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Analytic derivative couplings and first-principles exciton/phonon coupling
constants for an ab initio Frenkel-Davydov exciton model: Theory,
implementation, and application to compute triplet exciton mobility
parameters for crystalline tetracene
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Recently, we introduced an ab initio version of the Frenkel-Davydov exciton model for computing
excited-state properties of molecular crystals and aggregates. Within this model, supersystem excited
states are approximated as linear combinations of excitations localized on molecular sites, and the
electronic Hamiltonian is constructed and diagonalized in a direct-product basis of non-orthogonal
configuration state functions computed for isolated fragments. Here, we derive and implement analytic
derivative couplings for this model, including nuclear derivatives of the natural transition orbital and
symmetric orthogonalization transformations that are part of the approximation. Nuclear derivatives of
the exciton Hamiltonian’s matrix elements, required in order to compute the nonadiabatic couplings,
are equivalent to the “Holstein” and “Peierls” exciton/phonon couplings that are widely discussed in
the context of model Hamiltonians for energy and charge transport in organic photovoltaics. As an
example, we compute the couplings that modulate triplet exciton transport in crystalline tetracene,
which is relevant in the context of carrier diffusion following singlet exciton fission. Published by
AIP Publishing. [http://dx.doi.org/10.1063/1.4985607]

I. INTRODUCTION

In a variety of important chemical systems, the motion
of nuclei can induce electronic transitions, which represents
a breakdown of the Born-Oppenheimer approximation. This
is well known in molecular photophysics and photochem-
istry,1–4 including the photochemistry of biologically impor-
tant molecules,5,6 leading to vibronic effects in molecular spec-
troscopy,4,7 including the Jahn-Teller effect.8 Nonadiabatic
effects are also important in nanoscale systems where they
influence charge transport in organic photovoltaics,9 charge
recombination in photo-excited nanoparticles,10 and singlet
fission in crystalline organic materials,11 processes that are
challenging to model using quantum chemistry due to the size
of the systems involved.

For molecular crystals and aggregates, a promising
approach is an ab initio version of the Frenkel-Davydov exci-
ton model that we have recently introduced.12–14 In keep-
ing with the original ideas of Frenkel15 and Davydov,16

the wave function for a (potentially) collective excitation
is expanded in a basis consisting of direct products of
monomer wave functions, one or more of which may be
excited. However, unlike the early models (and even many
recent ones, e.g., Refs. 17–20), we do not make any sort of
dipole-coupling, nearest-neighbor, frontier orbital, neglect-of-
exchange, or other approximations to the Hamiltonian for the
full system. Exact Hartree-Fock Coulomb and exchange inter-
actions are included, although a charge-embedding scheme
for distant monomer units has been successfully employed to
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significantly reduce the cost.13 Our ab initio Frenkel-Davydov
exciton model (AIFDEM) reproduces supersystem excitation
energies to within 0.1–0.2 eV for systems including DNA base
pairs, crystalline acenes, aggregates of organic chromophores,
and water clusters,12,13 and we have demonstrated that super-
systems containing the equivalent of more than 50 000 basis
functions can be treated with modest hardware requirements.12

The ability of this method to include a large number of
monomers in the calculation allowed us to demonstrate that the
signatures of quantum coherence in excitation energy trans-
fer may persist to longer time scales as compared to those
in smaller models that are accessible to traditional quantum
chemistry calculations.14

Here, we report the derivation and implementation of ana-
lytic derivative couplings for this ab initio Frenkel-Davydov
exciton model (AIFDEM). Namely, this means the first-order
derivative couplings

dJK = 〈ΨJ |∇̂|ΨK 〉, (1)

where ΨJ and ΨK are adiabatic electronic states and ∇̂ repre-
sents derivatives with respect to Cartesian coordinates of the
nuclei. Derivative couplings codify the coupling of electronic
states due to nuclear motion and can be said to drive nonadia-
batic transitions. If the states ΨJ and ΨK are exact eigenstates
of the electronic Hamiltonian, Ĥ , then it can be shown that

hJK =

〈
ΨJ

����
∂Ĥ
∂x

����ΨK

〉
= (EJ − EK ) dJK . (2)

The quantities hJK are known as the nonadiabatic couplings,
and they describe the topology around the conical intersec-
tions between adiabatic potential energy surfaces. Knowledge
of hJK facilitates the use of more efficient algorithms for
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locating minimum-energy crossing points along conical seams
between adiabatic electronic states.21–23 Although the nonadi-
abatic couplings could be computed numerically,24 an analytic
implementation will be both more efficient and more accurate.
For example, our group’s implementation of hJK at the level
of configuration-interaction singles (CIS) and time-dependent
density functional theory (TD-DFT) requires very little over-
head on top of a CIS or TD-DFT gradient calculation.23

Some of the first derivations and computer implementa-
tion of first-order derivative couplings were done by Lengs-
field, Yarkony, and co-workers for multi-reference CI and
multi-reference self-consistent field models,25–28 with new
implementations as recently as 2016.29 These quantities have
also been derived at the level of equation-of-motion coupled-
cluster theory.30,31 Each of the aforementioned methods is
potentially accurate yet expensive, so for extension to larger
systems, the quantities hJK have also been implemented for
CIS wave functions,23,32–34 spin-flip CIS wave functions,23

and their TD-DFT analogues.23,34–37 Nevertheless, the scal-
ing of these methods remains O(N4) with respect to system
size. Moreover, the two-electron integral contraction required
at each Davidson iteration, as well as iterative solution of the
coupled-perturbed equations,38 is challenging to implement
efficiently on modern, massively parallel computer architec-
tures. Furthermore, the single-excitation ansatz is incapable of
treating highly correlated and multi-reference excited states,
including the key multi-exciton intermediate in the singlet
fission process.39

By exploiting localized basis states and charge embed-
ding, the AIFDEM can, in principle, substantially reduce
the cost of supersystem CIS or TD-DFT calculations in
molecular crystals and aggregates and can qualitatively
describe the intermolecular electron correlation that defines
the aforementioned multi-exciton state. Here, we derive and
implement computational expressions for the quantities H[x]

JK

= 〈ΨJ |∂Ĥ/∂x |ΨK 〉 for wave functions ΨJ and ΨK obtained
from the AIFDEM. The derivation requires expressions for
the derivative of the transformation from canonical molecular
orbitals (MOs) to natural transition orbitals (NTOs),40–42 as
well as the derivative of Löwdin’s symmetric orthogonaliza-
tion transformation. Notably, the resulting expressions for the
derivative couplings H[x]

JK involve intermediate quantities that
are equivalent to the so-called “Holstein” and “Peierls” cou-
pling constants that are routinely discussed in the literature on
organic photovoltaics. Indeed, we have recently used the AIF-
DEM formalism to compute these exciton/phonon couplings
from first principles for the process of singlet fission in crys-
talline tetracene,43 but the details of the implementation are
provided here for the first time. Finally, we use this formalism
to compute the exciton/phonon coupling constants that modu-
late triplet exciton mobility in crystalline tetracene, quantities
that are also relevant in the context of singlet fission.

II. THEORY
A. Notation

In what follows, we adopt the matrix formalism of Mau-
rice and Head-Gordon,44 where boldface symbols represent

vector-, matrix-, or tensor-valued quantities, and manipula-
tions of these objects then refer to linear algebra operations:
AB indicates matrix multiplication and

A ·B =
∑
mn

AmnBmn. (3)

If A and/or B is symmetric, which will be the case here, then
A ·B = tr(AB).

Molecular monomer units, whose total number we shall
denote as F, are indexed as A, B, . . .. Indices i, j, . . . and a, b, . . .
refer to occupied and virtual MOs, respectively; µ, ν . . . refer
to AOs; and τ is a spin index equal to α or β. The superscript
[x] will denote a partial derivative with respect to the nuclear
coordinate x. Atomic units are used throughout.

B. Model

An exciton model describes a collective excitation of the
supersystem as a linear combination of excitations that are
localized on molecular sites. Formally, the excited states are
linear combinations of “exciton-site” basis states, each consist-
ing of a direct product of monomer wave functions wherein
one fragment is excited. The collective wave function for the
Ith excited state is thus

��ΞI〉 =∑
n

KIn
��ΨAΨB · · ·Ψ

∗
n · · ·ΨF

〉
. (4)

The exciton-site basis also includes a ground-state configura-
tion and can be expanded with more states to fit the prob-
lem at hand, e.g., by inclusion of charge-separated states
��Ψ+

AΨ
−
B · · ·ΨF

〉
.43 Coefficients K In specify the contribution to

eigenstate I of the supersystem that arises from the excitation
of monomer n. These coefficients are determined by solving
the generalized eigenvalue problem,

HKI = ε I SKI . (5)

The quantities H and S are the AIFDEM electronic Hamil-
tonian and overlap matrices, respectively. The latter arises
because the exciton-site basis states are not generally orthog-
onal, although the supersystem eigenstates are orthogonal,
hence

K†I SKJ = δIJ . (6)

We construct an exciton-site basis as direct products of
configuration state functions (CSFs) computed for the isolated
fragments. The ground-state basis function

��ΨAΨB · · ·ΨF
〉
= ��ΦAΦB · · ·ΦF

〉
(7)

is a direct product of determinants ΦM for each monomer.
Excited states are described at the CIS or TDDFT level (for
the latter, within the Tamm-Dancoff approximation45) as linear
combinations of singly-substituted determinants,

��Ψ∗M
〉
=

∑
ia

T ia��Φia
M
〉
. (8)

The CI amplitude T ia codifies an occupied→ virtual (i → a)
excitation.

A crucial aspect of our algorithm involves the transfor-
mation of the monomer MOs and amplitude matrix T into the
basis of NTOs,40–42 the latter of which are equivalent to CIS
or TDDFT natural orbitals.46 (This equivalence is a unique
feature of single-substitution wave functions, whose natural
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orbitals do not mix occupied and virtual orbitals; see Ref. 46.)
This transformation reduces the number of terms in Eq. (8)
to no more than the number of electrons on monomer M.
Typically only a few of the transformed amplitudes are signif-
icant, and this number can be further truncated, in a controlled
fashion, in order to preserve a certain threshold of the norm
of the transition density. The NTOs comprise corresponding
occupied/virtual pairs; hence, the dual indices ia are redun-
dant upon transformation, and we can safely denote the CI
amplitudes in the NTO basis as ti rather than T ia. A singly-
excited, direct-product basis function can then be expressed
as, e.g.,

��Ψ∗AΨB · · ·ΨF
〉
=

∑
i∈A

ti ��Φi
AΦB · · ·ΦF

〉
, (9)

bearing in mind that ��Φi
A

〉
might need to be a CSF rather than

a single Slater determinant, in order to obtain correct spin
symmetry.43

C. Matrix elements

We require matrix elements of Ĥ in the basis of Eq. (9),

HAB =
〈
Ψ
∗
AΨB · · ·ΨF

��Ĥ ��ΨAΨ
∗
B · · ·ΨF

〉
=

∑
i∈A

∑
j∈B

ti tj 〈
Φ

i
AΦB · · ·ΦF

��Ĥ ��ΦAΦ
j
B · · ·ΦF

〉
, (10)

as well as the corresponding overlap matrix elements

SAB =
〈
Ψ
∗
AΨB · · ·ΨF

��ΨAΨ
∗
B · · ·ΨF

〉
=

∑
i∈A

∑
j∈B

ti tj 〈
Φ

i
AΦB · · ·ΦF

��ΦAΦ
j
B · · ·ΦF

〉
. (11)

For each of the terms in Eqs. (10) and (11), the bra and ket
sets of orbitals are symmetrically orthogonalized among them-
selves and expanded in a common AO basis. The orbitals can
then be represented as a matrix, for instance, the columns of
Ci contain the coefficients for the orthogonalized orbitals of
��Φi

AΦB · · ·ΦF
〉
. To compute the matrix elements between the

two sets of orbitals, which are not orthogonal, we use the
corresponding orbitals transformation and generalized Slater-
Condon rules.47,48 Note that the corresponding orbitals trans-
formation requires the sets of orbitals of different spins to
be treated individually. For simplicity, we will suppress spin
indices on expressions treating a single spin and include a
spin index only when quantities involving both spin cases are
needed.

We proceed by defining an AO overlap matrix s,

sµν = 〈µ|ν〉 (12)

and then form the MO overlap matrix

Sij = (Ci)† s Cj (13)

using the bra and ket orbitals (of a single spin) from a given
term in Eq. (10) or (11). We then compute the singular value
decomposition (SVD) of Sij,

Sij = Uijλij(Vij)†, (14)

which is defined by the diagonal matrix λij of singular values
and by the unitary matrices Uij and Vij. A generalized density
matrix

Gij = CjVij
(
λij

)−1
(Uij)†(Ci)† (15)

can then be formed from the transformed MOs, and we
introduce the quantity

ξ ij = det[Uij(Vij)†] det(λij)

= Υij det(λij), (16)

which is a scalar that will ensure consistent norm and phase.
[Note that since λij is diagonal, det(λij) is simply the product
of the singular values.] This equation also serves to define
Υij = det[Uij(Vij)†].

Finally, we can write simple expressions for the overlap
matrix elements,

SAB =
∑
i∈A

∑
j∈B

ti tj ξ
ij
α ξ

ij
β (17)

and for the matrix elements of the Hamiltonian,

HAB =
∑
i∈A

∑
j∈B

ti tj ξ
ij
α ξ

ij
β Γ

ij. (18)

In the latter equation,

Γ
ij =

(
Gij
α + Gij

β

)
· h + 1

2 Gij
α ·Π ·G

ij
α

+ Gij
β ·Π ·G

ij
β + Gij

α ·Π
◦ ·Gij

β . (19)

The quantities ξ ij
τ in Eqs. (17) and (18), and Gij

τ in Eq. (19), are
built from orbitals and transformation matrices having a spin
index τ ∈ {α, β}. The quantity h in Eq. (19) is the core Hamil-
tonian, and the four-index tensor Π contains antisymmetrized
electron repulsion integrals,

Πµνλσ = 〈µν | |λσ〉, (20)

while Π◦ contains Coulomb integrals,

Π
◦
µνλσ = 〈µν |λσ〉. (21)

The latter arise in Eq. (19) because the exchange integrals
vanish for the mixed-spin term.

In some cases, one or more of the singular values in λij

might approach zero, potentially leading to singularities in
Gij. The algorithm is then modified to use special case co-
density matrices such that the generalized Slater-Condon rules
are recovered. Such a procedure is described in Ref. 49.

D. Derivative couplings

We seek to compute the first-order derivative couplings
dJK for the AIFDEM. As our model is essentially a form of
non-orthogonal CI, we can adopt the general procedure that
was derived by Lengsfield, Yarkony, and co-workers in the
context of CI wave functions built upon a MCSCF reference
state.27 (The same approach has also been adapted to compute
derivative couplings for CIS, TD-DFT, and their spin-flip ana-
logues.23,32) Applying the chain rule to Eq. (4) and acting from
the left with

〈
ΞJ

��, we obtain

〈ΞJ |(∂/∂x)|ΞI 〉 = K†JSK[x]
I + K†JSR[x]KI . (22)

The quantity SR[x ] is the right overlap derivative matrix in the
exciton-site basis,

SR[x]
AB =

〈
Ψ
∗
AΨB · · ·ΨF

��(ΨAΨ
∗
B · · ·ΨF)[x]〉. (23)
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In order to eliminate the coefficient derivatives, K[x]
I ,

we differentiate the eigenvalue problem in Eq. (5) and left-
multiply by K†J ,

K†JH[x]KI + K†JHK[x]
I

= ε [x]
I K†JSKI + ε I K

†

JS[x]KI + ε I K
†

JSK[x]
I . (24)

Here, S[x ] is the symmetric overlap matrix derivative in the
exciton-site basis,

S[x]
AB =

〈
(Ψ∗AΨB · · ·ΨF)[x]��ΨAΨ

∗
B · · ·ΨF

〉
+
〈
Ψ
∗
AΨB · · ·ΨF

��(ΨAΨ
∗
B · · ·ΨF)[x]〉. (25)

By acting to the left with H in the second term on the left
side of Eq. (24), and using the orthogonality of the eigenstates
to eliminate the first term on the right, we obtain after some
rearrangement

K†JSK[x]
I =

K†JH[x]KI − ε I K
†

JS[x]KI

(ε I − εJ )
. (26)

Finally, Eq. (26) can then be inserted into Eq. (22) to afford

〈ΞJ |(∂/∂x)|ΞI 〉 =
K†JH[x]KI − ε I K

†

JS[x]KI

(ε I − εJ )
+ K†JSR[x]KI .

(27)
The term involving K†JH[x]KI is the familiar Hellman-
Feynman expression for derivative couplings, and the other
two terms are analogous to the Pulay terms that arise in SCF
gradient theory using atom-centered basis functions. We iden-
tify the term K†JH[x]KI in Eq. (27) as the nonadiabatic cou-
pling, as established in the context of multireference CI and
adopted by others.23

E. Derivatives of the matrix elements

To evaluate either the nonadiabatic coupling, the deriva-
tive coupling, or the energy gradient, we need H[x ], the deriva-
tive of the Hamiltonian in the exciton-site basis. Derivatives
of the matrix elements are given by

H [x]
AB =

∑
i∈A

∑
j∈B

(titjξ
ij
αξ

ij
β)[x]
Γ

ij + titjξ
ij
αξ

ij
βΓ

ij[x], (28)

where

Γ
ij[x] =

(
Gij
α + Gij

β

) [x]
· h +

(
Gij
α + Gij

β

)
· h[x] + Gij[x]

α ·Π ·Gij
α

+ Gij[x]
β ·Π ·Gij

β + Gij[x]
α ·Π◦ ·Gij

β + Gij
α ·Π

◦ ·Gij[x]
β

+ 1
2 Gij

α ·Π
[x] ·Gij

α + 1
2 Gij

β ·Π
[x] ·Gij

β + Gij
α ·Π

[x]◦ ·Gij
β .

(29)

The quantities h[x ] andΠ[x] are one- and two-electron integral
derivatives, as required also to evaluate the SCF gradient, and
Π[x]◦ again indicates Coulomb integrals only. The expression
in Eq. (29) takes advantage of symmetries such as

Gij[x] ·Π ·Gij = Gij ·Π ·Gij[x]. (30)

However, when non-coincidences occur in the corresponding
orbitals, necessitating the use of co-densities,49 Eq. (30) is no
longer valid, and the terms on the left and the right in Eq. (30)
must be computed explicitly.

The required derivatives of the generalized density matri-
ces, Gij[x ], can be obtained by direct differentiation of Eq. (15)
with the result

Gij[x] = Cj[x]Vij
(
λij

)−1
(Uij)†(Ci)†

+ CjVij[x](λij)−1(Uij)†(Ci)†

+ CjVij[(λij)−1][x](Uij)†(Ci)†

+ CjVij(λij)−1(Uij[x])†(Ci)†

+ CjVij(λij)−1(Uij)†(Ci[x])†. (31)

Derivatives Uij[x ], Vij[x ], and λij[x] of the matrices that define
the SVD are required in Eq. (31), expressions for which can
be found in the mathematics literature.50,51 (For completeness,
the algorithm used to compute the SVD derivative is provided
in the Appendix.) These expressions depend on the derivative
of the MO overlap matrix as defined in Eq. (14), which is

Sij[x] = Ci[x]sCj + Cis[x]Cj + CisCj[x], (32)

in which s[x ] is the derivative of the AO overlap matrix. Along
with h[x ] and Π[x], s[x ] is a standard quantity in SCF gradient
theory.

Using these quantities, the derivative of the phase and nor-
malization constants ξ ij[x] defined in Eq. (28) can be evaluated
by differentiating Eq. (16). Using the definition of the deriva-
tive of a determinant, and taking advantage of the fact that Uij

and Vij are unitary, one obtains

ξ ij[x] = ΥijUij†Vij (Uij[x]Vij† + UijVij[x]†)(det λij)

+Υij(det λij)[x]. (33)

The final derivative in this equation, (det λij)[x], is equal to the
derivative of the product of the singular values. Expressions
for derivatives of singular values are given in Refs. 50 and 51
and in the Appendix.

We now turn to the MO coefficient derivatives, Ci[x ]. Since
the MOs are computed for isolated fragments, their canonical
derivatives are also computed at the fragment level by solving
coupled-perturbed (CP)-SCF equations,52 much like comput-
ing a SCF Hessian. Note that only fragment-level CP-SCF
equations are ever required, and the coefficient derivatives for
a particular fragment vanish if the nuclear coordinate x does
not belong to that fragment. It is possible that the Handy-
Schaefer Z-vector technique53 could be used to avoid solving
CP-SCF equations for each perturbation x, though this is poten-
tially complicated by the fact that the orbital coefficients that
appear in Eqs. (15) and (31) are not in the canonical basis,
but rather have been transformed into the NTO basis and then
symmetrically orthogonalized. (Derivatives of these transfor-
mations are derived below.) Moreover, the main bottleneck
in AIFDEM derivative coupling calculations is contraction of
integral derivatives with densities, so that the Z-vector tech-
nique would likely afford a modest reduction in the overall
cost.

F. Derivatives of the NTO transformation

Derivatives of the matrices that define the transformation
from canonical MOs to NTOs have not been reported pre-
viously but are fairly straightforward. NTOs are formed from
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separate unitary transformations of the occupied and the virtual
MOs,

C̄O = C̃OO, (34a)

C̄V = C̃VN. (34b)

Tildes indicate canonical MO coefficients and overbars denote
NTO coefficients. For the AIFDEM, the NTO transformation
is performed separately on each fragment. The unitary matrices
O and V arise from the SVD of the matrix T of single-particle
transition amplitudes,

t = OTN†, (35)

in which t is diagonal.
Differentiating Eq. (34) affords

C̄[x]
O = C̃OO[x] + C̃

[x]
O O, (36a)

C̄[x]
V = C̃VN[x] + C̃

[x]
V N. (36b)

Derivatives O[x ] and N[x ] of the transformation matrices
require again the application of the SVD differentiation algo-
rithm, albeit in an entirely different context as compared to
Eq. (31). This will also return the CI amplitude derivatives t[x ]

expressed in the NTO basis. As an input, the SVD differentia-
tion requires T and the canonical amplitude derivatives, T[x ],
which are found by solving coupled-perturbed CIS equations
on the isolated fragments.38 Like the MO coefficient deriva-
tives, only fragment level coupled-perturbed equations are
required, and the amplitude derivative is zero if the coordinate
x is outside of the fragment in question.

G. Derivatives of the symmetric orthogonalization
transformation

To yield the final form of the orbital coefficient derivatives
needed in Eq. (31), we require the derivative of the symmet-
ric (Löwdin) orthogonalization transformation, which to the
best of our knowledge has not been previously reported. The
transformation in question is

Ci = C̄i
(Si)−1/2, (37)

where
Si = C̄isC̄i

(38)

is the overlap among the set of orbitals. The required derivative
is simply

Ci[x] = C̄i[x]
(Si)−1/2 + C̄i

[(Si)−1/2][x], (39)

where the overbars represent non-orthogonal orbitals and their
derivatives. Differentiating the condition

(Si)−1/2(Si)1/2 = 1 (40)

and rearranging, we obtain[
(Si)−1/2] [x]

= −(Si)−1/2 [(Si)1/2] [x](Si)−1/2. (41)

In order to determine [(Si)1/2][x ], we differentiate the identity
Si = (Si)1/2(Si)1/2 to obtain

Si[x] = [(Si)1/2][x](Si)1/2 + (Si)1/2[(Si)1/2][x], (42)

where
Si[x] = C̄i[x]sC̄i

+ C̄is[x]C̄i
+ C̄isC̄i[x]

. (43)

Equation (42) takes the well-known form of a Sylvester
equation, or more specifically a Lyapunov equation, solvers

for which are available in many linear algebra packages. By
solving Eq. (42) for [(Si)1/2][x ] and using the result from Eq.
(41), the desired derivative is obtained.

H. Vibronic Hamiltonian and exciton/phonon
couplings

Derivative couplings are of course useful for describing
crossings of adiabatic potential surfaces, and in the case of
organic (molecular) semiconductors, they also describe the
influence of phonons and intramolecular vibrational modes on
exciton or charge-carrier mobilities, a crucial aspect of energy
transfer.9 This requires a somewhat different approach as com-
pared to methods designed to simulate nonadiabatic dynamics
in finite molecular systems.

The Holstein-Peierls vibronic Hamiltonian is a popu-
lar way to understand energy transfer organic photovoltaic
materials, which successfully reproduces experimental carrier
mobilities in a variety of systems.54–57 The model consists of
molecular sites A, B, . . .with site energies EA, EB, . . . and elec-
tronic couplings (“transfer integrals”9) VAB, all of which are
modulated by a collection of harmonic vibrations, as would
seem appropriate for a crystalline environment. The vibronic
Hamiltonian is

Ĥ =
∑

A


EA +

∑
θ

1
2

(
q̇2
θ + ω2

θ q2
θ

)
+ gAAθ qθ


â†AâA

+
∑

A

∑
B

*
,
VAB +

∑
θ

gABθ qθ+
-

â†AâB, (44)

where operators â†A and âA create and annihilate an excita-
tion, respectively, on site A, and the parameters gAAθ and gABθ

are exciton/phonon coupling constants. Couplings gAAθ are
said to be of “Holstein” or “local” type and quantify how
the site energy EA changes along the dimensionless normal
mode coordinate qθ , whereas “Peierls” or “non-local” cou-
plings gABθ quantify the changes in the intersite couplings.
(Vibrations could be treated quantum-mechanically by replac-
ing qθ and q̇θ with the appropriate operators, as we did in a
recent quantum dynamics simulation of singlet fission in crys-
talline tetracene that demonstrated the importance of vibronic
coupling in driving that process.43)

In practice, the site energies EA are often approximated
as the HOMO energies of the monomers and the transfer
integrals VAB as HOMO/LUMO couplings.9 Exciton/phonon
couplings have usually been computed numerically via finite
difference of the site energies and transfer integrals,58 with
variances sampled over molecular dynamics trajectories,59 or
else back-computed from relaxation energies.57,60 Often it is
only practical to compute couplings for just a few modes. Up
to constants, however, the exciton/phonon couplings gAAθ and
gABθ in Eq. (44) are simply derivatives of HAA and HAB with
respect to qθ . Herein, we will compute these couplings for the
unit cell of tetracene, for all of the vibrational modes qθ .

To do this, we must first transform the non-orthogonal
AIFDEM Hamiltonian derivatives to an orthogonal basis,
H [x]

AB → D[x]
AB, including the derivative of the orthogonalization

transformation. For the latter, we use the symmetric orthogo-
nalization derivative derived in Eq. (41), with Si replaced by
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the AIFDEM overlap matrix S from Eq. (5). Following this,
only a simple coordinate transformation is required,

gABθ = (2µθωθ )−1/2
∑

x

D[x]
ABLxθ . (45)

The matrix L is the transformation whose column θ contains
the normalized Cartesian displacements corresponding to qθ .
This mode has frequency ωθ and effective mass µθ , whose
inverse is defined by61

µ−1
θ =

∑
x

L2
xθ . (46)

In some literature, the factor of 2�1/2 in Eq. (45) is folded into
the coordinate transformation L; we follow the convention
used in Ref. 62. Exciton/phonon couplings in this work have
dimensions of energy.

I. Implementation and computational scaling

AIFDEM derivatives were implemented in a locally mod-
ified version of Q-Chem63 and will be available in the v. 5.0
release. The entire AIFDEM framework, including the deriva-
tives, is implemented following an object-oriented strategy
that simplifies addition of new types of basis states, e.g., the
charge-transfer states that were included in the singlet fission
calculations in Ref. 43. As shown in Table I for a particular
displacement of He4 (treated as a pair of He2 fragments, as

TABLE I. Derivatives H[x]
MN of the Hamiltonian matrix elements and deriva-

tives S[x]
MN of the overlap matrix elements, for three different basis states M

and N for (He2)2, using the aug-cc-pVTZ basis set. All NTOs were retained
in these calculations, and the SCF and CIS convergence thresholds were both
set to 10�10 a.u. while the integral screening threshold was 10�14 a.u. The
finite-difference calculations used a five-point stencil central difference with
displacements of 10�4 Å. (The particular displacement x is shown in Fig. 1.)

H[x]
MN absolute finite difference

��ΨAΨB
〉 ��Ψ∗AΨB

〉 ��ΨAΨ
∗
B
〉

��ΨAΨB
〉

0.027 254 0.024 589 0.015 125
��Ψ∗AΨB

〉
0.024 589 0.048 970 0.004 776

��ΨAΨ
∗
B
〉

0.015 125 0.004 776 0.026 642

H[x]
MN analytic derivative

��ΨAΨB
〉 ��Ψ∗AΨB

〉 ��ΨAΨ
∗
B
〉

��ΨAΨB〉 0.027 254 −0.024 589 −0.015 125
��Ψ∗AΨB

〉
−0.024 589 −0.048 970 −0.004 776

��ΨAΨ
∗
B
〉

−0.015 125 −0.004 776 0.026 642

S[x]
MN absolute finite difference

��ΨAΨB
〉 ��Ψ∗AΨB

〉 ��ΨAΨ
∗
B
〉

��ΨAΨB
〉

0.000 000 0.002 105 0.001 213
��Ψ∗AΨB

〉
−0.002 105 0.000 047 0.000 489

��ΨAΨ
∗
B
〉

−0.001 213 0.000 489 0.000 062

S[x]
MN analytic derivative

��ΨAΨB
〉 ��Ψ∗AΨB

〉 ��ΨAΨ
∗
B
〉

��ΨAΨB〉 0.000 000 0.002 105 0.001 213
��Ψ∗AΨB

〉
0.002 105 −0.000 046 0.000 489

��ΨAΨ
∗
B
〉

0.001 213 0.000 489 −0.000 062

FIG. 1. Nuclear displacement of He4 that is considered for the comparisons
against finite-difference results in Table I. The two colors indicate how the
system is divided up into a pair of He2 fragments.

shown in Fig. 1), analytic derivative results for H [x]
AB agree with

finite-difference results to within ∼10−6 a.u. in each individual
matrix element. Note that because the basis-state orbitals are
arbitrary up to phase, the sign of the matrix elements is not
guaranteed to be consistent for all displacement steps when
numerical differentiation is employed. This necessitates cum-
bersome sign-matching schemes. A benefit of analytic deriva-
tives is that the relative signs of the matrix element derivatives
remain consistent and meaningful.

Computation of H [x]
AB in Eq. (28) has three potentially

expensive steps. Recognizing that contractions of the form
Fij = Π ·Gij are the primary bottleneck in energy calculations
using the original AIFDEM,12 we expect the analogous con-
tractions Fij[x] = Π[x] ·Gij to be a second potential bottleneck.
Formation of Gij[x ] [Eq. (31)] is also a potential bottleneck;
the cost of this step is dominated by the cost of evaluating the
SVD derivative.

The total time for an AIFDEM derivative calculation and
the contributions from these components for linear chains of
He2 fragments are shown in Fig. 2, for two different AO

FIG. 2. Timing breakdown for derivative coupling calculations in linear
helium chains in the (a) 6-311G and (b) aug-cc-pVTZ basis sets, retaining
all NTOs in each case. All timings are measured on dual-socket Xeon E5-
2680 v4 nodes with 128 GB of memory. Timing breakdowns are run in serial
while parallel calculations use 28 cores.
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basis sets. Unlike an AIFDEM energy calculation, for cal-
culating derivatives, the cost to construct Fij is a negligi-
ble fraction of the total cost, as our algorithm reuses these
intermediates so that they do not need to be computed for
each coordinate x. The bottleneck step is different in the two
basis sets, switching from the formation of Gij[x ] (6-311G)
to the contraction to form Fij[x ] (aug-cc-pVTZ). This is in
line with expectations as the former step formally scales as
O(N4

occ) and the latter (in the absence of integral screen-
ing) as O(N4

basis), so that the contraction to form Fij[x ] will
dominate when Nbasis � Nocc. For a more realistic system,
namely, tetracene dimer in a 6-31+G* basis, about 14% of the
cost comes from forming Gij[x ] and about 86% from forming
Fij[x ].

In a standard AIFDEM derivative calculation, the deriva-
tive of each matrix element HAB must be evaluated for
each atomic coordinate x, which is approximately 3NatomN2

frag
matrix elements. Each of these calculations is entirely inde-
pendent, however, and can therefore be parallelized trivially
and with unit efficiency. Our algorithm parallelizes matrix
elements such that derivatives for the three Cartesian coor-
dinates on a single nucleus are computed in a single batch
assigned to one core. Including a greater number of H [x]

AB in
a batch could potentially increase the efficiency of integral
derivative evaluation at the expense of reduced parallelism;
this is a potential means of optimization to be explored in
the future. Shared-memory parallelization is accomplished
using the message passing interface (MPI), with dynamic load
balancing, and a parallel performance on a 28-core node is
demonstrated for helium chains in Fig. 2. Parallel speedup is
nearly ideal, and this excellent performance allows us to treat
moderately sized systems easily, with adequate basis sets.

III. COMPUTATIONAL DETAILS
A. Tetracene crystal structure and phonon modes

Plane-wave DFT calculations to obtain the phonon spec-
trum of tetracene were performed using the Quantum Espresso
package.64 Variable unit cell optimization was performed,
starting from the experimental crystal structure,65,66 under
1 atm of pressure. As in our previous work on tetracene,43

calculations were performed using the local density approx-
imation (LDA) and norm-conserving pseudopotentials, with
an SCF convergence threshold of 10�9 a.u., mixing param-
eter β = 0.7, and kinetic energy cutoff of 60 Ry (=120
hartree) for the plane-wave (PW) basis. The Brillouin zone
was sampled using a 2 × 2 × 1 k-point mesh, and phonon
modes were then computed for this optimized structure at the Γ
point.

As noted by Abdulla et al.,67 lack of support for
dispersion-corrected functionals for phonon calculations
presents a major obstacle for studies of conjugated organic
systems. A workaround is to forgo the use of a generalized
gradient approximation in favor of LDA, as the latter has a
tendency to overestimate binding energies, thereby compen-
sating for the absence of attractive dispersion interactions. This
is the approach that we take, and our computed phonon modes
are in good agreement with those reported in Ref. 67.

B. Exciton model and derivatives

AIFDEM calculations were performed on an asymmet-
ric tetracene dimer extracted from the DFT-optimized crys-
tal structure, which constitutes the unit cell for crystalline
tetracene. Exciton-site basis states, Eqs. (7) and (9), were
constructed from fragment wave functions computed at the
Hartree-Fock and CIS levels. AIFDEM calculations for the
excited states and AIFDEM derivative calculations used a
threshold of 50% of the norm of the transition vector in
the NTO basis to eliminate terms, e.g., from Eq. (9). Triplet
basis states were constructed using the appropriate CSFs, as
described in our previous work.43

Derivatives H [x]
AB were used to compute the couplings gAAθ

and gABθ for all phonon modes qθ . To make contact with exist-
ing literature, we define the contributions to the relaxation
energy due to the Holstein couplings, sometimes called the
polaron binding energy, as

εAAθ = g2
AAθ/ωθ . (47)

The off-diagonal contribution to the relaxation energy, which
is sometimes called the lattice distortion energy, is defined as

εABθ = g2
ABθ/2ωθ . (48)

Although slightly different definitions can be found in the lit-
erature,9 we adopt those used in Ref. 62, as we will make
contact with that work in what follows. Furthermore, in the
following discussion, we use the terms “relaxation energies”
and “couplings” interchangeably, as the two are directly related
via Eqs. (47) and (48).

IV. NUMERICAL RESULTS

Plots of the reorganization energies with the associated
phonon mode frequency, as computed for the unit cell of
crystalline tetracene from the PW-LDA calculations, are pre-
sented in Fig. 3. Exciton/phonon couplings for triplet exciton
mobility in tetracene have not been reported previously, to the
best of our knowledge, but have been reported for crystalline
anthracene.62 As these structures differ only by a single con-
jugated ring, we would expect some similarity with tetracene,
despite the very different computational methodology that is
used in Ref. 62.

For the Holstein couplings in tetracene, we find a
large number of significant couplings for phonon frequencies
ωθ ∼ 1200–1600 cm�1, with additional significant couplings
between 500 and 1000 cm�1. There are essentially no Peierls
couplings above ∼250 cm�1, and these are strongly dom-
inated by a single coupling at the lowest-frequency mode,
53.67 cm�1. Each of these observations is in excellent agree-
ment with results for anthracene in Ref. 62. It is worth noting
that the efficiency of our method allows us to compute the cou-
plings across the whole range of phonon frequencies, and that
this analysis has revealed a cluster of Holstein couplings above
3000 cm�1, which is a frequency range that has not typically
been investigated by others.

Where our results differ from those computed with other
methods is in Holstein couplings in the lower frequency range.
The presence of couplings in this region is consistent with
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FIG. 3. Relaxation energies due to
(a) local (Holstein) and (b) non-
local (Peierls) couplings for crystalline
tetracene, computed for the PW-LDA
optimized unit cell of the “herringbone”
crystal structure of tetracene. Note the
significantly different vertical energy
scales in the two panels.

previous work on anthracene,62 although in the present case,
the couplings are significantly more prevalent and their inten-
sity is at least several orders of magnitude larger. A potential
explanation for this discrepancy is that this is an artifact of
the somewhat crude proxy for dispersion effects in the phonon
mode calculations (substituting the LDA in place of a dis-
persion correction), as these low frequencies are primarily of
intermolecular character. Grisanti et al. computed the inter-
molecular phonons using force fields instead.62 To explore this
possibility, we have performed a gas-phase optimization and
frequency calculation using the dispersion-correctedω-B97X-
D functional.68 The ωB97X-D optimized dimer exhibits a
local minimum in a herringbone-type configuration that is
similar to the structure of the crystalline unit cell, and we
use this structure and its vibrational frequencies to com-
pute exciton/phonon couplings, which are plotted in Fig. 4.

Overall, there is a good agreement with couplings computed
from the crystalline unit cell, although the couplings for the
ωB97X-D structure are slightly blue-shifted in the higher-
frequency region and slightly red-shifted at lower frequen-
cies. It is also notable that the gas-phase Holstein couplings
gAAθ and gBBθ for the dimer pair AB are nearly degener-
ate for the ωB97X-D geometry, for which the monomers
have more flexibility to relax into similar geometries. The
two Holstein couplings in each AB pair also have similar
magnitudes, again suggesting that the unexpectedly large cou-
plings in the low-frequency regime are not an artifact of the
frequencies.

Grisanti et al. computed the Holstein couplings for
anthracene using a “triplet-in-a-cluster” scheme, in which a
central molecule in a cluster (taken from the crystal structure) is
optimized to the triplet equilibrium geometry of the monomer,

FIG. 4. Relaxation energies due to
(a) local (Holstein) and (b) non-local
(Peierls) couplings for the gas-phase
tetracene dimer, optimized in the her-
ringbone configuration at the ω-B97X-
D/6-31+G*level.
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FIG. 5. Relaxation energies due to
(a) local (Holstein) and (b) non-
local (Peierls) couplings for crystalline
tetracene computed for the parallel-
stacked dimer.

in order to enforce localization of the triplet onto the central
monomer.62 (This represents a diabatization, of sorts.) Reor-
ganization energies are then computed for the entire cluster via
distortions along the phonon coordinates. With this in mind, it
is not surprising that the result is couplings that are small for
low-frequency phonons, as the triplet is not only in a relaxed
geometry but also is free to respond to polarization induced by
the vibrations. (A complete SCF calculation is performed at
the perturbed geometries.) Although this scheme is certainly
physically justifiable, as the intramolecular reorganization and
polarization occur on much faster time scales than the inter-
molecular vibrations, our approach is arguably a more rigorous
realization of Eq. (44) insofar as our perturbations along the
phonon modes are infinitesimal. A comprehensive assessment
of the relative merits of either approach is outside the scope of
this work.

Thanks to the relatively low cost of our method, we can
compute couplings for additional dimer configurations in order
to compare pathways of mobility through the crystal. To that
end, we have extracted two more dimer configurations from the
crystal structure which were then also used for exciton/phonon
coupling calculations. The first is a parallel-stacked configura-
tion, and the second is a parallel but offset configuration along
the long molecular axis; these will further be referred to as
the stacked and offset configurations, respectively. Couplings
for the stacked geometry are presented in Fig. 5 and for the
offset geometry in Fig. 6. In general, the couplings for both of
these configurations are quite similar, which is perhaps unsur-
prising as the geometries differ only by translation along a
single coordinate. There is still a qualitative agreement with
the “herringbone stacked” (unit cell) configuration, although
both of the new configurations involve symmetric dimers, so

FIG. 6. Relaxation energies due to
(a) local (Holstein) and (b) non-
local (Peierls) couplings for crystalline
tetracene, computed for the parallel-
offset dimer.
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TABLE II. Relaxation energies (in the tetracene unit cell geometry) for the
four phonon modes identified in Ref. 43 (in the context of singlet fission) as
having significant S1/

1(TT) coupling in crystalline tetracene.

Mode ωθ (cm�1) εAAθ (meV) εBBθ (meV)

127 1432.19 57.84 8.02
128 1434.08 45.10 89.32
137 1536.86 128.17 0.41
138 1539.89 2.44 136.30

the variation in frequencies and magnitudes is reduced rela-
tive to the unit cell configuration. In both cases, the strongest
Holstein couplings lie around ∼325 cm�1, while the remain-
ing lower-frequency couplings are significantly diminished as
compared to the unit cell configuration and, in the case of the
offset configuration, essentially vanish entirely. Interestingly,
the couplings in the frequency range greater than 3000 cm�1

significantly increase in magnitude, relative to the unit cell con-
figuration. On the other hand, the Peierls couplings decrease
by two orders of magnitude for the parallel configuration and
essentially vanish for offset, suggesting that these couplings
play a minimal role in exciton transport outside of herringbone
stacked pairs.

Recently, there has been significant interest in the nonadi-
abatic effects that potentially play a role in the singlet exciton
fission process.11,39,69,70 Specifically of interest are phonon
modes that might modulate the crucial transition from a local-
ized singlet exciton state to the triplet-pair intermediate. Sev-
eral recent experiments71,72 have implicated high-frequency
phonon modes, in the range of ∼1200–1600 cm�1, as being
key to the fission mechanism. It is therefore notable that we
have found the exciton/phonon couplings for the triplet to be
significant in this frequency range. Very recently, by utilizing
AIFDEM nonadiabatic coupling calculations, we identified
four high-frequency phonon modes that appear to drive the sin-
glet fission transition in crystalline tetracene.43 Remarkably,
we have found these four modes to be significant to triplet
exciton transport as well, with the corresponding Holstein
couplings possessing substantial magnitude for all three crys-
tal configurations. Reorganization energies for these modes
are provided in Table II. As these modes are predominantly
localized on individual monomers,43 these couplings serve
primarily to modulate the individual site energies. This cor-
respondence suggests that the same phonon modes that induce
the singlet exciton to triplet-pair transition [S1 →

1(TT)] also
play a significant role in the subsequent transport of the free
triplet excitons.

V. CONCLUSIONS

In this work, we have derived expressions for nona-
diabatic derivative couplings within the theoretical frame-
work of our novel AIFDEM excited-state method. This for-
malism also affords the Holstein and Peierls exciton/phonon
coupling constants that are important in the description of
carrier transport in solid-state semiconductors. The central
task in computing these quantities is the calculation of the
derivatives of the AIFDEM Hamiltonian matrix elements HAB

between monomers A and B, a procedure for which we have
derived and implemented. As an ancillary result, we have
derived expressions for derivatives of the NTO transforma-
tion and Löwdin’s symmetric orthogonalization transforma-
tion, formulas for which have not previously been reported.
Our implementation agrees with finite-difference results and
exhibits excellent parallel scalability when matrix element
derivatives are distributed across multiple cores.

We have used this new approach to compute the exci-
ton/phonon couplings that modulate triplet exciton mobility
in crystalline tetracene, comparing our results to calculations
of the couplings for crystalline anthracene, performed with an
entirely different computational method.62 Mostly the agree-
ment is quite good, with the exception of the low-frequency
intermolecular Holstein couplings, for which our approach
predicts significantly larger couplings as compared to Ref. 62.
We conclude that the discrepancies are most likely due to
methodological differences; our method computes ∂HAB/∂x
using analytic differentiation of rigorously defined diabatic
states and is therefore free of the polarization contamination
that arises in finite-displacement procedures.

Our calculations on tetracene indicate that triplet mobil-
ity is influenced by strong local couplings to intramolecular
modes in the range of 1400–1600 cm�1 and to intermolec-
ular modes from 50 to 300 cm�1. We have also identified a
cluster of local couplings >3000 cm�1. The distribution of
all of these local couplings remains qualitatively similar for
various dimers selected from the tetracene crystal structure.
The non-local couplings, on the other hand, are due entirely to
low-frequency intermolecular modes <200 cm�1, which van-
ish for any dimer configuration other than the unit cell. Four
high-frequency modes that have been previously identified as
“driving modes” for singlet exciton fission43 exhibit significant
couplings within this model, suggesting that the same modes
that drive singlet fission may also modulate the subsequent
triplet exciton transport.

VI. FUTURE WORK

The AIFDEM ansatz is flexible in that various types of
basis states may be included. An obvious extension is to
include charge-transfer states of the form ��Ψ+

AΨ
−
B

〉
, which were

included in the AIFDEM study of singlet fission in Ref. 43 but
for which analytic derivatives have not yet been implemented.
Such an implementation would allow us to treat couplings
related to charge-carrier mobility [1(TT) → T + T]. In addi-
tion, we have previously implemented a charge-embedding
scheme for the AIFDEM that significantly reduces its cost,13

but derivatives of the charge-embedded AIFDEM have not
yet been implemented. Finally, analytic derivative couplings
provide analytic gradients as a special case, so that ab initio
molecular dynamics is a possibility if the aforementioned
improvements can reduce the cost sufficiently.
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APPENDIX: DERIVATIVE OF A SINGULAR VALUE
DECOMPOSITION

This appendix provides the algorithm for taking the
derivative of the SVD, adapted from Refs. 50 and 51. [A minor
typographical error in Eq. (8) of Ref. 51 is also corrected here.]
We use a superscript [γ] to denote differentiation with respect
to γ, but for simplicity, other indices (e.g., for monomer labels)
are omitted here.

Consider a matrix function A(γ) with m rows and n
columns, where m need not be equal to n. The SVD of this
matrix is

A(γ) = U(γ) a(γ) V†(γ), (A1)

where a(γ) is the m × n diagonal matrix of singular values,
U(γ) is the m × m unitary matrix of left singular vectors, and
V(γ) is the n × n unitary matrix of right singular vectors. We
seek to compute derivatives of all three quantities with respect
to the perturbation γ. In what follows, we suppress the explicit
dependence on γ.

Differentiating Eq. (A1) affords

A[γ] = U[γ]aV† + Ua[γ]V† + UaV[γ]†. (A2)

An essential detail of this algorithm is that a[γ] must be diag-
onal, as the matrix of singular values should remain diagonal
for an infinitesimal perturbation. Differentiating the unitarity
condition 1 = U†U affords

0 = U[γ]†U + U†U[γ] = Z† + Z, (A3)

where Z = U†U[γ]. Similarly, differentiation of the condition
1 = V†V affords

0 = V[γ]†V + V†V[γ] =W† + W, (A4)

where W = V†V[γ]. Multiplying Eq. (A2) from the left by U†

and from the right by V and rearranging affords

a[γ] = U†A[γ]V − aW† − Za

= Q − aW† − Za,
(A5)

where Q = U†A[γ]V. Note that both Z and W are skew-
symmetric; hence, the products aW† and Za are zero along the
diagonal, and thus these two terms make no contribution to the
singular value derivatives a[γ], which are simply a[γ]

ii = Qii.
To compute the derivatives of the singular vectors, we

must solve for the elements of W and Z that force a[γ] to
be diagonal as specified in Eq. (A5), while enforcing skew-
symmetry as specified in Eqs. (A3) and (A4). To that end, we
solve

(
p
2

)
systems of 2 × 2 equations, where p = min(m, n),

each of which has the form

akkZjk + ajjWkj = Qjk ,

ajjZjk + akkWkj = −Qkj.
(A6)

Because W and Z are skew-symmetric, we need only to solve
for either the upper or the lower triangle of each, so in Eq. (A6),

we assume that 1 ≤ j ≤ min(m, n) and j < k < min(m, n).
Singularities may arise in solving the linear systems in Eq. (A6)
when there are degeneracies amongst the singular values. The
strategy in this case, as proposed in Ref. 51, is to gather sets of
all 2×2 systems where ajj = akk and solve the systems of each
set simultaneously using a least-squares approach. We use a
degeneracy threshold |ajj − akk | ≤ 10−10.

In the case that m , n so that A is rectangular, there is an
additional set of equations for elements of the larger matrix,

akkZjk = Qjk if m > n,

akkWkj = −Qkj if n > m.
(A7)

Here 1 ≤ k ≤ min(m, n) and min(m, n) ≤ j ≤ max(m, n).
Equation (A7) introduces another source of potential singu-
larities when some akk approach zero. In our implementation,
if |akk | ≤ 10−10, we simply set the corresponding elements of
W or Z to zero. Although not technically correct, note that
we only require SVD derivatives of a rectangular matrix when
computing the derivative of the NTO transformation, in which
case terms associated with small singular values are neglected
anyway, so this is not an issue for our use of the SVD derivative.
This may not be true in general, however. In the rectangu-
lar case, if m > n (or conversely n > m), then the triangle
of Z jk (or W kj), where min(m, n) + 1 ≤ j ≤ max(m, n) and
min(m, n) + 1 ≤ k ≤ j − 1, remains undefined, but we are free
to set these elements equal to zero.50

Since we solve Eqs. (A6) and (A7) only for the upper
triangle of Z and the lower triangle of W, the final forms of
W and Z are obtained from the solutions of these equations
by subtracting the transpose of the solution, resulting in skew-
symmetric matrices. Finally, derivatives of the singular vectors
are given by

V[γ] = VW,

U[γ] = UZ.
(A8)
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