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Understanding the many-body expansion for large systems. II.
Accuracy considerations
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To complement our study of the role of finite precision in electronic structure calculations based
on a truncated many-body expansion (MBE, or “n-body expansion”), we examine the accuracy of
such methods in the present work. Accuracy may be defined either with respect to a supersystem
calculation computed at the same level of theory as the n-body calculations, or alternatively with
respect to high-quality benchmarks. Both metrics are considered here. In applications to a sequence of
water clusters, (H2O)N=6−55 described at the B3LYP/cc-pVDZ level, we obtain mean absolute errors
(MAEs) per H2O monomer of ∼1.0 kcal/mol for two-body expansions, where the benchmark is a
B3LYP/cc-pVDZ calculation on the entire cluster. Three- and four-body expansions exhibit MAEs
of 0.5 and 0.1 kcal/mol/monomer, respectively, without resort to charge embedding. A generalized
many-body expansion truncated at two-body terms [GMBE(2)], using 3–4 H2O molecules per frag-
ment, outperforms all of these methods and affords a MAE of ∼0.02 kcal/mol/monomer, also without
charge embedding. GMBE(2) requires significantly fewer (although somewhat larger) subsystem
calculations as compared to MBE(4), reducing problems associated with floating-point roundoff
errors. When compared to high-quality benchmarks, we find that error cancellation often plays a
critical role in the success of MBE(n) calculations, even at the four-body level, as basis-set super-
position error can compensate for higher-order polarization interactions. A many-body counterpoise
correction is introduced for the GMBE, and its two-body truncation [GMBCP(2)] is found to afford
good results without error cancellation. Together with a method such as ωB97X-V/aug-cc-pVTZ
that can describe both covalent and non-covalent interactions, the GMBE(2)+GMBCP(2) approach
provides an accurate, stable, and tractable approach for large systems. Published by AIP Publish-
ing. [http://dx.doi.org/10.1063/1.4947087]

I. INTRODUCTION

Electronic structure methods based on molecular frag-
mentation are an increasingly popular way to sidestep the
non-linear scaling of computational cost with respect to system
size.1–4 Such methods rely, at some level, on Kohn’s principle
of the “near-sightedness” of electronic matter,5,6 and attempt
to decompose a large calculation into a (potentially large
number of) small subsystem calculations that are independent
of one another and thus lend themselves to trivially parallel
distributed computing. High accuracy is reported in many
applications (see Ref. 1 for a review), and thus molecular
fragmentation would seem to offer the proverbial “free lunch,”
enabling high-level ab initio methods to be applied to large
systems at a fraction of the cost (in wall time, memory, and
disk requirements) that would otherwise be required.

Due to the high cost of obtaining benchmark results
in large systems, the accuracy of fragment-based methods
has primarily been evaluated in small systems (typically .25
heavy atoms) and/or at low levels of electronic structure theory
(e.g., self-consistent field theory with minimal or double-
ζ basis sets). It is unclear whether such benchmarks are
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representative of the performance that can be expected when
high levels of theory are applied to larger systems. Consider
that even the smallest naturally occurring protein (the 20-
residue Trp cage) has a total electronic energy approaching
104 hartree, which must therefore be predicted to a precision
of about 0.000 01% in order to achieve an accuracy of
∼1 kcal/mol in the total energy. This is the famous “weighing
the captain” problem in electronic structure theory,7,8 i.e.,
determining the captain’s weight based on measuring the
ship’s displacement when she is, or is not, on board. The
situation is arguably somewhat worse for fragment-based
methods, which require huge numbers of electronic structure
calculations that must be performed at significantly higher
precision than is required in conventional quantum chemistry.9

A more apt analogy for fragment-based quantum chemistry
might be the notion of determining the weight of a pilot on
an aircraft carrier based on measuring the displacement when
the pilot sits in his plane, versus the displacement for various
combinations of aircraft and pilots on board the ship.

In part I of this series,9 we examined the role of finite-
precision arithmetic in methods based on a truncated many-
body expansion (MBE), otherwise known as an “n-body
expansion.” The analysis in Ref. 9 focused on systematic
error as system size was increased, and we found that
the uncertainty in the n-body approximation to the energy
is strongly influenced by the self-consistent field (SCF)
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convergence threshold used for the individual subsystem
calculations (much more so than is the total supersystem
energy), as well as by accumulation of floating-point rounding
errors. Implementations of the MBE that rely on external calls
to an electronic structure program (rather than being fully
integrated into such a program) suffer from an additional
source of uncertainty, namely, the fact that discrepancies
as small as 10−6 a.u. between the driver routine and the
electronic structure program (due to six-digit roundoff in the
electronic structure output, for example) can translate into
errors of several kcal/mol, for systems not much larger than
(H2O)30.9 Owing to the combinatorial nature of the MBE,
these problems are compounded as the system size increases,
and also compounded as one moves to higher n in pursuit of
greater accuracy.

Although these precision problems appear to be
surmountable using a combination of tight SCF convergence
thresholds, arbitrary-precision arithmetic to sum the terms in
the MBE, and a consistent internal precision in all electronic
structure calculations,9 these considerations do increase the
cost of the calculations relative to what has previously been
discussed in the literature. The worst cases manifest only when
n ≥ 4, and for very large collections of fragments (N & 40)
that may be avoidable in applications to polyatomic molecules,
and might be sidestepped in applications to molecular liquids
via some kind of distance-based criterion for discarding or
approximating well-separated n-mers. Thus, two- and three-
body approaches might still prove useful, provided that good
accuracy can be obtained.

Using water clusters as exemplary cases where many-
body polarization effects are important, we demonstrate in the
present work that a four-body expansion [MBE(4)] is required
in order to obtain accurate values for both total interaction
energies as well as relative energies of various isomers. On the
other hand, a generalized many-body expansion2,10,11 (GMBE)
that utilizes overlapping subsystems can provide results of
comparable accuracy at the two-body level. This is not a “free
lunch” relative to MBE(4), because the size of the subsystem
calculations increases in this “GMBE(2)” approach, but the
number of subsystem calculations is dramatically reduced,
staving off numerical precision problems while maintaining
the trivial parallelizability of the traditional MBE approach.

Following up on our study of precision problems in
Ref. 9, here we seek to evaluate the accuracy of various
n-body approximations, using the same set of water clusters
that was examined in Ref. 9. Regrettably, the overwhelming
majority of our present results fail to achieve 1 kcal/mol
accuracy in the total energy as approximated at the three-body
level, but do reveal some interesting trends as these methods
are pushed towards the large-system (N → ∞) limit. Here,
we focus on: (1) whether the supersystem energy at a given
level of theory can be accurately approximated when the same
level of theory is used for the subsystem calculations; (2) the
oscillatory nature of the n-body expansion as the truncation
order, n, is increased; (3) size-dependent errors in the n-body
total energy and what impact these have on the prediction
of relative energies; and (4) the ability of these methods to
reproduce high-level benchmarks. As in our previous study,9

our findings unearth potential pitfalls that have not been widely

discussed in the rapidly growing literature on fragment-based
quantum chemistry.

II. THEORY

A. Traditional MBE

The basic idea of the n-body expansion is straightforward
and has been reviewed elsewhere.1–4 The total energy

E =
N
I=1

EI +

N
I=1


J<I

(EI J − EI − EJ) + · · · (1)

is expressed as a sum of monomer energies (EI), dimer
energies (EI J), etc., becoming exact (by tautological
definition) when n = N . Consult Ref. 9 for compact formulas.
To place Eq. (1) in the context of what is to come, note that
this equation can alternatively be expressed as12

E =
N
I=1

∆E(1)
I +

(
N
2

)
J=1

∆E(2)
J +

(
N
3

)
K=1

∆E(3)
K + · · ·, (2)

where (
N
n

)
=

N!
n!(N − n)! (3)

and

∆E(n)
I =

n
m=1

(−1)n−m

J ⊂I

E(m)
J (4)

is a correction to the energy of the Ith n-body subsystem.
The quantity E(m)

J in Eq. (4) is the energy of the Jth m-body
sub-cluster formed from the Ith n-body cluster. As such, the
second summation in Eq. (4) ranges from J = 1,2, . . . ,

� n
m

�
,

and this is the meaning of the J ⊂ I restriction in that equation.
In cases where fragmentation does not sever any covalent

bonds, either of Eqs. (1) or (2) is a formally exact expression
for the total energy, but their appeal comes in dropping terms
beyond some given level of n-body interaction. Neglecting
terms involving (n + 1)-body and larger sub-clusters defines
the so-called n-body expansion, which we will call MBE(n).
A compact formula for the energy within the MBE(n)
approximation is9

E(n) =
n

m=1

(−1)n−m
(

N − m − 1
n − m

) (
N
m

)
K=1

E(m)
K . (5)

The summations in this equation run over all unique sub-
clusters containing up to n fragments.

B. Counterpoise correction in a many-body system

It is well known that electronic structure calculations
converge slowly to the basis-set limit13 (see Ref. 12 for
just one example), which arises from a combination of
basis-set incompleteness and basis-set superposition error
(BSSE). In the present work, we address the incompleteness
issue by means of complete-basis extrapolations, but the
convergence of these extrapolations is sensitive to the presence
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of BSSE, which we therefore attempt to eliminate. The
interaction energy,∆E, subject to a generalized Boys-Bernardi
counterpoise (CP) correction is14,15

∆E = E I JK ...N
IJK ...N −


I

E I JK ...N
I , (6)

where, following the convention of previous work,12,16 the
subscripts represent real molecules whereas superscripts
indicate where basis functions are centered. Thus E I JK ...N

I

denotes the energy of fragment I computed in a basis set
having basis functions located in the positions of fragments
I, J,K, . . . ,N ; that is, E I JK ...N

I is the energy of fragment I
computed in the cluster basis, as in the original Boys-Bernardi
scheme.14 The quantity E I JK ...N

IJK ...N is the normal supersystem
energy, which for brevity we will henceforth denote simply
as E.

Equation (6) can be trivially rewritten as

∆E =
(
E −


I

E I
I

)
+

(
I

E I
I −


I

E I JK ...N
I

)
= ∆E(uncorr) + δECP, (7)

where we have separated the interaction energy ∆E into
an “uncorrected” (and thus BSSE-contaminated) energy
difference

∆E(uncorr) = E −

I

E I
I (8)

and subsumed all BSSE corrections into a counterpoise
correction

δECP =

N
I=1

δECP
I =

N
I=1

�
E I
I − E I JK ...N

I

�
. (9)

The notation δECP
I = E I

I − E I JK ...N
I is introduced in order

to make contact with approximate counterpoise corrections
introduced below, in which the quantity E I JK ...N

I is
approximated by means of a MBE. Equation (9) looks like
the traditional Boys-Bernardi correction,14 applied in turn to
each fragment.

C. Generalized MBE

The ground-state energy can also be approximated
using a GMBE that employs overlapping fragments and
is derived based on the set-theoretical principle of inclu-
sion/exclusion;10,11 application of the GMBE requires
calculations on subsystems that are formed from intersections
of fragments. In an n-body GMBE, which we call GMBE(n),
the approximate energy is

ε(n) =

(
Nf
n

)
i=1

E(n)
i −

(
Nf
n

)
i=1

(
Nf
n

)
j>i

E(n)
i∩ j

+ · · · + (−1)
(
Nf
n

)
+1

E(n)
i∩ j∩···∩

(
Nf
n

). (10)

We have previously called this the intersection-corrected
energy at order n.10 Lower-case indices i, j, . . . in Eq. (10)
refer to n-mers of fragments, whose energies are E(n)

i ,E(n)
j , . . .,

and i ∩ j is the subsystem formed from the intersection of

n-mers i and j, with energy E(n)
i∩ j. For general, macromolecular

applications, construction of i ∩ j requires severing covalent
bonds and capping the severed valencies (as in a recent
application of the GMBE to proteins17), but in this work we
only consider non-covalent clusters, in an intentional effort
to sidestep this complexity. Note also that in this generalized
approach the number of fragments, Nf , is generally larger than
the number of monomers, N . As in previous studies,10,11,18–20

for the GMBE we use a distance cutoff of 3 Å between atoms
to define the fragments.

The advantage of GMBE(n) relative to MBE(n) is that
multiple monomers are included in a single fragment and the
system is tessellated into overlapping fragments based on a
simple distance criterion, but in a manner whose set-theoretical
derivation prevents over- or undercounting of interactions
despite the use of overlapping fragments.10,11 Obviously, one
could assign more than one monomer to a single fragment
in a traditional MBE(n) calculation, but we anticipate that
distance-based (rather than cardinality-based) fragmentation
will make it easier to adjust the fragment definitions on-the-
fly in a continuous way based on distance cutoffs, during
simulations or geometry optimizations, although we leave
this question to a future study. The presence of multiple
monomers per fragment means that some many-body effects
are included already at the level of GMBE(1), so this is a
non-trivial approximation, in contrast to MBE(1). (All MBE
calculations performed here use single-monomer fragments.)
The GMBE(1) method is equivalent to the generalized energy-
based fragmentation approach of Li and co-workers.18,19 Up
to the selection of fragments, GMBE(1) is also equivalent to
the cardinality-guided molecular tailoring approach of Gadre
and co-workers.70,71

We find that GMBE(2) is generally sufficient to reproduce
total interaction energies in non-covalent clusters, even in very
challenging cases such as F−(H2O)N .2,10,11 At the same time,
the number of subsystem calculations remains manageable
as compared to the four-body approximation that we will
see is necessary to obtain accurate MBE(n) results in
clusters composed of polar monomers. For water clusters,
the 3 Å threshold for GMBE fragmentation that is used here
typically results in fragments containing 3–4 H2O molecules.
Application of GMBE(2) to the largest cluster considered
here, (H2O)55, requires 1469 dimer calculations (consisting of
6–9 H2O molecules for the dimer) and 17 883 calculations
on intersections (4–6 H2O molecules each). These numbers
are dwarfed by the demands of an MBE(4) calculation,
which requires that subsystem calculations be performed
on 341 055 tetramers (four H2O molecules), 26 235 trimers
(three H2O molecules), and 1486 dimers. On the other hand,
the GMBE(2) subsystems are larger and require ∼9 times
more computational time (ωB97X-V/aug-cc-pVTZ level).
Operationally, GMBE(2) sidesteps the precision problems
associated with MBE(4), but at increased computational cost.
Considerations of cost are revisited in Section IV C.

D. Approximate many-body counterpoise corrections

There has long been a perceived inadequacy with the
Boys-Bernardi counterpoise correction, although the evidence
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for this inadequacy is debatable.21 The Valiron-Mayer function
counterpoise (VMFC) approach22 was later introduced as an
attempt to quantify and correct this inadequacy. It is based
on the exact energy expression in Eqs. (1) and (2), with a
counterpoise correction applied order-by-order in the MBE.
The resulting BSSE correction can be written

δEVMFC = δECP +

I<J

�
∆E I J

I J − ∆E I JK ...N
IJ

�
+ · · ·, (11)

where ∆EXY · · ·
I J , for example, is the two-body interaction

between fragments I and J, computed in a basis with functions
on centers XY · · · . Analogous expressions exist for the three-
body and higher-order terms.12,16 Note that the monomer term
is equivalent to the original Boys-Bernardi correction, δECP

in Eq. (9).
In large clusters, where one might expect more

significant BSSE effects, even the original Boys-Bernardi
correction is expensive to evaluate, and evaluation of VMFC
becomes intractable even more rapidly. Indeed, the cost
of these calculations has impeded any final reckoning on

the (in)adequacy of the Boys-Bernardi approach. Several
approximations have been proposed that are consistent with
a truncated MBE, and in particular we have suggested an
n-body approximation to Eq. (9) that we have called a
many-body counterpoise correction truncated at order n, or
MBCP(n).12,23 This approximation consists of applying an
n-body expansion to E I JK ...N

I in Eq. (9). For n = 2–4, the
MBCP(n) approximations for monomer I are

δEMBCP(2)
I = (N − 1)E I

I −
N
J,I

E I J
I , (12)

δEMBCP(3)
I = δEMBCP(2)

I + (N − 2)
N
J,I

E I J
I

−
N
J,I

N
K>J
K,I

E I JK
I − 1

2 (N − 2)(N − 1)E I
I , (13)

and

δEMBCP(4)
I = δEMBCP(3)

I + (N − 3)
N
J,I

N
K>J
K,I

E I JK
I −

N
J,I

N
K>J
K,I

N
L>K
L,I

E I JKL
I

− 1
2 (N − 3)(N − 2)

N
J,I

E I J
I +

1
6 (N − 3)(N − 2)(N − 1)E I

I . (14)

Analogous to Eq. (9), the overall MBCP(n) counterpoise correction is then

δEMBCP(n) =
N
I=1

δEMBCP(n)
I . (15)

A somewhat different counterpoise technique, called the “many-ghost many-body expansion,” has been suggested recently,24

which consists of applying a MBE to each of the terms containing ghost functions in Eq. (11). In practice, the higher-order
terms are found to be negligible and only the leading term was retained in Ref. 24; this leading term is precisely what we call
MBCP(n). We use this correction together with an n-body expansion of the energy in a method that we call MBE(n)+MBCP(n),
meaning that n-body approximations are applied separately to both ∆E(uncorr) and δECP in Eq. (7).

In a similar vein, Kamiya et al.16 introduced an n-body approximation to the VMFC procedure, which we call VMFC(n).
The MBCP(2) and VMFC(2) corrections are equivalent but the two approaches differ starting at n = 3, with VMFC(n) involving
a significantly larger number of calculations. Based on comparisons to complete-basis benchmarks in Ref. 12, for systems no
larger than F−(H2O)10, it is not clear that the increased expense of VMFC(3) is justified, but those are the largest VMFC(3)
calculations reported to date and results in larger clusters may paint a different picture.

Alternatively, δECP in Eq. (9) can be approximated using the GMBE. When truncated at order n, we will refer to this as a
generalized many-body counterpoise correction, GMBCP(n), the formula for which is introduced here for the first time:

δEGMBCP(n) =
N
I=1



(
Nf
n

)
i=1

Ei
I −

(
Nf
n

)
i=1

(
Nf
n

)
j>i

Ei∩ j
I + · · · + (−1)

(
Nf
n

)
+1

E
i∩ j∩···∩

(
Nf
n

)
I



. (16)

The notation here requires some explanation. For each
fragment I, the first term inside the brackets (


i Ei

I)
represents the energy of I computed in all of the
possible n-mer basis sets that contain this fragment. In
the second term, the energy of monomer I is computed
in all possible two-fragment intersection basis sets that

contain fragment I, and so on. Like MBCP(n), there
is only one “real” fragment in any of these subsystem
calculations, with the others serving simply as centers
for basis functions. VMFC(n), in contrast, requires calcu-
lations with up to n − 1 real fragments in an n-body
basis.
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III. COMPUTATIONAL DETAILS

In some previous studies, the MBE has been used in a
“multi-level” or “stratified” way, with different n-body terms
computed at different levels of theory.25–29 In other cases,
efforts have been made to identify a subsystem level of theory
that will reproduce high-accuracy supersystem benchmarks,
computed at an altogether different level of theory.30 In
contrast, the aim here is to test the accuracy and convergence
of the n-body expansion itself, so we will compare n-body
calculations to supersystem benchmarks computed at the same
level of theory.

In the first part of this study, we examine a sequence
of water clusters, (H2O)N=6−55, whose structures are putative
global minima on the TIP4P potential surface at each cluster
size.31 The same set of clusters was used in our previous
investigation of precision considerations for the MBE,9 and as
in that study, we use the affordable B3LYP/cc-pVDZ level of
theory since our goal is to understand the size- and n-body-
dependence of errors in total interaction energies. In view of
a recommendation by Ouyang et al.32 that the MBE should
never be used with augmented basis sets (due to the appearance
of serious BSSE problems when diffuse functions are added),
we will also test aug-cc-pVDZ and 6-31+G(d,2p). The SG-1
quadrature grid33 was used for all B3LYP calculations. A
detailed study in Ref. 9 suggests that while MBE results are
sensitive to certain numerical thresholds, as discussed below,
they are only very weakly dependent on the choice of grid.

Various forms of electrostatic embedding (EE) have been
used in an attempt to hasten the convergence (and thus improve
the accuracy) of the n-body expansion,1 and in some cases
EE-MBE results are surprisingly insensitive to the precise
details of the embedding charges,3,34,35 at least in systems
such as small water clusters. Here, we test the effects of
including supersystem-derived atom-centered point charges
computed at the B3LYP/cc-pVDZ level. (This is not ideal for
production calculations, as it requires the very supersystem
calculation that we are trying to avoid, but is used here
for testing purposes and in the end we will conclude that
embedding charges provide very little advantage anyway.) We
consider Mulliken charges, Hirshfeld charges,36 charges from
natural population analysis (NPA),37 charges derived from the
electrostatic potential (“ChElPG”),38 and charges from the
empirical CM5 model.39

To avoid precision issues associated with the reading
and writing of electronic structure input and output files, all
calculations are carried out completely internally within a
locally-modified version of Q-C,40 where the subsystem
calculations are parallelized via the message-passing interface,
MPI. (This will be released with Q-C v. 4.4.) By
performing all MBE calculations internally within Q-C,
we avoid the need to compute and subtract out the self-
interaction of the embedding charges. Although this may seem
like a trivial point, errors due to finite precision can accumulate
rapidly in the self-energy calculation, especially for the larger
systems considered here, if the self-interaction calculation is
not performed using all digits of double-precision arithmetic.9

GMBE and GMBCP calculations were performed using our
driver program, F∩,10,11,17 to prepare and execute the

necessary Q-C input files in full double precision. Note
that this requires reading Q-C’s binary scratch files and
thus is also tightly interconnected with the electronic structure
program.

In the second part of this study, we focus on establishing,
and then attempting to reproduce, high-accuracy benchmarks
for a set of (H2O)20 clusters representing four different
structural motifs. In Ref. 42, structures for 20 different isomers
of (H2O)20 are reported, representing the five lowest-lying
isomers in each of the four families of structures, according
to basin-hopping Monte Carlo calculations. For reasons of
cost, we consider only 8 of these structures, representing the
highest- and lowest-energy structures of the five reported for
each structural motif. (Structures of the 8 that we consider
are provided in the supplementary material.41) Benchmark
energetics are computed using second-order Møller-Plesset
perturbation theory (MP2) within the resolution-of-identity
(RI) approximation,43–45 RIMP2, as implemented in
Q-C.46 The aug-cc-pVTZ (aTZ) and aug-cc-pVQZ (aQZ)
basis sets are used in conjunction with their corresponding
auxiliary basis sets,45,47 and only valence orbitals are
correlated. We assume that the Hartree-Fock/aQZ energy
is sufficiently close to the complete basis set (CBS) limit to be
used without extrapolation, whereas we extrapolate the RIMP2
correlation energies using a two-point (“aTZ/aQZ”) X−3

scheme.13 Standard Boys-Bernardi counterpoise corrections
are applied,14 which for a many-body cluster means that we
compute each monomer energy using the full cluster basis,15

as in Eq. (9).
In principle these RIMP2/CBS benchmarks could be

extended to the CCSD(T)/CBS level by means of a triples
correction

δCCSD(T) = ECCSD(T) − EMP2, (17)

and good results based on two- and three-body approximations
to Eq. (17) have been demonstrated.12,48–50 The δCCSD(T)
correction for (H2O)20 has been estimated to be around
−2.7 kcal/mol,20,51 but in the interest of performing a larger
number of exploratory calculations, we omit this correction
from the MP2 calculations reported here. As an alternative,
we will report calculations using the ωB97X-V density
functional,52 as it has been shown to provide accurate non-
covalent interaction energies, when used in conjunction with a
triple-ζ basis set.51–53 In particular, for (H2O)20, counterpoise-
corrected ωB97X-V/def2-TZVPPD calculations differ from
CCSD(T)/CBS benchmarks only by an average of 1.7 kcal/mol
(see the supplementary material41). Per the recommendation
in Ref. 52, we used an Euler-Maclaurin-Lebedev grid with
75 radial points and 302 angular points to integrate the semi-
local parts of ωB97X-V, and the SG-1 grid33 for the nonlocal
correlation part.

IV. RESULTS AND DISCUSSION

In Section IV A below, we focus on how well the MBE
reproduces a supersystem calculation at the same level of
theory. It will be seen that this issue is complicated by the
oscillatory (with respect to n) and size-extensive (with respect
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to N) nature of the resulting errors. In Section IV B, we
focus on the ability of the MBE to reproduce high-accuracy
benchmarks. There, we will see that error cancellation
between MBE(n) and MBCP(n) plays a major role in the
accuracy of the results, whereas the good performance of
GMBE(2)+GMBCP(2) does not rely on cancellation of errors.
As noted above, all MBE calculations use a single monomer
per fragment whereas GMBE calculations define fragments
based on a 3 Å distance threshold, resulting in 3–4 monomers
per fragment.

A. Absolute performance of the many-body expansion

1. Errors versus system size

Previously, we observed that the total energy predicted by
an n-body expansion can change dramatically as a function of
both the SCF convergence criterion, τSCF, as well as the integral
screening threshold, τints.

3,9 Figure 1 presents a more thorough,
size-dependent analysis of the effects of numerical thresholds,
comparing results obtained with “loose” thresholds (defined
here as τSCF = 10−5 a.u. and τints = 10−9 a.u.) to those garnered
from “tight” thresholds (τSCF = 10−7 a.u. and τints = 10−14 a.u.).
A statistical summary of the mean absolute errors (MAEs) is
given in Table I. For the absolute benchmarks presented in
Section IV A, we define “error” as

error = E(n) − Esupersystem, (18)

where all calculations (supersystem and subsystem) are
performed at the same level of theory. Negative errors indicate
that the n-body approximation is overbound with respect to
the benchmark.

From Fig. 1, the difference between MBE(2) using
loose and tight thresholds cannot be differentiated, and is
only barely discernible for MBE(3), except for the largest
clusters. When using a four-body expansion, however, the
accumulation of roundoff is enough to change the sign of
the error for N & 40. In the largest cluster, (H2O)55, the
differences between results with loose and tight thresholds are

FIG. 1. Signed errors in two-, three-, and four-body total interaction energies
for a series of (H2O)6−55 clusters. As defined in Eq. (18), “error” means
the difference in the n-body approximation and a supersystem calculation
carried out at the same level of theory as the subsystem calculations, which is
B3LYP/cc-pVDZ in this case. The “loose” thresholds are τSCF= 10−5 a.u. and
τints= 10−9 a.u., whereas “tight” thresholds are τSCF= 10−7 a.u. and τints
= 10−14 a.u.

TABLE I. MAEs and (in parentheses) MAEs per monomer, for (G)MBE(n)
calculations of clusters in the range (H2O)6−55, with energetics computed at
the B3LYP/cc-pVDZ level.

MAE (kcal/mol)

Embedding n = 1 n = 2 n = 3 n = 4

— MBE (loose thresholds) —
None . . . 31.31 (1.04) 14.73 (0.48) 2.11 (0.07)

— MBE (tight thresholds) —
None . . . 31.31 (1.04) 15.88 (0.51) 3.01 (0.10)
Mulliken . . . 5.38 (0.20) 14.15 (0.45) 2.14 (0.07)
ChElPG . . . 47.14 (1.45) 12.68 (0.40) 0.79 (0.03)
NPA . . . 57.74 (1.77) 12.57 (0.39) 0.75 (0.03)
Hirshfeld . . . 6.92 (0.25) 14.29 (0.46) 2.24 (0.07)
CM5 . . . 30.59 (0.92) 12.91 (0.41) 1.11 (0.04)

— GMBE (tight thresholds) —
None 26.68 (0.78) 0.68 (0.02) . . . . . .

−0.11 kcal/mol (two-body), 3.40 kcal/mol (three-body), and
−9.47 kcal/mol (four-body). This observation complements
the propagation-of-errors analysis that we presented in Ref. 9,
and underscores the fact that each subsystem energy in the
MBE is multiplied by a binomial coefficient that is growing
factorially with respect to both n and N [see Eq. (5)]. All
remaining calculations in this work will be performed using
the tight thresholds. For a B3LYP/cc-pVDZ calculation of
(H2O)55, this requires about 2.4 times more computer time as
compared to the looser thresholds.

The other obvious message from these data is that, even
with tight thresholds, errors at the MBE(2) and MBE(3) level
are unacceptably large, even for clusters containing only a
few water molecules. Electrostatic embedding is designed to
rectify this, so in Fig. 2 we plot size-dependent errors in
MBE(n) using a variety of different embedding charges. In
stark contrast to the conventional wisdom that embedding
charges should improve the accuracy of truncated MBEs, no
such trend is observed at the two-body level, where the errors
can change dramatically (even in sign) depending upon the
choice of point charges. In the three- and four-body cases,
use of any one of five different choices for the embedding
charges does lead to a systematic reduction in the error
across all cluster sizes, and the results are consistent with
previous observations that the results are rather insensitive to
the particulars of how the embedding charges are chosen.3,34,35

Moreover, they are consistent with the notion that the details
of the embedding should matter less as n increases and ever-
larger sub-clusters are described quantum-mechanically.34 On
the other hand, in the three-body case the error reduction
engendered by the embedding charges is quite small relative
to the overall error with respect to the supersystem benchmark.
Only in the four-body case—which we would like to avoid,
by virtue of its disastrous combinatorics—do we see a
meaningful reduction in the errors by virtue of the embedding
charges.

Of all the EE-MBE(n) methods examined in Fig. 2, only
the four-body expansion with NPA, ChElPG, or CM5 charges
achieves the so-called “chemical accuracy” of ∼1 kcal/mol.
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FIG. 2. Signed errors in total interaction energies for a series of water clusters using (a) two-body, (b) three-body, and (c) four-body expansions, at the
B3LYP/cc-pVDZ level, either with or without electrostatic embedding. In (d), we plot the signed errors for GMBE(1) and GMBE(2). Error is measured with
respect to a supersystem calculation at the same level of theory as the subsystem calculations. Note that the vertical energy scales are different in each panel.

Note that the error per monomer (Table I) is a size-
intensive quantity, unlike the total errors in Fig. 2, and it
has been argued that for dynamical studies of clusters, it is
sufficient to achieve a “dynamical accuracy” per monomer
equal to 10% of the average molecular kinetic energy at
room temperature, (3/2)kBT .24 This amounts to an accuracy
threshold of 0.09 kcal/mol/monomer, and unfortunately none
of the two- or three-body expansions achieve even this level of
accuracy, although all of the four-body methods do, including
MBE(4) with no embedding charges at all. This is a useful
fact to note, given that evaluation of the Coulomb self-
energy of the embedding charges is a serious obstacle to
obtaining reproducible, high-precision results when the n-
body expansion is implemented via an external driver program
or script.9

Several previous studies have noted that the “success”
of n-body expansions often relies heavily on error cancel-
lation,16,23,25,32 and the EE-2B data in Fig. 2(a) suggest
that MBE(2) with either Mulliken or Hirshfeld embedding
represents a “Pauling point”54 at the two-body level. This is
almost certainly not for any physically meaningful reason,
given that the average Mulliken charge on oxygen is −0.26e
in the case of (H2O)40, and −0.22e when Hirshfeld charges are
used, as compared to −0.80e for ChElPG (which is similar to
force-field charges designed to reproduce the presumed H2O
dipole moment) and−0.99e for NPA (consistent with chemical
intuition). It is interesting to note that for the EE-MBE(2) and
EE-MBE(3) plots in Figs. 2(a) and 2(b), the ordering of
the errors as a function of the choice of embedding charges
follows the trend

none > Hirshfeld > Mulliken > CM5 > ChElPG > NPA,

i.e., exactly the same order as the magnitude of the embedding
charge on the oxygen atom, and thus the same order as the

H2O dipole moments. On the other hand, for EE-MBE(4)
[Fig. 2(c)], the order is precisely reversed.

Finally, results for GMBE(n) are plotted in Fig. 2(d). As
noted above, the GMBE includes some many-body effects
even for n = 1, but these turn out to be insufficient to afford
reasonable accuracy even in small clusters, at least with
the 3 Å threshold for fragment formation that is used here.
Using the same threshold, however, GMBE(2) results are
outstanding, with a MAE per monomer of only 0.02 kcal/mol
across the whole range of cluster sizes, N = 6–55. This is more
accurate than any of the MBE(4) methods, and this accuracy
does not require the use of embedding charges. While it is
likely true that the total error in GMBE(2) calculations is
size-extensive, the plot in Fig. 2(d) suggests that the rate of
growth with N is so small that this extensivity is unlikely to
prove problematic for values of N that are likely to be used in
practical calculations, and GMBE(2) can safely be employed
to predict total cluster binding energies.

2. Basis-set dependence

Much of the rationale for examining water clusters in
this work is these have been popular test cases for various
fragment-based methods, and in the supplementary material41

we compare our EE-MBE(2) and EE-MBE(3) results to a
large number of previous benchmarks from the literature.
Care must be taken in comparing these literature values either
to one another or to the numbers reported here, because
it is uncommon to find a detailed specification of how
the thresholds were set in a given calculation, and these
settings can significantly alter the results, as can the choice of
electrostatic embedding, in the two-body case.

That said, a survey of the literature suggests that the large
MBE(2) errors documented above are not unprecedented. Our
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MBE(3) results are noticeably worse than most literature
values, however. With only a few exceptions, the literature
reports errors of .3 kcal/mol for clusters in the size range
N = 16–32, with numerous reports of errors <1 kcal/mol
in basis sets such as STO-3G, 3-21G, and 6-31G* (see
Table S2).41

In an attempt to understand this discrepancy, we
examined size-dependent trends in the MBE(3) errors in three
different basis sets, as plotted in Fig. 3 with error statistics
summarized in Table II. In contrast to B3LYP/cc-pVDZ
results, where the choice of embedding charges made only
a minor difference in the error, results using aug-cc-pVDZ
show a dramatic dependence on the choice of embedding
charges. Starting from the MBE(3) results without charge
embedding [green symbols in Fig. 3(b)], the various EE-
MBE(3) plots diverge in an order that correlates precisely
with the average embedding charge on the oxygen atoms,
which is small for the Hirshfeld and Mulliken embeddings but
nearly −1e for NPA charges. Use of the latter leads to errors
that approach 50 kcal/mol for the largest clusters, whereas
errors are <10 kcal/mol when no embedding charges are used
at all.

FIG. 3. Signed errors in the MBE(3) total interaction energies for (H2O)6−55,
using the B3LYP functional with three different basis sets. Error is measured
with respect to a supersystem calculation at the same level of theory as the
subsystem calculations.

TABLE II. Mean absolute errors per monomer for EE-MBE(3) calculations
of (H2O)6−55 at the B3LYP level in several basis sets. Supersystem charges
computed at the B3LYP/cc-pVDZ are used for charge embedding.

MAE per monomer (kcal/mol)

Embedding cc-pVDZ aug-cc-pVDZ 6-31+G(d,2p)

None 0.51 0.06 0.11
Mulliken 0.45 0.07 0.05
ChElPG 0.40 0.37 0.09
NPA 0.39 0.56 0.11
Hirshfeld 0.46 0.04 0.05
CM5 0.41 0.23 0.06

Very accurate results for small water clusters (N < 10)
were reported in Ref. 26 using EE-MBE(3) at the B3LYP/
6-31+G(d,2p) level, so we have applied the same methodology
to the (H2O)6−55 sequence, with errors reported in Fig. 3(c).
MAEs in Table II show that each choice of embedding
charges except NPA leads to reduction in the errors, and even
the errors using NPA charges are comparable in magnitude
(though different in sign) to those without embedding. The
errors are also much smaller using 6-31+G(d,2p) as compared
to either of the other two basis sets, although total errors
remain ≫1 kcal/mol for the largest clusters. Despite smaller
absolute errors in the case of 6-31+G(d,2p), however, note
from Fig. 3 that the choice of which particular embedding
charges to use (or none at all) matters much more for the two
basis sets that include diffuse functions than it does for cc-
pVDZ. The larger variations in the case of aug-cc-pVDZ and
6-31+G(d,2p) are likely due to particularly strong interactions
between point charges and diffuse basis functions, i.e., the
“overpolarization” problem that is well known in QM/MM
calculations.55–58

This dramatic sensitivity to basis sets is the main
conclusion from Fig. 3. A recent review of fragment-based
methods1 mentions the need for a comprehensive study of
how the accuracy of each method depends upon the level of
electronic structure theory used for the subsystem calculations,
yet few systematic studies exist in the literature.3,9,23,32 Here,
we use B3LYP in conjunction with six different double- and
triple-ζ basis sets to study the performance of (G)MBE(n)
for (H2O)40, both in the absence of embedding charges and
when ChElPG embedding charges are used. Signed errors are
reported in Table III.

For MBE(2), results are improved by employing
charge embedding, in all basis sets except cc-pVDZ and
cc-pVTZ. For MBE(3), results are improved by employing
charge embedding in all basis sets except aug-cc-pVDZ and
6-31+G(d,2p). For MBE(4), results are improved only for
cc-pVDZ and cc-pVTZ by employing charge embedding. In
short, the results are rather erratic, and in none of the six basis
sets tested does charge embedding consistently reduce the
errors for two-, three-, or four-body expansions. Moreover, in
the absence of embedding charges we observe a monotonic
decrease in the errors (going from n = 2 to 4) only for cc-
pVDZ and 6-31G(d,2p). This is consistent with the observation
by Ouyang et al.32 that only in the absence of diffuse functions
does one obtain monotonic convergence of the MBE, although
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TABLE III. Signed errors for (H2O)40 using B3LYP in various basis sets.
(Embedding charges are from a supersystem calculation at the level of
B3LYP/cc-pVDZ.)

Signed error (kcal/mol)

MAE Embedding MBE(2) MBE(3) MBE(4) GMBE(2)

cc-pVDZ None 28.56 19.39 −3.96 −0.79
cc-pVDZ ChElPG −74.74 18.36 −0.74 . . .

aug-cc-pVDZ None 105.00 −4.05 −9.26 0.23
aug-cc-pVDZ ChElPG −22.06 23.74 −75.35 . . .

cc-pVTZ None 20.09 32.59 −9.85 0.05
cc-pVTZ ChElPG −68.78 28.71 −6.50 . . .

aug-cc-pVTZ None 105.54 −8.92 9.26 0.33
aug-cc-pVTZ ChElPG −0.40 4.19 −23.40 . . .

6-31G(d,2p) None 74.18 5.83 −0.82 0.07
6-31G(d,2p) ChElPG −32.47 5.77 1.60 . . .

6-31+G(d,2p) None 84.24 −0.84 5.19 0.73
6-31+G(d,2p) ChElPG 6.68 −7.26 5.65 . . .

our results for cc-pVTZ are an exception demonstrating that
the absence of diffuse functions alone does not guarantee
monotonic convergence. In summary, and in view of all the
data presented so far, it is difficult to predict whether MBE(n)
results will be improved or degraded by MBE(n + 1) for a
given basis set or charge-embedding scheme.

Fortunately, GMBE(2) performs well for all six basis
sets tested, and is superior to (or in one case, comparable to)
MBE(4) results with or without charge embedding. Recent
work has shown that the performance of GMBE(2) does
depend on the nature of the embedding charges,17 so in
this study we choose not to use these charges in GMBE
calculations.

3. Convergence of the expansion

Ultimately, one needs a metric for gauging the accuracy
of a given approach that does not require a supersystem
calculation, else the utility of the MBE is lost. Given the
apparent extensivity of errors in total interaction energies,
it is not immediately clear how (or even whether) small-
cluster benchmarks can be used to assess accuracy in
applications to much larger clusters. A reasonable metric
is to examine how the errors converge (or fail to converge)
with respect to the truncation order, n, but unfortunately the
convergence behavior of the MBE is complicated,24,32,59–62 as
seen above. For atomic clusters, the MBE is oscillatory and
slowly convergent, often precluding truncation.59–61 For small
molecular clusters, the situation may not be so dire, as the
oscillations tend to settle down much more quickly,25,61,63

possibly owing to the weaker nature of intermolecular
interactions as compared to interatomic interactions.

Consider the n-body interaction energy ∆E(n)
I in Eq. (4).

As a simple, qualitative model, let us assume that the error in
each subsystem energy E(m)

J is the same, and denote this error
as δE. Then the total error in ∆E(n)

I would be

δ
(
∆E(n)

I

)
= (δE)

n
m=1

(−1)n−m
( n

n − m

)
= (−1)n+1(δE). (19)

This suggests there is reason to expect that errors in MBE(n)
calculations may oscillate as a function of N , although the
result is only rigorous if the errors are truly identical for each n,
which likely requires that |∆E(n)

I | ≈ |∆E(n+1)
J |. If the magnitude

of the (n + 1)-body interactions is significantly different than
those of the n-body interactions, then one cannot say with
certainty whether the error will oscillate or not.

In light of this analysis, let us reconsider the n = 2
results in Fig. 2(a). According to Eq. (19), the error should
be negative, and indeed large, negative errors are obtained
using CM5, ChElPG, and NPA charges, but on the other hand
large positive errors are obtained in the absence of charge
embedding. (For reasons ultimately having to do with error
cancellation, the Hirshfeld and Mulliken embeddings lead
to errors much closer to zero, and which change sign as a
function of cluster size.) These observations suggest that the
analysis in Eq. (19) is overly simplistic in this case, consistent
with the fact that |∆E(1)

I | ≫ |∆E(2)
I |.

On the other hand, errors for EE-MBE(3) [Fig. 2(b)] are
all positive, consistent with Eq. (19), and for EE-MBE(4)
[Fig. 2(c)], most of the errors are negative, and those that
are positive are relatively small. Thus, we conclude there is
reason to expect that the MBE converges (if at all) in an
oscillatory way, behavior that may prove troublesome for
high-accuracy applications if the oscillations do not decay
rapidly enough. In the present calculations, it is not clear
that convergence is achieved even by n = 4, necessitating
five-body calculations to check for convergence. As noted in
Ref. 23, and in Section IV B below, these oscillations may play
a role in error cancellation. BSSE is a significant component
of these oscillations.32

B. High-accuracy calculations of relative energies

To this point we have focused on the intricacies of
replicating a low level of theory in a large system. We
now turn our attention to an investigation of the accuracy
of the MBE as compared to high-quality RIMP2/CBS
and ωB97X-V/aTZ benchmarks, specifically for relative
energies of (H2O)20 isomers. Unlike the calculations in
Section IV A, where “error” is defined so as to measure
how faithful the n-body approximation is to the supersystem
calculation [Eq. (18)], here we are trying to reproduce accurate
benchmarks but also to understand the role of any BSSE errors
that we observe. In this section we therefore define

error = E(n) − Ebenchmark, (20)

where the benchmark may be counterpoise-corrected or
not. Counterpoise-corrected supersystem benchmarks will be
compared to counterpoise-corrected n-body results, using the
(G)MBCP(n) corrections in the latter case, and uncorrected
supersystem benchmarks will be compared to uncorrected
(G)MBE(n) calculations. As in Section IV A, we always
compare sub- and supersystem calculations computed using
the same electronic structure method.
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FIG. 4. Benchmark total interaction energies for eight different isomers of
(H2O)20, including two from each of the four families of structural motifs.42

All calculations are counterpoise-corrected and the RIMP2/CBS extrapola-
tion uses the aTZ and aQZ basis sets.

1. Accuracy of the benchmarks

Total interaction energies for eight different (H2O)20 clus-
ters are plotted in Fig. 4. In these calculations, we attempted
to reach the RIMP2/CBS limit using T/Q extrapolation of
RIMP2/aug-cc-pVXZ data, both with and without counter-
poise corrections. Counterpoise corrections are quite large, on
average 21 kcal/mol for the aTZ basis set and 10 kcal/mol
for the aQZ basis set, and the extrapolated RIMP2/CBS
values in the absence of counterpoise correction are shifted
to larger interaction energies by ≈3.5 kcal/mol relative to
an extrapolation of the counterpoise-corrected values. The
counterpoise-corrected RIMP2/CBS extrapolations differ by
an average of 2.7 kcal/mol as compared to counterpoise-
corrected CCSD(T)/CBS benchmarks.41

The ωB97X-V functional52 combined with triple-ζ basis
sets gives good performance for interaction energies in
(H2O)20 with a MAE of 1.7 kcal/mol as compared to
CCSD(T)/CBS benchmarks.41 In the absence of counterpoise

correction, ωB97X-V/aTZ values are shifted to higher
interaction energies by≈2.8 kcal/mol, relative to counterpoise-
corrected results. In contrast to the RIMP2/aTZ case,
counterpoise corrections at the ωB97X-V/aTZ level are
<1 kcal/mol, consistent with more rapid basis-set convergence
of DFT as compared to MP2. Counterpoise-corrected
ωB97X-V/aTZ interaction energies agree with (counterpoise-
corrected) RIMP2/CBS results to within 1 kcal/mol, as shown
in Fig. 4, suggesting that these two methods are reliable
levels of theory for relative energies of (H2O)20 isomers. In
Sec. IV B 2, we examine how well n-body approximations
can reproduce these benchmarks.

2. Accuracy of the (G)MBE

In Fig. 5, we examine the errors in three- and four-body
versions of MBE(n)+MBCP(n) as compared to counterpoise-
corrected RIMP2/CBS and ωB97X-V/aTZ benchmarks. We
find that MBE(2)+MBCP(2) performs quite poorly, with
errors >40 kcal/mol, so this approach will not be discussed
here. In contrast, the GMBE(2)+GMBCP(2) performs well
but the GMBCP(2) correction is very demanding in terms of
the number of subsystem calculations that are required, hence
we have only used this method in the aTZ basis set, and will
not extrapolate to the CBS limit.

In each of the MBE(3)+MBCP(3) calculations shown
in Fig. 5, the MAE is >1 kcal/mol, and this three-body
approach consistently underestimates the interaction energies
in the two dodecahedral isomers of (H2O)20, as compared
to those in the other three structural motifs. (In a previous
study, we noted that BSSE effects are quite different for the
dodecahedrons as compared to the other families of isomers.23)
This is somewhat disturbing, in that it suggests that a
three-body expansion might compare favorably to benchmark
calculations in one region of the potential surface, only to

FIG. 5. Signed errors in relative energies of (H2O)20 isomers at the indicated levels of theory, using the MBE(n)+MBCP(n) approach for n = 3 and 4. MAEs
for each fragmentation method are also shown, with respect to supersystem benchmarks computed at the same level of theory. All supersystem benchmarks are
counterpoise-corrected, hence the MBE approximation with MBCP correction, or GMBE with GMBCP correction, is the appropriate comparison.
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perform in a less-favorable manner for other isomers of the
same cluster. On the other hand, the MBE(4)+MBCP(4) and
GMBE(2)+GMBCP(2) methods perform consistently well for
all four classes of (H2O)20 isomers, with MAEs <0.3 kcal/mol.

In an attempt to separate the role of BSSE corrections
from the performance of the underlying n-body approximation
to the total, uncorrected interaction energy, we plot in
Fig. 6 the errors in MBE(3), MBE(4), and GMBE(2)
interaction energies for the aTZ basis set, the aQZ basis
set, and the CBS extrapolation, without applying counterpoise
corrections to either the supersystem calculation or the n-body
calculation. (This is therefore a test of how well a BSSE-
contaminated n-body expansion reproduces the results of a
BSSE-contaminated supersystem calculation.) In the same
figure, we also isolate the BSSE calculations and compare
the MBCP(3), MBCP(4), and GMBCP(2) corrections to the
“full” counterpoise correction, the latter being defined as
the difference between traditional counterpoise-corrected and
uncorrected supersystem calculations.

Previously, Ouyang et al.32 have suggested that, for
reasons related to BSSE, MBE calculations should be
performed using either the full cluster basis set (which is
intractable in large systems) or else using basis sets of at
least aug-cc-pVTZ quality, and these are the only basis
sets considered in Fig. 6. RIMP2 results indicate that the
accuracy of MBE(n) increases systematically as the basis
set is improved, especially for n = 4, whereas the errors
start small for GMBE(2) calculations—even as compared to
MBE(4)—and are not substantially different between aTZ,
aQZ, and CBS. GMBE(2) is also the best-performing of these
three methods at the ωB97X-V level.

Likewise for the counterpoise corrections, the GMBCP(2)
errors are smaller than those observed for MBCP(3) or
MBCP(4) in both the RIMP2 and the DFT calculations.
Because GMBE(2), without counterpoise correction, agrees

well with BSSE-contaminated supersystem results, while
GMBCP(2) agrees well with the supersystem coun-
terpoise correction, we conclude that the composite
GMBE(2)+GMBCP(2) method offers good accuracy for
the right reasons, and does not rely on error cancellation.
In contrast, MBE(3) tends to underestimate the BSSE-
contaminated interaction energy while MBCP(3) overesti-
mates the counterpoise correction, while at the four-body
level the reverse is true, consistent with the oscillatory nature
of the MBE. In these cases, the composite MBE(n)+MBCP(n)
method is relying on error cancellation between the neglect
of higher-order terms in the MBE and spurious BSSE effects.
This example is a more incisive analysis of a similar error
cancellation that we first noted in Ref. 23.

In studies of non-covalent clusters, relative energies are
usually more important than total interaction energies, the
latter of which are only measurable in small clusters. Having
demonstrated that error cancellation plays a pivotal role in the
accuracy of MBE(n)+MBCP(n) calculations, it is conceivable
that this could be turned into a feature, by exploiting error
cancellation to obtain high accuracy at affordable cost. As
such, we report MAEs for relative energies of the eight
(H2O)20 clusters in Table IV, where we also compare them to
MAEs in the total interaction energies.

Interestingly, the error statistics for total interaction
energies are not significantly different from those for relative
isomer energies, vindicating the use of the former as the
metric by which MBEs have been assessed in our work and
many previous studies. (We rationalize this observation in
terms of the fact that the total interaction energy is, from a
certain point of view, merely the relative energy between two
very different points on the potential energy surface, namely,
a deep well versus an exit channel.) The MBE(3)+MBCP(3)
approach does not lead to sub-kcal/mol accuracy, for which
the four-body analogue is required, or alternatively one

FIG. 6. Signed errors in relative energies of (H2O)20 isomers at the indicated levels of theory. Errors in MBE(n) and GMBE(2) results are defined relative to a
supersystem calculation that has not been corrected for BSSE, and errors in the MBCP(n) and GMBCP(2) counterpoise corrections are defined relative to the
“full” (supersystem) counterpoise correction. Note that the vertical energy scales are different in each panel.
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TABLE IV. MAEs in relative energies of (H2O)20 isomers and in total inter-
action energies for the same isomers.

MAE (kcal/mol)

MBE(3)+ MBE(4)+ GMBE(2)+
Method MBCP(3) MBCP(4) GMBCP(2)

— Interaction energy —
ωB97X-V/aTZ 1.11 0.19 0.19
RIMP2/aTZ 1.34 0.27 0.17
RIMP2/aQZ 1.54 0.17 . . .
RIMP2/CBS 1.75 0.24 . . .

— Relative energy —
ωB97X-V/aTZ 1.03 0.16 0.45
RIMP2/aTZ 1.05 0.42 0.41
RIMP2/aQZ 1.01 0.16 . . .
RIMP2/CBS 0.98 0.40 . . .

can bypass the need for four-body calculations and use
GMBE(2)+GMBCP(2) instead, whose favorable performance
does not appear to rest on error cancellation.

More exhaustive testing is required in order to obtain
a comprehensive understanding of which subsystem levels
of theory can be expected to perform well as compared to
high-level supersystem benchmarks. Ideally, one would like
to establish a protocol (in terms of the choice of embedding,
the level of truncation, the size of the fragments, and any
BSSE corrections) such that the accuracy of a given electronic
structure model for calculations in small clusters would be
in some way indicative of its accuracy when applied to
large clusters via the MBE. This is needed especially since
RIMP2/CBS, for example, is a reasonable level of theory for
water clusters but would not be reasonable for applications
to systems where a sizable fraction of the interaction energy
comes from dispersion. The same can be said for the M11-
based64 density-functional models that are used for water
clusters in Ref. 30, whose success for dispersion-bound
systems appears to rest on a delicate cancellation of errors.65

Counterpoise-corrected ωB97X-V/aTZ, on the other hand,
appears to be accurate across a broad spectrum of non-
covalent interactions,51–53 and the MBE(4)+MBCP(4) and
GMBE(2)+GMBCP(2) approximations to this supersystem
method accurately reproduce both total interaction energies

and relative isomers energies for water clusters. Given a
sufficient number of cores over which to distribute such
calculations, the time-to-solution can be made quite small.

C. Computational cost

It is often tacitly assumed that fragment-based methods
are always less expensive than the corresponding supersystem
calculations, but in terms of aggregate computer time (rather
than time-to-solution or “wall time”), this is often not the
case.17 In this section, we consider the cost of the (G)MBE
calculations reported here, with the caveat that we have made
no attempt to perform any sort of thresholding, by means
of which subsystem calculations involving spatially distant
monomers might be neglected or approximated. Preliminary
tests suggest that a significant fraction of the subsystem
calculations are negligible in many cases, and that this fraction
increases with n, but since the purpose of this work is to
evaluate the intrinsic accuracy of the (G)MBE we retain
all subsystems. Given the cancellation of errors that is often
inherent in applications of the MBE,9 it seems wise to establish
exact (G)MBE(n) benchmarks before proceeding to discard
terms.

Table V summarizes the number of subsystem calcu-
lations required for a MBE(4)+MBCP(4) or GMBE(2)
+GMBCP(2) calculation, for both (H2O)20 and (H2O)55. For
N = 20, GMBE(2) affords a modest reduction in the number
of subsystem calculations, as compared to MBE(4), but the
reduction is quite dramatic for N = 55. This is especially
true for the counterpoise correction, which is far more
expensive than a simple calculation of the supersystem energy.
For N = 55, use of GMBCP(2) to approximate E I JK ...N

I

generates 205 dimers (with 5–8 ghost molecules each) and
1430 intersections (3–5 ghost molecules). Since there are
N separate monomer energies to correct, the full GMBCP(2)
calculation consists of 11 275 dimers and 78 650 intersections.
In contrast, for MBCP(4) there are 1 364 220 tetramers (with
three ghost molecules each), with a large number of smaller
subsystems as well.

The most time-consuming calculations for MBE(4)
+MBCP(4) are tetramers in the tetramer basis set and
monomers in the tetramer basis set, which are approximately
equally expensive at the DFT level because they require
all the same electron repulsion integrals. (Although the cost

TABLE V. Number of subsystem calculations required for several different fragment-based approaches, for two
different cluster sizes.

(H2O)20 (H2O)55

Size MBE(4)a MBCP(4)b GMBE(2)a GMBCP(2)b MBE(4)a MBCP(4)b GMBE(2)a GMBCP(2)b

n = 4 4845 19 380 . . . . . . 341 055 1 364 220 . . . . . .
n = 3 1140 3 420 . . . . . . 26 235 78 705 . . . . . .
n = 2 190 380 . . . . . . 1 485 2 970 . . . . . .
n = 6–9 . . . . . . 150 1 110 . . . . . . 1 469 11 275
n = 4–6 . . . . . . 4113 16 040 . . . . . . 17 883 78 650

Total 6175 23 180 4263 17 150 368 775 1 445 895 19 352 89 925

aCalculations involving n monomers in an n-mer basis.
bCalculations involving one monomer in an n-mer basis.
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analysis changes somewhat for correlated wave functions, we
will see below that timing profiles for DFT and RIMP2 are
actually rather similar.) For MBE(4)+MBCP(4) and N = 20
there are over 1.7 × 106 terms requiring a tetramer basis set,
whereas the full GMBE(2)+MBCP(2) calculation requires
fewer than 110 000 subsystem calculations. On the other
hand, the subsystems are larger in the latter case, and for
(H2O)20 at the ωB97X-V/aTZ level, the average computer
time per subsystem job is 601 s for MBE(4)+MBCP(4) but
5534 s for GMBE(2)+GMBCP(2). These figures reflect the
total aggregate computing time across all processors rather
than wall time. In practice, we carry out these calculations
across as many as 500 processors, a number that is limited
by our available resources rather than by a lack of scalability,
since the fragment-based calculation should scale well at least
to the regime where the number of processors is comparable
to the number of subsystem calculations required.

Figure 7 shows actual timing data for one ωB97X-V/aTZ
or RIMP2/aTZ calculation on (H2O)20, where we have

FIG. 7. Total computer time (summing all processors) for one isomer of
(H2O)20, presented on a logarithmic scale. On the left are data for (a)
counterpoise-corrected ωB97X-V/aTZ calculations and (b) RIMP2/aTZ cal-
culations. On the right, these timings are divided by the number of subsystem
calculations that is required in each case. The bars labeled “full supersystem”
represent a calculation on the entire cluster, which does not decompose into
trivially parallelizable subsystems, although the corresponding “full coun-
terpoise” correction can be sub-divided by a factor of N = 20, and this
reduction is reflected in the “full counterpoise” bar in the data sets on the
right. Supersystem calculations were multithreaded across 20 cores, whereas
(G)MBE subsystem calculations were each run in serial but distributed across
as many as 500 processors.

TABLE VI. Ratio of the total aggregate computing time for a given fragment-
based calculation to that required for the supersystem calculation that it is
meant to approximate, rounded up to the nearest integer. The system is the
same (H2O)20 isomer used to generate the timing data in Fig. 7.

Fragment method ωB97X-V/aTZ RIMP2/aTZ

MBE(4) 9 8
MBCP(4) 3 2
GMBE(2) 53 74
GMBCP(2) 18 34

separated the cost of the total energy calculation from that of
the counterpoise correction. In terms of total computer time
aggregated across all processors, a MBE(4) calculation is 8–9
times more expensive than simply performing a calculation
on the entire cluster, depending on the level of theory, and
a GMBE(2) calculation is up to 74 times more expensive!
From another point of view, however, these ratios (which are
listed in Table VI) provide a rough estimate of the number
of processors that would be required in order to make the
time-to-solution the same for both the supersystem and the
fragment-based calculation, assuming that all jobs are run in
serial mode. Looking at it in this way, the highly accurate
GMBE(2) method will outperform the supersystem approach
already on fewer than 100 processors.

As a measure of how favorable the wall times could
be made, given the availability of a very large number of
processors, the data on the right side of Fig. 7 show the
average time per subsystem calculation. (We obtain this simply
by dividing the total aggregate computer time by the total
number of subsystem calculations from Table V, reasoning
that the largest and most expensive subsystem calculations are
also the most numerous. The full Boys-Bernardi counterpoise
correction can be trivially parallelized into N = 20 separate
calculations, and the timings on the right side of Fig. 7 reflect
this.) Speed-ups approaching factors of 700–800 for MBE(4),
and 60–80 for GMBE(2), are possible, although to realize
these will require use of a number of processors comparable
to the number of subsystem calculations, i.e., ∼104 or so.
Scalability should be good into this regime, meaning that
(G)MBE-based calculations are good applications for peta-
and exa-scale computing.

V. CONCLUSION

We report a systematic study of the accuracy of truncated
MBEs as applied to water clusters, (H2O)N=6−55. Elaborating
upon a previous study of finite-precision problems associated
with these methods,9 we demonstrate that for systems
containing 30–40 fragments or more, results from three- and
four-body expansions are quite sensitive to the numerical
thresholds used in the subsystem calculations, such that
common default settings in an electronic structure program
may afford supersystem energies that differ by several kcal/mol
as compared to results obtained using very tight thresholds.
The same is not true of the supersystem calculation itself,
but arises from the very large number of subsystem energies
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that must be summed. It is therefore important to use tight
thresholds in all subsystem calculations in order to minimize
propagation of errors and ensure that the result is not an
artifact of roundoff error.

These problems are dramatically worse for the four-
body expansion than they are for the three-body expansion,
which is unfortunate because only the former appears to
achieve what has been called “dynamical accuracy” for
cluster calculations,24 defined as 10% of mean thermal
energy at room temperature, or 0.09 kcal/mol per monomer.
Although atom-centered embedding point charges are often
assumed to accelerate convergence of the MBE, we find no
compelling evidence that this is true at the three- or four-body
level. (In previous three-body calculations we showed that
density embedding, as used in the fragment molecular orbital
method,66,67 does not improve the results relative to simple
point-charge embeddings.3) Two-body results are highly
erratic, depending on the particular choice of embedding
charges.

In contrast, a generalized two-body expansion based
on overlapping fragments containing 3–4 water molecules
per fragment achieves an accuracy of 0.02 kcal/mol per
monomer, without resorting to embedding charges. The
fact that high accuracy can be achieved without charge
embedding is significant for several reasons. First, precision
problems associated with computing the Coulomb self-energy
of the embedding charges present a serious challenge to
any implementation of the MBE that uses a script or
driver program that is external to the quantum chemistry
program itself, because the magnitude of this term can
easily exceed 105 hartree in examples such as the ones
considered here, so that six- or eight-digit roundoff in
the output files of the electronic structure program can
make a significant difference.9 Second, applications to more
heterogeneous clusters probably require that the embedding
charges be iterated to self-consistency, a process that destroys
the variational nature of the subsystem SCF calculations and
significantly complicates the formulation of analytic energy
gradients for the MBE.67,68 Finally, the use of embedding
charges leads to dramatic variations in the accuracy of the
MBE from one basis set to the next, especially in the presence
of diffuse functions where overpolarization problems are
severe.

Having established the general characteristics of the
(G)MBE using modest levels of theory, we examined
isomers of (H2O)20 at several more respectable levels, namely
RIMP2/CBS and counterpoise-corrected ωB97X-V/aTZ. To
achieve high accuracy, one must deal with BSSE present
in the n-body calculations, and we have introduced many-
body counterpoise corrections for both the traditional MBE
(in Refs. 12 and 23) and for the GMBE (in the present
work). The three-body approach with three-body counterpoise
corrections, MBE(3)+MBCP(3), fails to achieve 1 kcal/mol
accuracy, which can be achieved using the corresponding four-
body calculation. As above, however, the GMBE approach—
GMBE(2)+GMBCP(2), in this case—performs well at the
two-body level, with a MAE <0.3 kcal/mol as compared
to counterpoise-corrected supersystem benchmarks. Separate
analysis of the counterpoise corrections themselves suggests

that this success does not rest on error cancellation, whereas
for MBE(4)+MBCP(4) some error cancellation is indeed
involved, wherein BSSE compensates for five-body and
higher-order terms that are neglected.

Together, this study and a previous one9 raise serious
concerns about the efficacy, or at least the generality, of the
n-body expansion. These difficulties arise not only from the
factorial increase in the number of subsystem calculations,
with respect to both n and N , but also from the fact that
to maintain consistent precision, tighter SCF convergence
thresholds and arbitrary precision floating-point arithmetic
are required. Non-monotone convergence with respect to n,
coupled with size-extensive errors in total interaction energies,
means that higher-order terms become more important as
system size grows. Together, these problems certainly detract
from the “free lunch” reputation of fragment-based methods.
On the other hand, GMBE(2)+GMBCP(2) has a number
of advantages, as suggested above, and in conjunction with
the ωB97X-V/aTZ level of theory offers an accurate and
stable method for application to large systems, which can
be competitive in cost on only a few hundred processors.
Performance will improve given a thresholding procedure for
discarding irrelevant subsystem calculations a priori, and we
hope to report on systematic tests of such a procedure in the
future.
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