molecular geometry, via the
cavity surface, we shall see that in the case of DMABN, the
Marcus and Pekar partitions are not numerically equivalent
even across the potential surface of the same molecule.

In order to make connection to our previous benchmark
study,38 wherein many of the molecules considered were
nitrobenzene derivatives, we will also consider the 2 A1 ππ∗

excited state of nitrobenzene. This state is charactered by a
HOMO − 1 to LUMO transition with significant CT character,
yet enough oscillator strength to appear in the spectrum. Both
LR- and SS-PCM are investigated in different solvents.

Finally, as an example of VIEs within the ptSS
formalism, we examine aqueous phenol and phenolate in this
capacity. The latter should engender much larger initial-state
polarization, owing to its charge, whereas when computing
the VIE of phenol, the charged species is the final state.

B. Theoretical methods

For the dimers, we used monomer geometries optimized
in the gas phase (B3LYP/6-311+G*) and then placed at
a face-to-face separation of d = 3.5 Å for C2H4 · · ·CH4N+

and d = 5.0 Å for C2H4 · · ·C2F4 (see Fig. 1). The planar
ground state of DMABN and the solvent-relaxed geometry of
nitrobenzene were optimized at the B3LYP/6-311G** level in
combination with the C-PCM solvent model. The twisted
geometry of DMABN was optimized in the S1 state at
the ωB97X/6-311G*/C-PCM level. Geometries of aqueous
phenol and phenolate were taken from Ref. 56.

VIEs were computed using DFT and ptSS excitation
energies using TDDFT. The basis sets employed were
6-311+G* (for C2H4 · · ·CH4N+), cc-pVDZ (for C2H4 · · ·C2F4
and nitrobenzene), 6-31G* (for DMBAN), and 6-31+G*
(for phenol and phenolate). The long-range-corrected
functional LRC-ωPBE,57,58 with a non-empirically tuned
range-separation parameter,59 was used in all excitation
energy calculations. This approach has been shown to
yield reasonable CT excitation energies,60,61 although the

“optimal” (tuned) value for the range-separation parameter
varies depending on the functional, basis set, and molecular
system. Here, we tune this parameter as suggested in Ref. 60,
by minimizing the sum of two absolute values: the difference
between the highest occupied Kohn-Sham orbital energy and
the ionization potential, and the difference between the lowest
unoccupied Kohn-Sham orbital and the electron affinity.

We tested the C-PCM, IEF-PCM, and SS(V)PE solvation
models. The IEF-PCM and SS(V)PE models are equivalent at
the level of integral equations9 but differ when the operator K̂
in Eq. (20) is discretized to obtain a finite-dimensional matrix,
K.4,7 Consistent with nomenclature in the literature,7,8,11,62 we
use “IEF-PCM” to mean the asymmetric choice K = DAS
(in the notation of Ref. 7), whereas “SS(V)PE” is taken to
imply the symmetrized matrix K = (DAS + SAD†)/2. Details
of these models, written in a notation consistent with that used
here, can be found in Refs. 4, 7, and 11. In all of the calcula-
tions presented here, we use the smooth “switching/Gaussian”
(SWIG) discretization and cavity-construction algorithm of
Ref. 43. All calculations were performed using a locally modi-
fied version of Q-C.63 The non-equilibrium PCM approach
for TD-DFT is available in Q-C v. 4.3 and the imple-
mentation for ADC(2), which we reported recently,38 will be
available in a future release of Q-C.

IV. RESULTS AND DISCUSSION

A. Discretization of the PCM matrices

The basic PCM working equation is a discretized form of
Eq. (20):

Kεq = Rεv (39)

with

Rε = − fε

(
I − 1

2π
DA

)
. (40)

Here, fε = (ε − 1)/(ε + 1) and A is a diagonal matrix whose
non-zero entries are the surface areas associated with the
discretization points. (These areas, in turn, are related to the
Lebedev integration weights for the surface grid points.43,64)
Following the notation used in Ref. 7, the matrix Kε is
expressed as

Kε = S − fε
2π

X, (41)

and the choice

X =



DAS for IEF-PCM
(DAS + SAD†)/2 for SS(V)PE

(42)

defines the two solvation models considered here. The
matrices S and D represent the surface-Coulomb operator and
surface-dipole operator, respectively, and are fully defined
in Ref. 11. Discretization preserves the symmetry of Ŝ
(i.e., S† = S), but except for a spherical solute cavity, it
does not preserve the identity D̂Ŝ = ŜD̂†. In other words,
DAS , SAD†.7

Calculations for histidine using three variants of X were
previously reported in Ref. 7, and a more complete set of
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FIG. 2. Convergence of the polarization energy (axis at left), as a function of
the number of Lebedev grid points per atomic sphere, for histidine described
using the A99 force field. Results for three alternative choices for the
matrix X in Eq. (41) are shown, along with the normalized norm of the matrix
DAS−SAD† (axis at right).

calculations using denser grids is shown in Fig. 2. As observed
in Ref. 7, the polarization energy

Wpol =
1
2 q†v = 1

2 v†Qε0
v (43)

converges smoothly as a function of number of grid points
only for the IEF-PCM choice, X = DAS. For X = SAD†, Wpol
does not converge for any reasonable grid density, and this
significantly slows the convergence of the polarization energy
for the SS(V)PE choice X = (DAS + SAD†)/2.

The difference between these two formulations can be
measured in terms of the norm of the matrix DAS − SAD†,
although the magnitude of this norm changes as a function
of system and grid density. A better measure is what we will
call the “normalized norm,” which we define for a matrix M
according to

δN(M) = ∥M −M†∥
∥M∥ , (44)

where ∥M∥ = (i, j M2
i, j)1/2 indicates the usual Euclidean

matrix norm. Figure 2 also provides a plot of δN(DAS)
and we find that this measure of matrix asymmetry does
not converge to zero, but instead hovers around 0.6 even
for very dense integration grids. It is worth noting that the
smooth SWIG discretization scheme43 that we use here is not
the cause of these issues. Consistent with previous results
for equilibrium solvation,7 we find that the SWIG procedure
actually reduces discrepancies between the X = DAS and
X = SAD† versions of the method. (Results using a primitive
Lebedev discretization of the cavity surface, without the
Gaussian blurring or switching function that characterize
the SWIG discretization procedure, can be found in the
supplementary material.65)

It might be questioned whether discrepancies between
IEF-PCM and SS(V)PE, and the slow convergence of the
latter with respect to the discretization grid, might be artifacts
of an inexact implementation of one or both models. In

particular, our SWIG discretization procedure does not use
the traditional definition of the diagonal matrix elements of
D,66 which is

Dii = −
1

Aii

*.
,
2π +


j,i

Di jAj j
+/
-
, (45)

but rather43

Dii = −
Sii

2RI
(∀ i ∈ I), (46)

where RI is the radius of the atomic sphere that contains the
discretization point si. The traditional sum rule in Eq. (45)
does not hold when a switching function allows discretization
points to lie slightly above or below the cavity surface, and its
naïve application in the context of SWIG discretization can
lead to a loss of negative-definiteness in the matrix Q, which
in turn leads to a total energy that is no longer variational.43

The alternative formula in Eq. (46) eliminates this problem7,43

and is exact in the case of a spherical cavity.67 [As such,
Eq. (46) amounts to a locally spherical approximation.]

The formula in Eq. (46) is used for all calculations
reported here, except that in Fig. 3, we report IEF-PCM and
SS(V)PE polarization energies for histidine (as in Fig. 2) and
for phenolate, using the sum rule in Eq. (45) to define Dii. In
most cases, use of the sum rule leads to much better agreement
between IEF-PCM and SS(V)PE solvation energies than is
observed in Fig. 2, as the sum rule tends to amplify the value

FIG. 3. Convergence of Wpol for (a) histidine at the A99 level and (b)
phenolate at the LRC-ωPBE/6-31+G* level, when the sum rule in Eq. (45) is
used to compute the diagonal matrix elements Dii.
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FIG. 4. Convergence of the normalized norms of the matrices (a) DAS−
SAD† and (b) Q−Q†, as a function of the number of Lebedev grid points per
atomic sphere, for various test systems. In (b), the circles represent IEF-PCM
and the squares are for SS(V)PE; individual colors correspond to the same
molecules as in (a).

of ∥DAS − SAD†∥, i.e., the denominator in Eq. (44). As a
result, δN(DAS) < 10−7 for each of the calculations reported
in Fig. 3.

However, SWIG-PCM calculations based on the sum rule
do engender positive eigenvalues of Q in the calculations
shown in Fig. 3, for both IEF-PCM and SS(V)PE, with the
latter model appearing to be more susceptible to occasionally
large, positive eigenvalues. In such cases, the value of Wpol can
differ significantly between these two models, as can be seen,
for example, in Fig. 3(a) when 770 Lebedev points per atomic
sphere are employed. (Some exemplary eigenvalue data can

be found in the supplementary material.65) Thus, while the
sum rule may lead to very small values of δN(X), it does not
guarantee that the energy and surface charges are reasonable.
Because the IEF-PCM results converge smoothly as a function
of grid density, and because we value the smooth potential
energy surfaces guaranteed by the SWIG discretization
procedure, we choose to use SWIG in conjunction with
Eq. (46).

Finally, the difference ∆W MP-PP in Eq. (30) can be
obtained by computing δN(Q), the normalized norm of
the matrix Q −Q†. Numerical results for several different
molecules (Fig. 4) demonstrate that δN(Q) is typically much
smaller than δN(DAS), and we therefore anticipate based on
Eq. (30) that ∆W MP-PP is likely to be small. Note also that
δN(Q) is an order of magnitude smaller for IEF-PCM than for
SS(V)PE, suggesting a smaller difference between the Marcus
and Pekar polarization energies in the IEF-PCM case.

B. Vertical excitation energies

1. Numerical results

In Table I, we compare the first-order ptSS correction,
E(1)
i −W (1)

i [Eqs. (32) and (33)] for three different PCMs,
exploring both the Marcus and Pekar partitions. For C-PCM,
the energy difference is numerically zero to a precision
exceeding 10−6 eV, consistent with the formal result of a
rigorously symmetric Q matrix. The two partitions do afford
different corrections when either IEF-PCM or SS(V)PE is
used, although the differences are ≤0.04 eV for SS(V)PE and
<0.001 eV for IEF-PCM, for the system considered here. This
is consistent with the previous observations regarding δN(Q).

Figure 5 shows the convergence of the first-order ptSS
excitation energies as a function of the number of grid points.
For SS(V)PE, the discrepancies between two partitions remain
at ≈0.05 eV (but somewhat oscillatory) regardless of the
grid density, whereas for IEF-PCM, the two partitions agree
perfectly and converge quickly. These observations are in line
with what we observed for δN(Q) in Sec. IV A.

The norms δN(DAS) and δN(Q) plotted in Fig. 4 are
consistent with the convergence (or lack thereof) that is
observed for the polarization energies in Fig. 2. In particular,
the norm δN(Q) is much smaller than δN(DAS) even though
Q† contains the ill-behaved matrix form SAD†:

Q† = − fε

(
I − 1

2π
AD†

) (
S − fε

2π
X†

)−1

. (47)

TABLE I. First-order ptSS corrections to excitation energies [Eqs. (32) and (33)]. Calculations were performed at the TDDFT level using LRC-ωPBE.

(E (1)
i −W

(1)
i )/eV

C-PCM SS(V)PE IEF-PCM

System Marcus Pekar Marcus Pekar Difference Marcus Pekar Difference

C2H4 · · ·CH4N+a −0.712 541 −0.712 541 −0.684 623 −0.644 475 −0.040 148 −0.653 487 −0.653 946 0.000 459
C2H4 · · ·C2F4

a −1.146 803 −1.146 803 −1.106 555 −1.105 227 −0.001 328 −1.116 938 −1.116 084 −0.000 854
DMABN (planar)b −0.124 313 −0.124 313 −0.114 169 −0.104 305 −0.009 864 −0.107 013 −0.106 883 −0.000 130
DMABN (twisted)b −0.190 490 −0.190 490 −0.167 743 −0.163 528 −0.004 215 −0.165 490 −0.166 409 0.000 919

aIn water, ε0= 78.4 and εfast= 1.8, with ω = 0.3 bohr−1.
bIn acetonitrile, ε0= 35.7 and εfast= 1.8. Tuned range separation parameters are ω = 0.26 and 0.28 bohr−1 for the planar and twisted geometries, respectively.

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

128.146.233.92 On: Tue, 24 Nov 2015 20:14:53



204104-9 You et al. J. Chem. Phys. 143, 204104 (2015)

FIG. 5. Convergence of the first-order ptSS excitation energy as a function of
the number of Lebedev grid points per atomic sphere for (a) C2H4 · · ·CH4N+

and (b) C2H4 · · ·C2F4.

The fact that δN(DAS) ≈ 0.6 even for dense grids accounts
for the failure of the ground-state IEF-PCM and SS(V)PE
polarization energies to converge (Fig. 2), whereas the smaller
values of δN(Q) presage the very small differences between
Marcus and Pekar values for vertical excitation energies.

The CT systems examined in Table I were specifically
selected to have relatively large ptSS solvent corrections, and
as such one might reasonably question whether the very small
differences between the Marcus and Pekar partitions represent
some kind of numerical noise. This would be odd, given that
the calculations above, e.g., in Fig. 5, use some very dense
grids, but we can also address this via a systematic test on
the two dimers in which we scan the two dielectric constants
ε0 and εfast across representative ranges of each. Difference
between the ptSS excitation energy corrections for the two CT
dimers is plotted in Fig. 6.

For IEF-PCM, the numerical difference between the
two partitions increases as the ratio ε0/εfast increases, so
that aqueous solvation provides the largest discrepancy. The
trend is somewhat more complicated (and the differences
a bit larger) for SS(V)PE, but in both cases, the trends
are systematic as a function of both dielectric constants;
hence, we conclude that the numerical differences observed
in the calculations presented above are not artifacts. This is
consistent with the formal theory in Section II. On the other
hand, these calculations suggest that the practical difference
between these two partitions is likely to be negligible in most
cases; for realistic values εfast < 3, the differences observed in

Fig. 6 are <0.1 eV for all values of ε0 ≤ 80. Differences in
systems lacking in CT character are likely to be even smaller.

2. Analysis of the fast polarization response

While contributions to the energy may differ little between
the two partitions, the polarization charges can be quite
different, especially when the solvent is polar. In that case,
very different fast and slow charges are obtained in the ground
state, whereas the fast charges obtained in the excited state are
more comparable. In the case of aqueous C2H4 · · ·CH4N+, for
example, the total absolute fast charge in the first excited state
is ≈0.62e in the Marcus case and ≈0.52e in the Pekar case
(see Fig. 7). The ground-state charge is ≈0.012e in the Marcus
case; hence, the change in the fast charges upon excitation is
considerable. Since only the fast solvent degrees of freedom
can follow the density change in the solute, it is reasonable
that there is significant fast charge contribution to the total
surface charge in the excited state, given the large change in
solute density upon excited-state electron transfer from C2H4
to CH4N+.

Figure 7(b) illustrates the fast excited-state charge
distributions that are obtained in the Marcus and Pekar
partitions for the C2H4 → CH4N+ charge-transfer excitation.
From Eq. (21), one expects that the fast charge distribution
in the Pekar case is essentially the image charge of the
solute’s excited-state charge distribution, and this is clear
from Fig. 7(b) when one compares the Pekar fast charge
distribution and the corresponding electrostatic potential to
atomic charges derived from natural population analysis,68

as applied to the excited-state electron density. Within the
Marcus partition, however, the CH4N+moiety exhibits a more
pronounced positive charge, and the fast charge on C2H4 is
correspondingly less negative, an effect that arises from the
remaining negative surface charges in the ground state. This
ground-state fast charge is essentially absent in the Marcus
partition.

The mutual influence of fast and slow charges gives rise
to different physical pictures of non-equilibrium polarization.
Whereas the fast charge in the Pekar case is image-like,
the fast charge in the Marcus case can be viewed as the
solvent polarization due to the density difference between the
ground and excited states. [Recall that the difference ∆W MP-PP

i

between the SS polarization energies in the two partitions
is determined by the electrostatic potential arising from the
density difference, Eq. (28).]

3. Comparison to experimental solvent shift

Intuitively, the electrostatic interactions in a non-
equilibrium process should be dictated by the optical dielectric
constant. Since there is relatively little variation in εopt from
one solvent to the next,34 we anticipate that the solvent
corrections should not vary by much. Results for the 2 A1
state of nitrobenzene (Table II) indeed indicate that the ptSS
corrections (E(1),ptSS) change little from one solvent to the
next. We also calculated the ptLR correction (E(1),ptLR) to
this state and find it to be nearly identical to the ptSS result.
As discussed in Section II, the SS method that we have
implemented neglects the dynamical correlations between
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FIG. 6. Differences (in eV) in first-order ptSS excitation energy corrections between the Marcus and Pekar partitions, as a function of ε0 and εfast, for
C2H4 · · ·CH4N+ and C2H4 · · ·C2F4.

FIG. 7. Electrostatics and fast
solvent polarization for (a) the
equilibrium ground state and (b)
the non-equilibrium excited state
of C2H4 · · ·CH4N+. The molecular
structure diagrams on the left provide
the ground- and excited-state atomic
charges obtained from natural
population analysis.68 The center
panels illustrate the fast polarization
charges obtained from the Marcus
partition, along with the electrostatic
potential that they generate, while
the panels on the right illustrate the
same quantities according to the Pekar
partition.
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TABLE II. First-order ptSS and ptLR corrections to excitation energies and
solvent shifts for the 2 A1 (ππ∗) excited state of nitrobenzene in various
solvents. Calculations were performed using TDDFT at the LRC-ωPBE/cc-
pVDZ/C-PCM level, with ω = 0.29 bohr−1.

Gas phase Hexane
Cyclo-
hexane

Diethyl
ether Acetonitrile

∆E (0) 5.477 5.383 5.373 5.300 5.225
E (1),ptSS −0.0711 −0.0771 −0.0708 −0.0708
E (1),ptLR −0.0739 −0.0801 −0.0736 −0.0748
Solvent shifta −0.218 −0.239 −0.300 −0.376
Expt. shiftb −0.226 −0.414
εopt 1.88 2.02 1.83 1.8
ε0 1.89 2.03 4.32 35.7

aComputed using Eq. (48).
bFrom Ref. 38.

solute and solvent; however, this correlation is partially
recovered by the LR correction.45,46 [See the discussion
surrounding Eq. (36).] This might suggest that the combination
of ptSS and ptLR solvation corrections could reproduce
experimental solvent shifts, an approach that corresponds
to a solvent shift computed as

shift = ∆E(0) + ∆EptSS + ∆EptLR − ∆E(0)
gas. (48)

In the nitrobenzene example of Table II, the ptLR and
ptSS energies are both comparable and complementary, as
suggested in Ref. 21. The calculated solvent shifts (in hexane
and acetonitrile) are very consistent with experimental values
from Ref. 38.

It has been suggested that the difference between LR
and SS results lies in a flaw in the LR formalism that
renders it incapable of describing a non-stationary state, in
which the system cannot be represented as a single Hartree
product of a solute state and a solvent state.45,46 At the same
time, it has long been suggested that the LR model captures
dynamical correlation effects, i.e., dispersion.46,69,70 As such,
a combination of the ptSS and ptLR corrections may be
viewed as an empirical fitting to the experimental data. Other
scaling variants are possible. In our recent work,38 the most
accurate combinations are provided and discussed for ADC
and TDDFT based on a set of experimental benchmark data.

C. Vertical ionization energies

Finally, we consider a vertical ionization process, and
VIEs for aqueous phenol and phenolate are reported in
Table III. Once again, the numerical calculations confirm
that there is no difference whatsoever between the Marcus

FIG. 8. Convergence of the VIEs as a function of the number of Lebedev grid
points per atomic sphere for (a) phenol and (b) phenolate.

and Pekar energetics when C-PCM is used. Differences in
the VIEs computed using IEF-PCM versus SS(V)PE are
0.002–0.005 eV, except for SS(V)PE as applied to phenolate,
where the difference is 0.131 eV. As observed above and
in previous work,7 this is consistent with observations
concerning δN(Q) and reflects the larger difference between
symmetrized and unsymmetrized K matrices for charged
systems. In the IEF-PCM calculations, the self-consistent field
energies of the ionized species (phenol cation and phenolate
radical) are numerically identical in the two partitions (ESS

ionic
= −306.883 746 51 and −306.565 403 53 hartree, respec-
tively), and thus, the small differences in Table III reflect
differences in the polarization energy.

Figure 8 shows how the VIEs converge as a function
of the discretization grid. Consistent with results for vertical

TABLE III. VIEs for aqueous phenol and phenolate, computed at the SS-DFT/LRC-ωPBE level with optimally
tuned values ω = 0.30 bohr−1 (phenol) and ω = 0.27 bohr−1 (phenolate).

Vertical ionization energy/eV

C-PCM SS(V)PE IEF-PCM

Solute Marcus Pekar Marcus Pekar Difference Marcus Pekar Difference

Phenol 7.656 817 7.656 817 7.676 073 7.678 798 −0.002 725 7.661 498 7.666 971 −0.005 473
Phenolate 5.794 856 5.794 856 5.688 647 5.564 663 0.123 984 5.797 936 5.800 617 −0.002 681
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TABLE IV. VIEs for aqueous phenol and phenolate, computed using C-PCM with different empirical scaling
functions, fε(x) [Eq. (50)]. Note that C-PCM as implemented by Barone and Cossi6 uses x = 0, whereas the
conductor-like screening model of Klamt and Schüürmann5 uses x = 0.5. The “mixed” scheme suggested in
Ref. 71 uses x = 0.5 for neutral solutes and x = 0 for ionic ones. Calculations were performed at the SS-DFT/LRC-
ωPBE level with optimally tuned values ω = 0.30 bohr−1 (phenol) and ω = 0.27 bohr−1 (phenolate).

Vertical ionization energy/eV

x = 0 x = 0.5 Mixed

Solute Marcus Pekar Marcus Pekar Marcus Pekar Difference

Phenol 7.656 817 7.656 817 7.876 567 7.876 567 7.656 455 7.628 749 0.027 706
Phenolate 5.794 856 5.794 856 5.983 149 5.983 149 6.002 801 5.834 784 0.168 017

excitation energies, we find almost no difference between the
Marcus and Pekar values in the case of IEF-PCM, whereas
there is some numerical discrepancy in the case of SS(V)PE.
In the latter case, the magnitude of the difference is not terribly
sensitive to the discretization grid and remains at ≈0.01 eV for
phenol and ≈0.15 eV for phenolate, although the difference
does inherit some oscillations as the grid density increases.

Recently, Klamt et al.71 have demonstrated excellent
agreement between solvation energies computed using IEF-
PCM/SS(V)PE and those obtained using the much simpler
C-PCM approach, if the surface charges in the latter are
scaled appropriately. The C-PCM equation, which should be
compared to Eq. (39), is

Sq = fε(x)v (49)

with

fε(x) = ε − 1
ε + x

. (50)

The values x = 1/2 for neutral solutes and x = 0 for ions
are suggested.71 [Note that IEF-PCM/SS(V)PE uses x = 1
in the factor of fε that appears in the definition of Rε,

FIG. 9. Fast solvent polarization charges in the equilibrium ground state of
aqueous phenol and aqueous phenolate. In each figure, the middle (mostly
featureless) panel depicts the fast charges within the Marcus partition, and
the rightmost figure depicts the fast charges within the Pekar partition. Both
the Marcus and Pekar charges are plotted on a common scale.

Eq. (40).] Table IV presents the C-PCM VIEs for aqueous
phenol and phenolate, using various values for x. When a
common value of x is used for both charge states, then the
Marcus and Pekar approaches to computing the VIE are
formally and numerically equivalent, just as in the case of
vertical excitation energies. When different value of x is used
for the neutral species and the ion, however (as suggested in
Ref. 71), then the two factors of Q̂εfast

in Eq. (23) are not longer
the same, and the Marcus and Pekar partitions differ. Unlike
the discrepancies introduced by the choice of DAS versus
SAD†, which are in some sense artifacts of the discretization
process, in this case, the operators Q̂εfast

really are different,
even at the level of integral equations. As such, it is perhaps
not surprising that the differences between Marcus and Pekar
results are somewhat larger than what is observed above, as
large as 0.17 eV for phenolate.

With the exception of this somewhat special case,
however, differences between the Marcus and Pekar partitions
appear to be quite small, even in systems specifically selected
to exhibit large solvent corrections. That said, one should keep
in mind that the partition between fast and slow charges in the
ground state is very different in these two schemes, even if they
afford nearly identical energetics. This was seen already in the
CT excitation of C2H4 · · ·CH4N+ (Fig. 7) but is also apparent
by comparing Marcus and Pekar fast polarization charges for
vertical ionization (Fig. 9). In a highly polar solvent such as
water, the fast charge obtained within the Marcus partition is
negligible as compared to that in the Pekar partition, as we
have already discussed in the context of Eq. (10). Using the
sum of the absolute values of the discretized surface point
charges as a measure of the total surface charge, we obtain a
total fast charge of ≈0.01e for phenolate in the Marcus case,
and ≈0.45e in the Pekar case.

V. CONCLUSION

We have examined the partition dependence of the
state-specific, non-equilibrium solvation method within the
framework of quantum-mechanical PCMs. At the level of
integral equations, the non-equilibrium corrections to vertical
excitation and ionization energies are formally equivalent
when the “fast” and “slow” solvent responses are partitioned
in the Marcus way27,28 or according to the Pekar scheme.29

Discretization does not preserve this equivalence, however,
except in the special case of the conductor-like PCMs. This
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arises due to loss of certain symmetries when the PCM integral
equations are discretized (as has been discussed previously in
the context of equilibrium solvation7), along with the loss of a
sum rule [Eq. (45)] when the surface discretization is rendered
smooth via a switching function.

Numerical calculations indicate that the discrepancies in
vertical ionization energies are .0.1 eV between the two
partitions, except in one particular case where C-PCM is used
with different scaling factors for neutral versus ionic solutes,
as was advocated in a recent study.71 Discrepancies in vertical
excitation energies are smaller still. Such differences are
considerably smaller than the intrinsic error in the continuum
approximation itself, so it appears that, in practice, the Marcus
and Pekar partitions can be used interchangeably. However,
caution should be exercised in placing any interpretative
significance in the values of the fast polarization charges
themselves, which are highly partition-dependent (especially
in high-dielectric solvents). This is an inherent feature, not an
artifact of discretization.
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