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Spin-flip, tensor equation-of-motion configuration interaction
with a density-functional correction: A spin-complete method
for exploring excited-state potential energy surfaces
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We revisit the formalism of the spin-adapted, spin-flip (SA-SF) configuration-interaction singles
(CIS) method based on a tensor equation-of-motion formalism that affords proper spin eigenstates
without sacrificing single-reference simplicity. Matrix elements for SA-SF-CIS are then modified
in a manner similar to collinear spin-flip time-dependent density functional theory (SF-TDDFT),
to include a DFT exchange-correlation correction. The performance of this method, which we call
SA-SF-DFT, is evaluated numerically and we find that it systematically improves the energies of elec-
tronic states that exhibit significant spin contamination within the conventional SF-TDDFT approach.
The new method cures the state assignment problem that plagues geometry optimizations and ab initio
molecular dynamics simulations using traditional SF-TDDFT, without sacrificing computational
efficiency, and furthermore provides correct topology at conical intersections, including those that
involve the ground state, unlike conventional TDDFT. As such, SA-SF-DFT appears to be a promising
method for generating excited-state potential energy surfaces at DFT cost. C 2015 AIP Publishing
LLC. [http://dx.doi.org/10.1063/1.4937571]

I. INTRODUCTION

Spin-flip time-dependent density functional theory1,2

(SF-TDDFT) is a qualitatively correct and very effi-
cient electronic structure method for describing elec-
tronic excitation energies,1–7 conical intersections,8,9 excited-
state reaction pathways,9–19 and excited-state non-adiabatic
ab initio molecular dynamics (MD) simulations.20,21 Spin-
flipping excitations enable SF-TDDFT to treat ground- and
excited-state electron correlation on the same footing, while
also incorporating some doubly-excited determinants that are
important for biradicals.1,22 The dynamical correlation that is
included in SF-TDDFT makes this model more accurate than
its wavefunction analogue, spin-flip configuration-interaction
singles (SF-CIS).22

Despite these favorable features, SF-TDDFT has one
notorious drawback in the form of serious spin contamination.
This can easily be understood using an example in which a
high-spin triplet reference state is used in order to target singlet
states obtained from a single α → β spin-flip excitation.
Figure 1 depicts all possible electron configurations obtained
in such a scenario, using a model consisting of four electrons
in four orbitals. Only those excitations within the open-shell
space are able to generate spin-pure solutions, whereas all
other configurations are missing their “spin complements,”
leading to spin-contaminated solutions. In this example, at
most three singlet states and one triplet state may exhibit
proper spin symmetry, whereas all other solutions will be
significantly spin-contaminated. This is a serious drawback
in SF-TDDFT, especially for ab initio MD or excited-state
optimizations, where states may cross as the molecular
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geometry is changed and some form of state-tracking is
required. Since the number of spin-pure states is limited,
only a few low-lying states can be studied in SF-TDDFT
simulations,20,21 and various techniques are required in order
to follow the state having the desired spin symmetry.20

Several approaches have been proposed to generate spin
eigenstates for open-shell TDDFT. Vahtras and Rinkevicius23

introduced general excitation operators that can be used to
generate excited states having well-defined spin multiplicities,
whereas Li and Liu24–26 extended the tensor equation-of-
motion (TEOM) formalism, originally developed by Rowe
and Ngo-Trong in nuclear physics,27 to the case of molecular
systems. At the SF-CIS level, Sherrill and co-workers28

presented a spin-complete implementation within a restricted
active space formalism, and Tsuchimochi et al.29,30 reported a
spin-projected formulation of SF-CIS in which spin-adapted
solutions are also obtained. None of these approaches,
however, has been applied to SF-TDDFT, which is the topic
of the present work. We will derive a spin-adapted, spin-flip
CIS (SA-SF-CIS) method based on one of three formally
equivalent TEOMs.27 To incorporate dynamical electron
correlation, we will then go on to include a DFT correction,
following along the lines that Grimme et al.31,32 used to merge
DFT with multireference configuration interaction (MRCI) in
the DFT/MRCI method. The performance of this new method
is then analyzed through some example calculations.

II. THEORY

We briefly review the TEOM formalism introduced by
Rowe and Ngo-Trong,27 then derive the working equations for
SA-SF-CIS based on this formalism.
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FIG. 1. Example of spin-flip from a high-spin triplet reference state, for
a model system consisting of four electrons in four orbitals. Configuration
(a) is the reference state. Configurations in (b) are obtained by a single
flip-down excitation within the open-shell orbitals; only these configura-
tions are able to form spin eigenstates. Configurations in (c)–(e) are ob-
tained by closed- to open-shell excitations, open-shell to virtual excitations,
and closed-shell to virtual excitations, respectively, each with a α→ β
spin-flip excitation. These configurations are missing their complementary
spin configurations and lead to spin-contaminated solutions in conventional
SF-TDDFT.

A. Notation

The following notation is used throughout this work.
Doubly- and singly-occupied molecular orbitals are labeled
as φi, φ j, φk, φl, . . . and φt, φu, φv, φw, . . ., respectively, while
virtual molecular orbitals are labeled as φa, φb, φc, φd, . . ..
We label arbitrary (occupied or virtual) molecular orbitals as
φp, φq, φr , φs, . . .. All two-electron integrals will be written
in physicists’ notation. Furthermore, we will use C, O, and
V to denote closed, open, and virtual spaces, respectively,

consistent with Fig. 1. A tensor operator having rank Γ is
denoted as Ô†(Γ) and its µth component is Ô†(Γ, µ).

B. Tensor equations of motion

The traditional scalar equations of motion33 can be
generalized to tensor equations of motion in a straightforward
way using tensor basis functions instead of scalar basis
functions.27 One seeks the tensor operators Ô†xλ with rank
λ that relate the excited tensor state |xSf ⟩⟩ to some reference
tensor state |S0⟩⟩ in the following way:

�
Ô†xλ × |S0⟩⟩	S f = |xSf ⟩⟩, (1)

Ôxλ |S0⟩⟩ = 0. (2)

We use curly brackets to represent the coupled products
between two tensors, and the superscript above the bracket is
the rank of the product tensor. The labels S0 and Sf indicate
the spin symmetries of the initial (reference) state and the final
(target) state, respectively. (Note that S0 as used in Section II
does not mean “singlet ground state,” S0. The latter notation is
used in the numerical calculations in Section III.) In Eq. (2), all
possible coupled products should vanish. The tensor operator
Ô†xλ can be expanded by a series of tensor operators with
different ranks,

Ô†xλ =

i

Ô†xλi, (3)

and the ranks λi must satisfy the triangle relations required by
Eq. (1), namely,

|S0 − Sf | ≤ λi ≤ |S0 + Sf |. (4)

As shown by Rowe and Ngo-Trong,27 three formally
equivalent TEOMs can be derived from Eqs. (1) and (2). The
first of these is


i jΓ

(−1)S0−S f−Γ−λi(2Γ + 1)1/2W (λiλ jS0S0; ΓSf )
S0
��

Ôyλi × [Ĥ ,Ô†xλ j
]	Γ�S0

�

= ωxS f


i jΓ

(−1)S0−S f−Γ−λi(2Γ + 1)1/2W (λiλ jS0S0; ΓSf )
S0
��

Ôyλi × Ô†xλ j

	Γ�S0
�
. (5)

The second version is
i jΓ

(−1)S0−S f−Γ−λi(2Γ + 1)1/2W (λiλ jS0S0; ΓSf )
S0
��[Ôyλi, [Ĥ ,Ô†xλ j

]]	Γ�S0
�

= ωxS f


i jΓ

(−1)S0−S f−Γ−λi(2Γ + 1)1/2W (λiλ jS0S0; ΓSf )
S0
��[Ôyλi,Ô

†
xλ j

]	Γ�S0
�
. (6)

Finally, the third TEOM is
i jΓ

(−1)S0−S f−Γ−λi(2Γ + 1)1/2W (λiλ jS0S0; ΓSf )
S0
��[Ôyλi, Ĥ ,Ô†xλ j

]	Γ�S0
�

= ωxS f


i jΓ

(−1)S0−S f−Γ−λi(2Γ + 1)1/2W (λiλ jS0S0; ΓSf )
S0
��[Ôyλi,Ô

†
xλ j

]	Γ�S0
�
. (7)
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The quantity W in these equations is a Racah coefficient,
Ôyλi is the tensor operator corresponding to the Hermitian
adjoint of Ô†yλi,

27 ωxS f
is the excitation energy from |S0⟩⟩ to

|xSf ⟩⟩, and the sums over i and j are sums over all tensor
operators with different ranks λi and λ j, as in Eq. (3). The
only difference amongst the three TEOMs in Eqs. (5)–(7)
comes in the reduced matrix elements, ⟨S0∥{· · · }Γ∥S0⟩.

In order to derive Eq. (6) from Eq. (5), the so-called
“killer condition” [Eq. (2)] must be satisfied. Equation (7)
is equivalent to Eq. (6) only if |S0⟩⟩ is an eigenfunction of
the Hamiltonian Ĥ . Amongst these three TEOMs, Eq. (7)
has the favorable features that the double commutator in the
reduced matrix elements has lower rank as compared to the
first formulation in Eq. (5) and furthermore that both sides
of the Eq. (7) are Hermitian.27 If the killer condition is not
satisfied, however, then the use of either Eq. (6) or Eq. (7)
may be problematic, as discussed below.

C. Spin-adapted, spin-flip CIS

In this work, the excitation operators involved in the
TEOMs are truncated at the single excitation level. In other
words, we only focus on removing the spin contamination
in traditional (spin-incomplete) spin-flip CIS and its time-
dependent Hartree-Fock (TD-HF) extension. Higher-order
excitation operators could, in principle, be included to
introduce additional electron correlation.

Single excitation operators can be grouped into two
kinds of tensors, one having rank zero (singlet coupling)
and the other having rank one (triplet coupling).34 Meanwhile,
Eqs. (5)–(7) require the following triangle relations to be
fulfilled:

|S0 − Sf | ≤ λi ≤ |S0 + Sf |, (8a)
|S0 − Sf | ≤ λ j ≤ |S0 + Sf |, (8b)
|λi − λ j | ≤ Γ ≤ |λi + λ j |, (8c)
|S0 − S0| ≤ Γ ≤ |S0 + S0|. (8d)

In spin-flip methods, we usually look for the excited states
whose total spin angular momentum is one unit smaller than
that of the reference state, Sf = S0 − 1. Thus, only triplet-
coupled single excitation operators (i.e., λi = λ j = 1) satisfy
the above triangle relations. These tensor operators have the
following components when represented in the molecular
orbital (MO) basis:

Ô†pq(1,1) = −â†p âq̄, (9a)

Ô†pq(1,0) = 1
√

2
(â†p âq − â†p̄ âq̄), (9b)

Ô†pq(1,−1) = â†p̄ âq, (9c)

where â†p creates an α-spin electron in orbital φp and âq̄

annihilates a β-spin electron in orbital φq.
Previous work by Li and Liu uses Eq. (7) as the

working equation.24–26 However, in the SF-CIS case, the
killer condition in Eq. (2) is not satisfied for excitations within
the open-shell space, and as a result both Eqs. (6) and (7) will
generate spurious solutions. The reason is that the excitation
space is overcomplete, but Eqs. (6) and (7) are not capable

of removing this overcompleteness. Consequently, we choose
Eq. (5) as our working equation, and we will show that this
equation automatically removes the overcompleteness of the
excitation space, by symmetry.

An alternative way to solve this problem is to introduce
an operator that projects out the reference state, so that the
killer condition is fulfilled by construction. This procedure
has been shown to be successful in scalar equation-of-motion
calculations.35 We can also extend this approach to TEOMs,
simply by writing the tensor operators in Eqs. (1) and (2) with
the following general forms:

Ô†xλ =

i

(−1)S f−λi
(

2Sf + 1
2λi + 1

)1/2{O†xλi |S0⟩⟩}S f ⟨⟨S0|
λi

,

(10a)

Ôxλ =

i

(−1)S f−λi
(

2Sf + 1
2λi + 1

)1/2|S0⟩⟩{⟨⟨S0|Oxλi}S f
λi

.

(10b)

Given these two tensor operators, the killer condition [Eq. (2)]
is always satisfied, and the three TEOMs in Eqs. (5)–(7)
become formally equivalent if |S0⟩⟩ is an eigenfunction of
the Hamiltonian. This is not, however, the approach that is
pursued here.

Now we can express the TEOM in Eq. (5) using the spin-
tensor basis shown in Eq. (9). This results in the following
matrix representation of the TEOM:

MZ(x) = ωxNZ(x), (11)

where the matrix elements of M and N are

Mpq,r s =

Γ

(−1)S0−S f−Γ−1(2Γ + 1)1/2W (11S0S0; ΓSf )

×


S0
��

Ôpq(1) × [Ĥ ,Ô†r s(1)]
	Γ�S0

�
, (12)

Npq,r s =

Γ

(−1)S0−S f−Γ−1(2Γ + 1)1/2W (11S0S0; ΓSf )

×


S0
��

Ôpq(1) × Ô†r s(1)
	Γ�S0

�
. (13)

The reduced matrix elements in Eqs. (12) and (13) can be
evaluated using the Wigner-Eckart theorem,



Γ
�
Ô(λ)�Γ1

�
=

√
2Γ + 1

C(Γ1µ1λν; Γµ)


Γµ

�
Ô(λ, ν)�Γ1µ1

�
, (14)

where C is a Clebsch-Gordan coefficient, |Γµ⟩ denotes an
angular momentum eigenstate whose total angular momentum
is Γ and whose z-component is µ, and ⟨Γ∥Ô(λ)∥Γ1⟩ is the
reduced matrix element. Using Eq. (14), the reduced matrix
elements in M can be expressed as


S0
��

Ôpq(1) × [Ĥ ,Ô†r s(1)]
	Γ�S0

�

=
(2Γ + 1)1/2
S0S0

��
Ôpq(1) × [Ĥ ,Ô†r s(1)]

	Γ
0

�
S0S0

�

C(S0S0Γ0; S0S0) . (15)

In the notation |S0S0⟩, the first S0 is the total spin quantum
number and the second S0 represents the quantum number
for the z-component of the spin vector, which makes |S0S0⟩
a high-spin state. In Eq. (15), we use the normal spin-flip
convention wherein the high-spin open-shell state |S0S0⟩ is
taken to be the reference state.
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The numerator of the right side of Eq. (15), which is a
coupled product between excitation operators, can be derived
readily:


S0S0

��
Ôpq(1) × [Ĥ ,Ô†r s(1)]

	Γ
0

�
S0S0

�

=

µ



S0S0

�
Ôpq(1,−µ) × [Ĥ ,Ô†r s(1, µ)]

�
S0S0

�

×C(1(−µ)1µ; Γ0). (16)

The quantity Ôpq(1,−µ) is defined as27

Ôpq(1,−µ) = (−1)1−µÔpq(1, µ). (17)

Finally, the matrix elements of M can be evaluated. The
results are very similar to those derived by Li and Liu,24 based
on the TEOM in Eq. (7), and the details are relegated to the
Appendix. The matrix elements of N can be derived in the
same way, nevertheless it is worth demonstrating the structure
of N, since this is what guarantees that the overcompleteness
of the excitation space is removed automatically. We next
proceed to demonstrate this structure.

For SA-SF-CIS, we choose p and q in Eq. (9) to run over
all MOs. Namely, Ô†(1) is expanded in the following way if
we neglect the redundant excitations:

Ô†(1) =

ai

Ô†ai(1)XCV
ai +


ui

Ô†ui(1)XCO
ui

+

au

Ô†au(1)XOV
au +


tu

Ô†tu(1)XOO
tu

+

ia

Ô†ia(1)Y VC
ia +


iu

Ô†iu(1)Y OC
iu

+

ua

Ô†ua(1)Y VO
ua . (18)

In Eq. (18), we use X and Y to represent the excitation and
de-excitation parts of the amplitude, respectively. Superscripts
on the quantities Xpq and Yqp indicate the excitation type, e.g.,
XCV
ai is the coefficient for excitation of one electron from a

closed-shell, doubly occupied MO φi and into a virtual MO
φa. Using the spin-tensor basis above, the matrix N can be
expressed explicitly as N = NXX ⊕ NYY where

NXX =

*............
,

δi jδab 0 0 0

0
(

2S0 + 1
2S0

)
δi jδuv 0 0

0 0
(

2S0 + 1
2S0

)
δuvδab 0

0 0 0 NOO-OO

+////////////
-

, (19)

and NYY = 0. The block NOO-OO is the only part of NXX that
is not diagonal. This block is singular, with matrix elements

NOO-OO
tu, vw = −

(
2S0 + 1

2S0(2S0 − 1)
)
δtuδvw +

(
2S0 + 1
2S0 − 1

)
δt vδuw.

(20)

The rank of NOO-OO is less than its dimension, which
removes the overcompleteness of the OO excitation space.
For example, if S0 = 1 and Sf = 0 (singlet states from a
high-spin triplet reference), then NOO-OO can be expressed as

NOO-OO
S0=1 =

*........
,

3
2

0 0 −3
2

0 3 0 0
0 0 3 0

−3
2

0 0
3
2

+////////
-

, (21)

which has a rank of 3. It is easy to show that all possible single
spin-flipping excitations within the open-shell space from a
high-spin triplet reference state will generate three singlet
states and one triplet state. The fact that the matrix in Eq. (21)
has rank 3 rather than 4 guarantees that the one triplet state
is excluded from the solutions. At this point, we have proved
that by using Eq. (5) as the working equation for SA-SF-CIS,

all the solutions will have the correct spin eigenvalue and no
spurious solutions will be generated.

It is also interesting to note that the de-excitation part of
the TEOM vanishes, i.e., NYY = 0. As such, there is no concept
of a “Tamm-Dancoff approximation,”36 since Y ≡ 0, and the
SA-SF-CIS method derived here reduces to the spin-complete
SF-CIS method of Sherrill and co-workers.28 The benefit of
our TEOM-based derivation is that we do not have to add more
electron configurations into the CI equations, as was done in
Ref. 28. Actually, the matrix dimensions of M and N in
SA-SF-CIS are exactly the same as those in (spin-incomplete)
SF-CIS, due to the spin-tensor basis that is used here. In other
words, the spin contamination in SF-CIS can be removed
without additional computational cost by applying the TEOM
approach.

D. DFT correction

In principle, the current SA-SF-CIS method can be
extended to its corresponding DFT counterpart by introducing
a Hamiltonian ĤDFT associated to density functional theory.
This Hamiltonian is required to generate the exact ground-
state energy from the single-determinant reference state,
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Eexact
0 = ⟨S0|ĤDFT|S0⟩. Unfortunately, no such Hamiltonian is

known in analytic form. Instead, we propose an empirical
correction to the matrix elements in the SA-SF-CIS working
equation to capture dynamical correlation using a density
functional. The motivation behind this ad hoc correction is
similar in spirit to the idea that underlies the DFT/MRCI
method.31,32 We will denote our method as SA-SF-DFT.

In DFT/MRCI, the major correction from DFT is added
to the diagonal matrix elements of the MRCI Hamiltonian in
the following way. Using singly-excited Slater determinants
|Φpq⟩ rather than configuration state-functions as the basis,
we have

⟨Φpq |ĤDFT − EDFT
0 |Φpq⟩ = FKS

pp − FKS
qq + ⟨pq| |qp⟩

+ pJ⟨pq|pq⟩ − p(No)⟨pq|qp⟩.
(22)

Here, |Φpq⟩ indicates q → p excitation, EDFT
0 is the ground-

state DFT energy, FKS is the Kohn-Sham Fock matrix, pJ

is a fitting parameter, and p(No) is an empirical function
depending on the number of open shells, No. The quantities
pJ and p(No) are optimized for each density functional, and
for the BH&HLYP functional,37 good performance is obtained
for pJ = 1 − CHF = 0.5. (Re-parameterization is required for
the functionals having a substantially different fraction of
Hartree-Fock exchange.32)

Since the correction from ⟨pq|pq⟩ is usually larger than
that from ⟨pq|qp⟩, we will neglect the final term in Eq. (22)
in our method. Moreover, we set pJ = 1 − CHF and apply the
correction to all matrix elements including off-diagonal terms,
for simplicity. The matrix elements in SA-SF-DFT therefore
have the following form:

⟨Φpq |ĤDFT − EDFT
0 |Φr s⟩ = δqsFKS

pr − δprFKS
qs + ⟨ps| |qr⟩

+ (1 − CHF)⟨ps|rq⟩. (23)

This is precisely the same matrix element as in collinear
SF-TDDFT,1 which provides some justification for the
generally good performance of that method. In principle,
we could tune the value of pJ in collinear SF-TDDFT for any
density functional, in an effort to obtain accurate energetics.
As such, the requirement of ≈50% Hartree-Fock exchange for
good results in collinear SF-TDDFT, which was discovered
empirically in Ref. 1, may actually depend upon how we
“translate” the CI method to TDDFT and may have less to
do with spin contamination, as was suggested in Ref. 24.
Additional evidence in support of this argument comes from
non-collinear SF-TDDFT, which usually performs well with
less Hartree-Fock exchange,5,11 despite the fact that it is also
spin contaminated. This is mainly because the CI method and
TDDFT are connected in a different way, namely, through
non-collinear kernels, and the parameterization approach for
non-collinear SF-TDDFT is distinct from that for collinear
SF-TDDFT.

Besides the simple form of Eq. (23), there is another
advantage to calculating the matrix elements in this way. The
Wigner-Eckart theorem is used in deriving the TEOMs, and
this theorem assumes that the components of a spin tensor
are energetically degenerate because the Hamiltonian of the
system is spin-independent. This degeneracy is satisfied only

if we use the same Hamiltonian to calculate the ground-state
energy and the matrix elements in the TEOM. Equation (23),
based on a restricted open-shell Hartree-Fock38 (ROHF)
reference state, satisfies the spin-degeneracy condition24 and
thus partly removes the ambiguity associated with application
of the Wigner-Eckart theorem. Some ambiguity remains,
insofar as the Kohn-Sham Fock matrix that is used in Eq. (23)
is calculated from a different Hamiltonian as compared to
ĤDFT.

Although, in principle, it would be possible to use non-
collinear exchange-correlation (XC) functionals to add a DFT
correction to SA-SF-CIS, we will use collinear functionals
exclusively. The reason is that the ROHF reference state
exactly satisfies the degeneracy condition amongst the various
components of a spin multiplet, and the form of the collinear
matrix elements [Eq. (23)] does not alter this fact. For non-
collinear functionals, the form of the K matrices introduced
in the Appendix is altered in a way that may not respect
the spin-degeneracy condition.24 (Li and Liu24 suggest how
empirical parameters could be introduced to partially restore
this degeneracy, but we will not attempt this here.)

Note that the use of Eq. (23) in conjunction with a spin-
complete formalism does engender some double-counting of
electron correlation. The same can be said of DFT/MRCI, and
in that method the off-diagonal matrix elements are modified in
an attempt to counterbalance some of this double-counting.32

Similar modifications may help the SA-SF-DFT method, but
we have not pursued these yet. It should be noted that collinear
SF-TDDFT itself is already subject to some double-counting.

III. NUMERICAL EXAMPLES

The SA-SF-DFT method has been implemented in a
locally modified version of the Q-C program,39 and in this
section we evaluate its performance. All calculations were
performed using Q-C except for some benchmark MRCI
calculations, which were performed using the O program.40

The examples that we consider here involve singlet excitations
starting from a high-spin ROHF reference state38 for the triplet.
It should be noted that the formalism is more general than
triplet-to-singlet spin-flipping transitions, however. The spin
states S0 and Sf (Section II) can be any integer or half-integer
values, subject to the constraint that Sf = S0 − 1.

A. Ethylene torsion

Ethylene torsion is a prototypical example for testing how
electronic structure methods describe biradicals. Collinear
SF-TDDFT performs well for this system,1 whereas most
spin-conserving, single-reference methods (e.g., TDDFT or
EOM-CCSD) fail to yield smooth potential curves at the
D2d geometry,29 because the ground and excited states are
described in an unbalanced manner.

Here, we study potential energy curves along the double-
bond twisting coordinate of the singlet N, V, and Z states. We
compare collinear SF-TDDFT, SA-SF-DFT, and SA-SF-CIS
potential energy curves to those obtained at the MRCI singles
and doubles level. The BH&HLYP functional37 is used for the
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FIG. 2. Potential energy curves along the double-bond torsion coordinate
of ethylene, for the singlet states N, V, and Z. The SF-TDDFT results use
the collinear formalism and note that SA-SF-CIS (without the ad hoc DFT
correction) is equivalent to the spin-complete SF-CIS method of Ref. 28.
The zero in energy corresponds to the singlet ground state at its equilibrium
geometry.

DFT calculations, and a CAS(2,2) singlet ground state is used
as the reference state for the MRCI calculations. Potential
scans along the torsion coordinate use the cc-pVTZ basis
set starting from the equilibrium geometry optimized at the
ωB97X-D/6-31G* level. Potential scans are plotted in Fig. 2.

All four of the aforementioned methods are in good
agreement with each other for the N state, except that the
two DFT methods slightly overestimate the barrier height
and SA-SF-CIS slightly underestimates it, as compared to
the MRCI result. For the V and Z states, potential curves
computed using the two DFT methods exhibit quantitative
agreement with MRCI results, whereas the excitation energies
predicted by SA-SF-CIS are more than 1 eV too large at the
D2d geometry. This is undoubtedly due in large part to the
lack of dynamical correlation in this approach, and the same
effect was seen recently in time-dependent projected Hartree
Fock calculations of twisted ethylene.29 Nevertheless, each
of the methods examined here produces a smooth potential
curve and at least quasi-degeneracy between the V and Z
states at the D2d geometry. This is because all three spin-flip
approaches (and MRCI as well) treat the ground and excited
states in a balanced manner and include the most important
double excitations.

Note also that there is essentially no difference between
SA-SF-DFT and collinear SF-TDDFT results for the ethylene
torsion problem. This is not surprising given that the latter
approach exhibits nearly zero spin contamination for the
electronic states in question. Recalling that we construct the
matrix elements of SA-SF-DFT in the same way as in collinear
SF-TDDFT [Eq. (23)], these two methods become identical
in cases where SF-TDDFT exhibits no spin contamination.

B. Vertical excitation energies of nucleobases

Previous collinear SF-TDDFT studies have shown that
this method tends to overestimate vertical excitation energies
for nucleobases,18 and it is interesting to examine whether
SA-SF-DFT can correct this problem. Equilibrium structures

TABLE I. Vertical excitation energies (in eV) for the lowest two singlet
excited states of the five nucleobases. For collinear SF-TDDFT, the value of
⟨Ŝ2⟩ is given in parentheses, in units of ~2.

SA-SF-DFT Collinear SF-TDDFT Benchmark

Nucleobase S1 S2 S1 S2 S1 S2

Uracil 5.35 5.56 5.50 (1.09) 5.80 (0.16) 5.00a 5.25a

Adenine 5.24 5.28 4.79 (1.09) 5.31 (1.11) 5.13b 5.20b

Thymine 5.21 5.66 5.60 (1.08) 5.66 (0.16) 5.14c 5.60c

Cytosine 4.74 5.60 5.28 (0.29) 5.45 (1.04) 4.76d 5.24d

Guanine 5.02 5.18 4.95 (1.04) 5.02 (1.05) 4.76b 5.09b

MAEe 0.16 0.18 0.40 0.20

aCR-EOM-CCSD(T)/aug-cc-pVTZ results from Ref. 41.
bCAS(10,10)PT2/ANO-double-ζ results from Ref. 42.
cEOM-CCSD/TZVP results from Ref. 43.
dCR-EOM-CCSD(T)/cc-pVDZ results from Ref. 44.
eMean absolute error with respect to the benchmarks.

of the nucleobases were optimized at the B3LYP/6-
311G(2df,2pd) level, and then SA-SF-DFT and collinear
SF-TDDFT excitation energies were computed at the
BH&HLYP/aug-cc-pVTZ level.

Table I summarizes the vertical excitation energies of
the lowest two singlet excited states for all five nucleobases,
along with benchmark results from correlated wavefunction
calculations. For the collinear SF-TDDFT calculations, values
of ⟨Ŝ2⟩ are listed as well. Since most of the states in
the collinear SF-TDDFT calculations are heavily spin-
contaminated, with ⟨Ŝ2⟩ ≈ 1 (in units of ~2), we assign those
states with ⟨Ŝ2⟩ < 1.5 to be singlet states.

We observe that SA-SF-DFT affords reasonable excitation
energies for the S1 and S2 states of all five nucleobases, with a
mean absolute error (MAE) 0.17 eV. For the S1 state, collinear
SF-TDDFT affords a large MAE (0.40 eV), although the MAE
for the S2 state is comparable at 0.20 eV. It is possible that
the reasonable performance of the heavily spin-contaminated
SF-TDDFT calculations is accidental, since averaging over the
triplet and singlet states sometimes results in good excitation
energies in unrestricted TDDFT calculations for open-shell
systems,26 and many of the ostensibly singlet excitations
computed using SF-TDDFT in Table I are better described as
roughly equal mixtures of singlet and triplet.

Considering the similarity of the matrix elements in
DFT/MRCI [Eq. (22)] and collinear SA-SF-DFT [Eq. (23)],
one might anticipate comparable performance given an
appropriate reference state. [For example, a high-spin triplet
reference state in SA-SF-DFT corresponds to a CAS(2,2)
reference state in MRCI.] On the other hand, the traditional,
collinear SF-TDDFT approach with the same functional
(e.g., BH&HLYP) usually shows much worse performance,
especially near the Franck-Condon region. From the examples
in Sections III A and III B, we may conclude that the poor
performance of collinear SF-TDDFT is mostly caused by
the spin contamination, while an XC functional with ≈50%
Hartree-Fock exchange should still be a reasonable choice for
collinear SF-TDDFT.

In a previous study of the nucleobases using range-
separated hybrid functionals with non-empirical tuning, a
MAE of 0.19 eV for the S0 → S1 excitations was reported.45

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

50.58.60.254 On: Thu, 17 Dec 2015 18:37:48



234107-7 X. Zhang and J. M. Herbert J. Chem. Phys. 143, 234107 (2015)

This further suggests that the performance of SA-SF-DFT is
perhaps about the best that one can expect from contemporary
TDDFT. Based on these few, simple tests, we can say that the
correction to excitation energies that is obtained by removing
the spin contamination in collinear SF-TDDFT is sizable, and
SA-SF-DFT seems like a promising method.

C. State assignment in SF-TDDFT

Although there are a few examples of ab initio MD
simulations using SF-TDDFT,12,20,21 and other examples
of using SF-TDDFT to locate minimum-energy crossing
points (MECPs) along conical seams,10,13,14,16,18 the spin
contamination problem makes it challenging to assign the
excited states correctly and consistently across the potential
energy surface. Here, we demonstrate this problem with
numerical examples.

1. Nonadiabatic ab initio MD

We carried out a fewest-switches surface hopping
simulation46 of uracil, using collinear SF-TDDFT at the
BH&HLYP/6-31G* level. Three successive snapshots along
one trajectory, spanning only 1 fs of simulation time, serve to
demonstrate the state assignment problem; excitation energies
and ⟨Ŝ2⟩ values for these snapshots are given in Table II.
Within the time window presented in the table, the S1 and
T1 states change their order, but this can be difficult to detect
in the heavily spin-contaminated SF-TDDFT calculations.
The consequence of an incorrect state assignment in an
ab initio MD simulation (or excited-state geometry opti-
mization, for that matter) might be energy jumps, propagation
on the wrong state, and other nonsense ultimately leading
to incorrect relaxation times and branching ratios, or even
convergence failure. As such, an effective state-tracking
algorithm is required whenever SF-TDDFT is used to move
about an excited-state potential energy surface.

A straightforward way to do this, which we have
sometimes found to be effective, is to monitor the change in
the excited-state transition density. Within the Tamm-Dancoff

TABLE II. Excitation energies for three sequential time steps of a surface-
hopping simulation of gas-phase uracil performed at the BH&HLYP/6-31G*
level.

SA-SF-
DFT/RPA Collinear SF-TDDFT SF-RASCI

Time/fs State ω/eV State ω/eV ⟨Ŝ2⟩/~2 State ω/eV

26.6 S1 2.36 S1 2.05 1.18 S1 2.39
T1 2.19 1.81

S2 3.82 S2 3.66 0.63 S2 3.85

27.1 T1 2.12 1.52
S1 2.37 S1 2.20 1.51 S1 2.44
S2 3.83 S2 3.72 0.66 S2 3.90

27.6 T1 2.14 1.91
S1 2.39 S1 2.24 1.15 S1 2.47
S2 3.82 S2 3.76 0.65 S2 3.93

approximation, this quantity is

T(r,r′) =

ai

Xai φi(r) φa(r′). (24)

Let us denote the transition density at a subsequent geometry
as

T(r,r′) =

b j

Xb j φ j(r) φb(r′). (25)

We wish to examine the overlap integral
dr dr′ T(r,r′) T(r′,r) =


i jab

Xai
Xb j⟨φi |φ j⟩⟨φa|φb⟩

= tr(XC†SCX†C†S†C), (26)

where Sµν = ⟨µ|ν⟩ is the overlap between the atomic orbitals at
the two different geometries. Based on the overlaps between
various transition densities and the assumption that it is
possible to assign spin multiplicities to the SF-TDDFT states
at the Franck-Condon geometry, one may hope to track those
multiplicities as the geometry and excited states evolve in
time.

The aforementioned state-tracking procedure was used to
assign multiplicities to the SF-TDDFT calculations reported in
Table II. Note that if the assignment were based solely on the
value of ⟨Ŝ2⟩, e.g., with states having ⟨Ŝ2⟩ > 1.5 assigned as
triplets, then at t = 27.1 fs we would assign as S1 the state that
is actually labeled as S2 in Table II. This illustrates the extent
to which ⟨Ŝ2⟩ completely fails as a reliable quantum number
in SF-TDDFT, which in our experience is quite common away
from the Franck-Condon region.18

On the other hand, the state-tracking procedure suggested
in Eq. (26) is not guaranteed to work, especially in
nonadiabatic MD simulations. Each spin-contaminated state
in SF-TDDFT is a mixture of different spin multiplicities, and
when the two states with different multiplicities (singlet and
triplet in the present example) become nearly degenerate, their
wavefunctions usually vary smoothly with respect to nuclear
geometry. This is analogous to an avoided crossing between
two strongly coupled states, and state-tracking algorithms can
easily fail to identify a change in the ordering of two states
with different multiplicities. As such, the most reliable way
to solve the state assignment problem is to use spin-adapted
methods.

Table II also lists SA-SF-DFT excitation energies for
uracil along with benchmarks computed at the level of
spin-flip restricted active space configuration interaction
(SF-RASCI).47 We computed these benchmarks using a large
active space [RAS(2,10)-SF] to ensure accuracy, and we find
that they agree very well with SA-SF-DFT calculations. This
demonstrates that the SA-SF-DFT approach not only cures
the state assignment problem but also improves upon collinear
SF-TDDFT energetics. As such, SA-SF-DFT appears to
be a promising method for nonadiabatic ab initio MD
simulations.

2. Optimization of MECPs

As another example to demonstrate the state assignment
problem in SF-TDDFT, we searched for the MECP along
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FIG. 3. Potential energy curves along the S0/S1 MECP optimization trajec-
tory of ethylene, calculated using collinear SF-TDDFT (BH&HLYP/6-31G*
level). Labels above the curves show at which steps the state assignment
problem appears. The zero of energy is the ground state at the D2d geometry.

the crossing seam between the S0 and S1 states of ethylene,
using both SF-TDDFT and SA-SF-DFT. The D2d geometry
served as the starting point in both calculations, and for SF-
TDDFT, we assign the states using ⟨Ŝ2⟩ alone, with any state
having ⟨Ŝ2⟩ < 1.2 assigned as a singlet. We do not yet have
analytic energy gradients for the SA-SF-DFT method, so for
this method the gradients are evaluated by finite difference,
and we use a penalty-constrained algorithm48 to locate the
MECP. This algorithm does not require derivative couplings.
For the SF-TDDFT calculations, both analytic gradients and
analytic derivative couplings are available,9 and we can use
a MECP optimization algorithm that takes advantage of
both.49

Figure 3 plots the energies of the two states involved in
the MECP optimization, at the SF-TDDFT level. Optimization

TABLE III. Values of ⟨Ŝ2⟩ (in units of ~2) for the lowest three states of
ethylene in the first 19 optimization steps shown in Fig. 3.

Values of ⟨Ŝ2⟩
Step State 1 State 2 State 3

1 0.01 2.01 0.06
2 0.02 2.00 0.05
3 1.14 0.90 0.02
4 1.10 0.95 0.02
5 0.07 1.97 0.03
6 0.90 1.18 0.03
7 0.93 1.15 0.05
8 1.00 1.05 0.06
9 0.75 1.30 0.05
10 1.03 1.06 0.04
11 0.93 1.14 0.06
12 0.99 1.06 0.08
13 1.61 0.43 0.09
14 1.20 0.85 0.09
15 0.29 1.76 0.08
16 0.27 1.81 0.05
17 0.12 2.01 0.02
18 2.00 0.10 0.04
19 2.00 0.03 0.10

FIG. 4. Potential energy curves along the S0/S1 MECP optimization trajec-
tory of ethylene, calculated using SA-SF-DFT (BH&HLYP/6-31G* level).
The zero of energy is the ground state at the D2d geometry.

steps at which the state assignment is ambiguous are labeled,
and in Table III we provide the ⟨Ŝ2⟩ values of the lowest three
states at each optimization step. For the first 14 optimization
steps, the S0 state and the low-lying triplet state are nearly
degenerate and strongly coupled with each other, which makes
state assignments very difficult. For example, whereas in the
second step we can assign state 1 as S0 and state 3 as S1
without ambiguity, the use of ⟨Ŝ2⟩ in the third step would
assign state 1 as S0 and state 2 as S1, but by examining
the orbitals and CI coefficients we found that state 2 and
state 3 are the true S0 and S1 states, whereas state 1 is a
triplet. As a result of this incorrect state assignment, the
efficiency of MECP optimization is greatly reduced, which
can be inferred from the steep peaks in Fig. 3 that occur
precisely in regions where the state assignment is ambiguous.
Since the states are assigned incorrectly, the energy gradients
and derivative couplings are calculated for the wrong states,
and it takes 18 steps to reach the correct intersection
seam.

Although a state-tracking algorithm, such as that dis-
cussed above, might improve the performance of SF-TDDFT
for MECP optimization, the SA-SF-DFT method is a better
solution. Energies along the S0/S1 MECP optimization
computed using the latter method are plotted in Fig. 4. In this
case, the energy variations along the optimization pathway
are much smaller and the optimization reaches the correct
intersection seam within 6 steps and finally converges to
the MECP in fewer steps than the SF-TDDFT calculation,
despite the fact that the latter calculation is able to exploit
analytic derivative couplings. (MECP optimizations using
SF-TDDFT without analytic derivative couplings require even
more steps.9)

IV. SUMMARY

We have derived and implemented the spin-adapted
counterpart of conventional collinear SF-TDDFT, which we
denote as SA-SF-DFT. The underlying SA-SF-CIS method
is equivalent to a previous spin-complete implementation
of SF-CIS28 but is derived here based on an equation-of-
motion formulation in a spin-tensor basis. Our derivation
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results in matrices of similar dimension as those in
SF-TDDFT, meaning that the cost of the CI-like part of the
SA-SF-CIS calculation is not significantly increased by the
extension to spin eigenstates. To this SA-SF-CIS foundation,
we then add an ad hoc density-functional correction in order
to incorporate dynamical correlation, and this constitutes
what we call the SA-SF-DFT method. Roughly speaking,
SA-SF-DFT is a spin-flip restricted active space CI
method with a DFT correction similar in spirit to
that used in DFT/MRCI. Unsurprisingly, this dynamical
correlation correction can easily exceed 1 eV for excitation
energies, and we find that the performance of SA-SF-
DFT represents a consistent improvement over collinear
SF-TDDFT.

In addition, SA-SF-DFT is a potentially much more
attractive approach to excited-state ab initio MD simulations,
as compared to SF-TDDFT. This is because

• it is free of spin contamination, and thus not subject to
the state-assignment problem that plagues SF-TDDFT;

• it treats ground and excited states on the same
footing and thus affords correct topology at conical
intersections, including those that involve the ground
state; and

• it is just as computationally efficient as SF-TDDFT.

That said, efficient application to ab initio MD will
require the development an implementation of analytic
energy gradients for the SA-SF-DFT method. Relative to
the gradients for traditional SF-TDDFT, this is complicated
by the additional orbital subspaces that are necessary for
the spin-adapted version (as illustrated in Fig. 1), and thus
by additional orbital response terms that will appear in the
derivative of Eq. (18). These extra terms should, however,
only increase the cost relative to SF-TDDFT by a prefactor
that is independent of system size and thus will not increase
the formal computational scaling with system size relative to
TDDFT or SF-TDDFT.
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APPENDIX: MATRIX ELEMENTS IN EQ. (12)

In this appendix, we briefly summarize the matrix
elements of M in Eq. (12), which are derived from Eq. (5)
with the spin-tensor basis shown in Eq. (18). More details can
be found in Ref. 24.

The matrix M is the sum of three matrices,

M =M(0) −M(1) +M(2), (A1)

where

TABLE IV. Matrix elements of M+, M0, and M− not including OO
excitations.

Block Matrix element

CV-CV
[M+]ai,b j = δi jF

α
ab
−δabF

β
i j+K

αβ,αβ
ai,b j

[M0]ai,b j = δi j(Fα
ab
+F

β
ab

)/2−δab(Fα
i j+F

β
i j)/2+K t

ai,b j

[M−]ai,b j = δi jF
β
ab
−δabF

α
i j+K

βα,βα
ai,b j

CV-CO
[M+]ai, v j = δi jF

α
av

[M0]ai, v j = (δi jF
α
av+δi jF

β
av−K

αα,ββ
ai, v j +K

ββ,ββ
ai, v j )/2

[M−]ai, v j = δi jF
β
av+K

βα,βα
ai, v j

CO-CV
[M+]ui,b j = 0
[M0]ui,b j = (δi jF

β
bu
−K ββ,αα

ui,b j
+K

ββ,ββ
ui,b j

)/2

[M−]ui,b j = δi jF
β
bu
+K

βα,βα
ui,b j

CV-OV
[M+]ai,bv =−δabF

β
iv

[M0]ai,bv = (−δabF
α
iv−δabF

β
iv+K

αα,αα
ai,bv

−K ββ,αα
ai,bv

)/2
[M−]ai,bv =−δabF

α
iv+K

βα,βα
ai,bv

OV-CV
[M+]au,b j = 0
[M0]au,b j = (−δabF

α
ju+K

αα,αα
au,b j

−Kαα,ββ
au,b j

)/2

[M−]au,b j =−δabF
α
ju+K

βα,βα
au,b j

CO-CO
[M+]ui, v j = 0
[M0]ui, v j = (δi jF

β
uv−δuvF

β
i j+K

ββ,ββ
ui, v j )/2

[M−]ui, v j = δi jF
β
uv−δuvF

α
i j+K

βα,βα
ui, v j

CO-OV
[M+]ui,bv = 0
[M0]ui,bv =−K ββ,αα

ui,bv
/2

[M−]ui,bv =K
βα,βα
ui,bv

OV-CO
[M+]au, v j = 0
[M0]au, v j =−Kαα,ββ

au, v j /2

[M−]au, v j =K βα,βα
au, v j

OV-OV
[M+]au,bv = 0
[M0]au,bv = (δuvF

α
ab
−δabF

α
uv+K

αα,αα
au,bv

)/2
[M−]au,bv = δuvF

β
ab
−δabF

α
uv+K

βα,βα
au,bv

M(0) = 1
3 (M+ +M0 +M−), (A2)

M(1) =
(

S0 + 1
2S0

)
(M+ −M−), (A3)

M(2) =
 (S0 + 1)(2S0 + 3)

6S0(2S0 − 1)

(M+ − 2M0 +M−). (A4)

The matrix elements of M+, M0, and M− are grouped into
different blocks. Recall that the blocks associated with de-
excitations vanish, which makes the size of M about half the
size of the orbital rotation Hessian in the conventional time-
dependent Hartree-Fock method. Since M is not Hermitian,
we need to calculate a few more matrix elements as compared
to the approach used in Ref. 24. The results are summarized
in Tables IV and V. In those tables, F is the Fock matrix, and
K is the coupling matrix defined as

Kστ,σ′τ′
pq,r s = ⟨pσsτ′| |qτrσ′⟩, (A5)

where σ, τ, σ′, and τ′ denote α or β spin. Finally, Kt is
defined as

Kt =
1
2
(Kαα,αα +Kββ,ββ −Kαα,ββ −Kββ,αα). (A6)
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TABLE V. Matrix elements of M+, M0, and M− including OO excitations.

Block Matrix element

CV-OO
[M+]ai, vw =−Kαβ,αβ

ai, vw

[M0]ai, vw = 0
[M−]ai, vw =K

βα,βα
ai, vw

OO-CV
[M+]tu,b j = 0
[M0]tu,b j = δtu(Fα

b j
−F β

b j
)/2

[M−]tu,b j =K
βα,βα
tu,b j

CO-OO
[M+]ui, vw = 0
[M0]ui, vw =−δuvF

β
iw/2

[M−]ui, vw =−δuvF
α
iw+K

βα,βα
ui, vw

OO-CO
[M+]tu, v j = 0
[M0]tu, v j =−δtuF

β
j v/2

[M−]tu, v j =−δt vF
α
ju+K

βα,βα
tu, v j

OV-OO
[M+]au, vw = 0
[M0]au, vw = δuwF

α
av/2

[M−]au, vw = δuwF
β
av+K

βα,βα
au, vw

OO-OV
[M+]tu,bv = 0
[M0]tu,bv = δutF

α
bv

/2

[M−]tu,bv = δuvF
β
bt
+K

βα,βα
tu,bv

OO-OO
[M+]tu, vw = 0
[M0]tu, vw = 0
[M−]tu, vw = δuwF

β
t v−δt vF

α
uw+K

βα,βα
tu, vw
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