Supplementary Material for "Understanding the many-body expansion for large systems. II. Accuracy considerations"

Ka Un Lao, Kuan-Yu Liu, Ryan M. Richard, and John M. Herbert*

CCSD(T)/CBS and MP2/CBS benchmarks for ten low-energy isomers of $(H_2O)_{20}$,^{1,2} are taken from Ref. 3. Those benchmarks and the corresponding $\omega B97X-V/def2-TZVPPD$ interaction energies with counterpoise correction are shown in Table S1. All of these benchmarks are counterpoisecorrected.

Tables S2 and S3 present what we believe is a nearly exhaustive list of MBE(2) and MBE(3) results from the literature, subject to the following caveats:

- We consider only clusters with N > 10 monomers.
- We only consider cases where the MBE calculation was compared against a supersystem benchmark computed at the same level of theory.
- Multi-layer methods, and those based on overlapping fragments, have been excluded from this comparison for simplicity, although many such benchmarks for water clusters can be found in the literature.^{4–11}

That said, direct comparison of the various literature calculations presented in these tables must proceed with caution. In particular, the results in the tables correspond to different structures (*e.g.*, the 16-mer examined in Ref. 12 is different from the one considered here). Differences in electrostatic embeddings and, in a few cases, the use of two H₂O molecules per fragment are noted in footnotes to Tables S2 and S3. Unless care is taken to ensure that all of these points are addressed similarly between implementations, finite-precision issues can easily cause a user to obtain results that are different from those in the literature.¹³

^{*}herbert@chemistry.ohio-state.edu

	Interaction Energy / kcal mol^{-1}						
Isomer	CCSD(T)/CBS	MP2/CBS	ω B97X-V/def2-TZVPPD				
1	-200.54	-197.97	-198.91				
2	-199.20	-196.68	-197.58				
3	-198.93	-196.51	-197.35				
4	-197.89	-195.02	-195.98				
5	-198.15	-195.58	-196.51				
6	-198.17	-195.24	-196.38				
7	-197.67	-194.62	-195.94				
8	-197.44	-194.90	-195.80				
9	-197.03	-194.29	-195.37				
10	-196.59	-193.92	-194.97				

Table S1: CCSD(T)/CBS, MP2/CBS, and ω B97X-V/def2-TZVPPD interaction energies for isomers (H₂O)₂₀. All values (including those used in the CBS extrapolations) have been counterpoise corrected.

Table S2: Mean absolute errors (in kcal/mol) in EE-2B interaction energies for $(H_2O)_N$ clusters, as predicted by various fragment-based methods. Only published calculations with N > 10 are considered.

N Re	$\mathbf{D}_{\mathbf{e}}\mathbf{f}$	Method	Basis Set					
	nei.		STO-3G	3-21G	6-31G*	6-31++G**	6-311++G(3df,2p)	other
16	12	HF^{a}	0.15	5.70	4.97	1.00		
	12	$\mathrm{HF}^{a,b}$	0.10	4.12	3.54	0.42		
	14	$B3LYP^{a}$			9.83	6.78		
	14	$B3LYP^{a,b}$			7.06	4.42		
	9	$MP2^a$			4.64	2.88	10.88	
	15	$\operatorname{CCSD}(T)$						3.59^{c}
20	9	$MP2^a$			6.20	4.00	14.00	
	16	$MP2^{c}$						2.01^{c}
21	17	MP2						2.97^{d}
32	12	HF^{a}	0.48	15.66	13.2	4.51		
	12	$\mathrm{HF}^{a,b}$	0.43	13.1	10.69	3.22		
	14	$B3LYP^{a}$			26.27	23.58		
	14	$B3LYP^{a,b}$			21.5	18.28		
	9	$MP2^{a}$			10.56	12.16	26.88	
57	10	B3LYP						20.52^{e}
64	12	HF^{a}	1.29	38.6	32.73	12.06		
	12	$\mathrm{HF}^{a,b}$	0.94	27.37	23.15	8.81		
	14	$B3LYP^{a}$			65.63	64.24		
	14	$B3LYP^{a,b}$			46.85	48.2		
	9	$MP2^{a}$			22.4	27.52		

 a EE is defined to be density embedding at close range, density embedding with the Mulliken approximation at mid-range, and Mulliken point-charge embedding at long range. 18

^bTwo water molecules per fragment.

^cBasis set is aug-cc-pVTZ.

 $^d\mathrm{Basis}$ set is aug-cc-pVTZ for oxygen and cc-pVTZ for hydrogen.

 e Basis set is 6-31+G(d,2p).

N F	Dof	Method	Basis Set					
	nei.		STO-3G	3-21G	6-31G*	6-31++G**	6-311++G(3df,2p)	other
	12	HF^{a}	0.01	0.28	0.39	1.17		
16	12	$\mathrm{HF}^{a,b}$	0.01	0.23	0.26	0.40		
	14	$B3LYP^{a}$			0.51	3.12		
	14	$B3LYP^{a,b}$			0.36	0.78		
	9	$MP2^a$			1.44	0.80	0.64	
	15	$\operatorname{CCSD}(T)$						1.52^{c}
20	9	$MP2^a$			1.8	0.40	0.40	
	16	$MP2^d$						1.56^{c}
21	17	MP2						0.38^{e}
	12	HF^{a}	0.04	0.80	1.33	3.71		
	12	$\mathrm{HF}^{a,b}$	0.02	0.57	0.93	1.67		
32	14	$B3LYP^{a}$			1.85	14.71		
	14	$B3LYP^{a,b}$			1.36	0.39		
	9	$MP2^{a}$			3.52	2.24	1.28	
64	9	$MP2^{a}$		6.4	3.2			

Table S3: Mean absolute errors (kcal/mol) in EE-3B interaction energies for water clusters, as predicted by various fragment-based methods. Only published calculations with N > 10 are considered.

 $^a\mathrm{EE}$ is defined to be density embedding at close range, density embedding with the Mulliken

approximation at mid-range, and Mulliken point-charge embedding at long range.¹⁸

^bTwo water molecules per fragment.

 c Basis set is aug-cc-pVTZ.

 $^d\mathrm{EE}$ uses point dipoles instead of point charges.

 $^e\mathrm{Basis}$ set is aug-cc-pVTZ for oxygen and cc-pVTZ for hydrogen.

References

- [1] Kazimirski, J. K.; Buch, V. J. Phys. Chem. A 2003, 107, 9762–9775.
- [2] Wang, K.; Li, W.; Li, S. J. Chem. Theory Comput. 2014, 10, 1546–1553.
- [3] Lao, K. U.; Herbert, J. M. J. Phys. Chem. A 2015, 119, 235–253.
- [4] Li, W.; Li, S.; Jiang, Y. J. Phys. Chem. A 2007, 111, 2193–2199.
- [5] Hua, W.; Fang, T.; Li, W.; Yu, J.-G.; Li, S. J. Phys. Chem. A 2008, 112, 10864–10872.
- [6] Rahalkar, A. P.; Ganesh, V.; Gadre, S. R. J. Chem. Phys. 2008, 129, 234101:1-7.
- [7] Yang, Z.; Hua, S.; Hua, W.; Li, S. J. Phys. Chem. A 2010, 114, 9253–9261.
- [8] Gadre, S. R.; Jose, K. V. J.; Rahalkar, A. P. J. Chem. Sci. 2010, 122, 47–56.
- [9] Pruitt, S. R.; Addicoat, M. A.; Collins, M. A.; Gordon, M. S. Phys. Chem. Chem. Phys. 2012, 14, 7752–7764.
- [10] Richard, R. M.; Herbert, J. M. J. Chem. Theory Comput. 2013, 9, 1408–1416.
- [11] Saha, A.; Raghavachari, K. J. Chem. Theory Comput. 2014, 10, 58–67.
- [12] Fedorov, D. G.; Kitaura, K. J. Chem. Phys. 2004, 120, 6832–6840.
- [13] Richard, R. M.; Lao, K. U.; Herbert, J. M. J. Chem. Phys. 2014, 141, 014108:1–14.
- [14] Fedorov, D. G.; Kitaura, K. J. Chem. Phys. 2004, 121, 2483–2490.
- [15] Qi, H. W.; Leverentz, H. R.; Truhlar, D. G. J. Phys. Chem. A **2013**, 117, 4486–4499.
- [16] Hirata, S.; Valiev, M.; Dupuis, M.; Xantheas, S. S.; Sugiki, S.; Sekino, H. Mol. Phys. 2005, 130, 2255–2265.
- [17] Dahlke, E. E.; Truhlar, D. G. J. Chem. Theory Comput. 2007, 3, 1342–1348.
- [18] Nakano, T.; Kaminuma, T.; Sato, T.; Fukuzawa, K.; Akiyama, Y.; Uebayasi, M.; Kitaura, K. Chem. Phys. Lett. 2002, 351, 475–480.