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We have recently developed a general discretization procedure that we call the “switching/

Gaussian” (SWIG) procedure.1,2 This approach eliminate the discontinuities in the solute’s poten-
tial energy surface, which arises from using the straightforward point-charge (PC) discretization or
tessellation (as in the widely-used GEPOL algorithm3–5). These may arise due to tessellation algo-
rithms that fail to treat nuclear perturbations in a symmetric fashion, or else due to the appearance
or disappearance of grid points as the solute geometry changes.

We have previously reported in Ref. 6 that the PC-discretization solvation energies for a data
set consisting of amino acids exhibit large variation observed between two asymmetric forms of the
X matrix, namely, X = DAS versus X = SAD†. Gaussian blurring greatly reduces the magnitude
of these variations, and we find that the same is true for the non-equilibrium solvation corrections
in the present work. In Fig. S1, we compared δN(Q) computed with PC and SWIG discretization
schemes. For both IEF-PCM and SS(V)PE, δN(Q) oscillate as a function of grid density, but the
PC values of δN(Q) are much larger than the SWIG values. The corresponding vertical excitation
energies (the first-order ptSS energy and VIE) are shown in Figa. S2 and S3. Again the PC results
are not smoothly converged and have oscillating features as the grid density increases. These
observations are in agreement with the convergence tests for δN(Q).

Finally, we consider the eigenvalue spectrum of the matrix Q, depending on how the matrix
elements Dii are defined [Eq. (45) versus Eq. (46)]. In particular, let us consider the example in
Fig. 3(a): aqueous histidine at the Amber99 level. When the cavity surface is discretized using
N = 590 Lebedev points per atomic sphere, there is close agreement between IEF-PCM and
SS(V)PE solvation energies, but for N = 770 the solvation energies differ by > 10 kcal/mol.
The IEF-PCM results converge smoothly with respect to N, but for SS(V)PE the N = 770 point
represents a significant anomaly in the otherwise smooth convergence with N. In Fig. S4 we

∗To whom correspondence should be addressed

S1



compare the spectrum of Q, for N = 590 and N = 770, using three different models. The first is
IEF-PCM when the locally-spherical approximation Dii = −S ii/2RI [Eq. (46)] is employed, and
we regard this as something of a benchmark given the smooth convergence of IEF-PCM solvation
energies with respect to N and the fact that Eq. (46) guarantees that Q is negative-definite,2 as it
ought to be. The other two models are IEF-PCM and SS(V)PE using the sum rule of Eq. (45) to
define Dii.

For the most part, there is excellent agreement between the eigenvalue spectra for these three
approaches, except for the largest eigenvalues. In the well-behaved N = 590 case [Fig. S4(a)],
both IEF-PCM and SS(V)PE based on the sum rule exhibit some (but relatively few) positive
eigenvalues, precisely 12 (of 3,118) in the former case and 26 in the latter, and the magnitudes of
these positive eigenvalues are not much different from the rest of the spectrum. For the problematic
N = 770 case, however, where IEF-PCM based on the sum rule behaves in a reasonable way but
SS(V)PE exhibits an anomaly in the value of Wpol, the situation is quite different. For IEF-PCM
based on the sum rule, the small number of positive eigenvalues (32 of 3,936) have magnitudes
that are similar to the N = 590 discretization for the same model, and indeed the solvation energies
are about the same as well. For SS(V)PE, 60 of 3,936 eigenvalues are positive but the largest of
these are several orders of magnitude larger than most of the rest of the eigenvalue distribution
[see Fig. S4(b)] and several orders of magnitude larger than the largest positive eigenvalues in the
N = 590 case. In general we find that when the sum rule [Eq. (45)] is used, the SS(V)PE model
(but not IEF-PCM) occasionally affords an out-of-line solvation energy, and in each case that we
have seen, this is associated with anomalously large eigenvalues of Q.
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Figure S1: Convergence of the normalized norms of the matrix Q − Q† computed with PC and
SWIG discretization schemes, as a function of the number of Lebedev grid points per atomic
sphere, for phenolate and for C2H4 · · ·C2F4.
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Figure S2: Convergence of the first-order ptSS excitation energy computed with PCM and SWIG
discretization schemes as a function of the number of Lebedev grid points per atomic sphere, for
C2H4 · · ·C2F4.
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Figure S3: Convergence of the VIEs computed with PC and SWIG discretization schemes as a
function of the number of Lebedev grid points per atomic sphere, for phenolate.

 20
00

 22
00

 24
00

 26
00

 28
00

 30
00

 32
00

eigenvalue index

 10–7

 10–6

 10–5

 10–4

 10–3

 10–2

 10–1

 100

 101

lo
g 

ab
s.

 e
ig

en
va

lu
e

IEF-PCM, Eq. (46)
IEF-PCM, Eq. (45)
SS(V)PE, Eq. (45)

(a) N = 590

 10–7

 10–6

 10–5

 10–4

 10–3

 10–2

 10–1

 100

 101

 102

 103

 20
00

 24
00

 28
00

 32
00

 36
00

 40
00

eigenvalue index

IEF-PCM, Eq. (46)
IEF-PCM, Eq. (45)
SS(V)PE, Eq. (45)

(b) N = 770

Figure S4: Distribution of eigenvalues of Q for aqueous histidine at the Amber99 level, using (a)
590 and (b) 770 Lebedev grid points per atomic sphere. The eigenvalues are arranged in increasing
order and the first 2000 of them are not shown. The horizontal axis is simply a counter, and on
the vertical axis we plot log(|x|) of the eigenvalues x (in atomic units), hence the sharp decrease
to zero indicates where the eigenvalues go from negative to positive, and the rightmost parts of
the distributions are the positive eigenvalues. Results are shown using the sum rule [Eq. (45)] to
define Dii and also the locally-spherical approximation that we prefer [Eq. (46)]. Note that both
the horizontal and vertical scales are different in the two panels.
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