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Papers I and II in this series [R. M. Richard et al., J. Chem. Phys. 141, 014108 (2014); K. U. Lao
et al., ibid. 144, 164105 (2016)] have attempted to shed light on precision and accuracy issues affect-
ing the many-body expansion (MBE), which only manifest in larger systems and thus have received
scant attention in the literature. Many-body counterpoise (CP) corrections are shown to acceler-
ate convergence of the MBE, which otherwise suffers from a mismatch between how basis-set
superposition error affects subsystem versus supersystem calculations. In water clusters ranging
in size up to (H2O)37, four-body terms prove necessary to achieve accurate results for both total
interaction energies and relative isomer energies, but the sheer number of tetramers makes the
use of cutoff schemes essential. To predict relative energies of (H2O)20 isomers, two approxima-
tions based on a lower level of theory are introduced and an ONIOM-type procedure is found to
be very well converged with respect to the appropriate MBE benchmark, namely, a CP-corrected
supersystem calculation at the same level of theory. Results using an energy-based cutoff scheme
suggest that if reasonable approximations to the subsystem energies are available (based on clas-
sical multipoles, say), then the number of requisite subsystem calculations can be reduced even
more dramatically than when distance-based thresholds are employed. The end result is several
accurate four-body methods that do not require charge embedding, and which are stable in large
basis sets such as aug-cc-pVTZ that have sometimes proven problematic for fragment-based quan-
tum chemistry methods. Even with aggressive thresholding, however, the four-body approach at
the self-consistent field level still requires roughly ten times more processors to outmatch the per-
formance of the corresponding supersystem calculation, in test cases involving 1500–1800 basis
functions. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4986110]

I. INTRODUCTION

Macromolecules, and also nanoscale molecular clusters
and assemblies, serve as bridges between the quantum and
classical limits and thus make interesting targets for quan-
tum chemistry.1–22 In contrast to semi-empirical, QM/MM,
or force-field calculations, full electronic structure calcula-
tions on systems of this size usually require either massively
parallel implementations of the underlying algorithms1 (possi-
bly in conjunction with linear-scaling versions of those algo-
rithms2–4) or else implementations using graphical process-
ing units.5 An increasingly popular alternative, and one that
is perhaps more easily amenable to large-scale paralleliza-
tion,6 is to adopt a fragment-based approach.7–22 Fragment-
based methods attempt to bypass the steep non-linear
scaling of traditional quantum chemistry by decomposing a
large system into (a potentially very large number of) small
fragments. Insofar as calculations can be performed inde-
pendently on subsystems composed of these fragments, the
overall method is trivially parallelizable. Its utility depends
upon the ability to reassemble the subsystem information
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in a way that affords useful approximations to supersystem
properties.

At some level, most fragment-based quantum chemistry
methods rely on the many-body expansion (MBE) or gen-
eralizations thereof.23 In such approaches the total energy,
or any other property that can be expressed as a derivative
of the energy,24 is decomposed into a sum of contributions
arising from monomers, dimers, trimers, . . . of fragments.
High-order terms in the expansion are neglected in order to
obtain a tractable approximation. Three-body terms some-
times contribute 15%–20% of the total inter-fragment inter-
action energy,25 and can play a pivotal role in stabilizing,
e.g., α-helix structures in peptides over long distances,21 and
are therefore usually retained. Four-body and higher-order
terms are typically neglected, despite having been shown to
be important in predicting relative conformational energies of
proteins.14 These terms are also definitely not negligible in
water clusters,26–28 where many-body polarization effects are
significant.

It has been argued29–31 that embedding the n-body sub-
system quantum chemistry calculations in an environment of
classical point charges, which serve to mimic the remaining
fragments, will accelerate convergence of the MBE by repli-
cating some portion of the many-body polarization effects that
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are neglected when higher-order terms in the MBE are omit-
ted. Papers I and II27,28 strongly contest this idea, however, and
suggest that much of the “conventional wisdom” regarding the
MBE is either incorrect or at best does not generalize beyond
the rather small systems (say, N . 10 fragments) that have
generally been used to benchmark truncated MBEs. Notably,
small water clusters of this size were used as benchmarks in
Refs. 29–31, but we obtained very different results upon exam-
ining water clusters up to N = 55.28,32 At the three-body level,
errors in the total interaction energies exceeded 15 kcal/mol
by N = 30, and point-charge embedding did relatively little to
reduce these errors, regardless of the details of how the charges
were computed.28,32 Only at the four-body level were errors
reduced as low as a few kcal/mol.28

In general, however, one should not assume that inclu-
sion of higher-order n-body terms in the MBE will necessarily
afford better accuracy. This is perhaps counterintuitive, but
the increasingly large number of subsystem calculations (each
with error in the last digits) that are required as n increases
engenders loss-of-precision issues that necessitate the use of
far tighter convergence thresholds and drop tolerances than
would ordinarily be required in a single electronic structure
calculation.27,28 In our experience, mainly with water clus-
ters, these issues do not manifest in a significant way until
the number of fragments reaches N ≈ 30. Perhaps because
supersystem calculations on large systems are required in
order to notice this problem, it has largely been overlooked
in most previous work on the MBE. The problem is espe-
cially acute when the software that runs the fragment-based
calculation simply reads the output file of an electronic struc-
ture program, where quantities of interest are often truncated
in their precision.27 Especially in the presence of embedding
charges, it is crucial to read binary scratch files or check-
point files instead, in full machine precision.27 (This fact has
been mentioned in passing elsewhere34 but without further
analysis.)

The proper definition of “error” in the context of the MBE
is debatable. Our group has long argued that the appropriate
benchmark to assess the accuracy of a truncated n-body calcu-
lation is comparison to a supersystem calculation carried out at
the same level of theory as that used for the subsystem calcu-
lations.23,27,28,32,33,35 An alternative proposal is to compare to
the best available benchmarks for a given system,36,37 despite
any disparities between levels of theory and basis sets. In our
view, such a comparison makes the n-body expansion unsys-
tematic and renders it essentially impossible to decipher how
much of its success arises from error cancellation as opposed
to capturing the true physics of the interactions.

A potentially more systematic and therefore more eas-
ily treatable source of error cancellation is basis-set super-
position error (BSSE), whose effects were never discussed
in the context of the MBE until recently.38,39 BSSE can
cause convergence of the MBE (with respect to n) to become
erratic because it may offset neglected many-body induc-
tion effects.33 To address this problem, our group28,38 and
others40,41 have developed many-body counterpoise (CP) cor-
rections that are designed to approximate the supersystem
Boys-Bernardi CP correction42 (as generalized to an arbitrary
number of monomers43,44), order-by-order in the MBE. It is

now clear that BSSE affects the supersystem calculation in a
very different manner than it does the various subsystem cal-
culations. In hindsight, this is unsurprising, insofar as BSSE
stems from “borrowing thy neighbor’s basis functions” and
there are simply fewer neighbors in the subsystem calcula-
tions. In the absence of CP corrections, it is therefore unclear
whether n-body results should be compared, order-by-order,
with a supersystem calculation. As such, our opinion of what
constitutes an appropriate benchmark has evolved over time,
and we now suggest that the most appropriate benchmark
is to compare a CP-corrected supersystem calculation to a
CP-corrected n-body calculation, each at the same level of
theory.

The present work draws on Papers I and II in this series that
documented precision problems27 and accuracy problems28

with the MBE. Here, we attempt to bring this discussion to
a close by dealing with both issues. Accuracy is assessed in
terms of CP-corrected calculations, and we extend the n-body
approximation as far as required in order to obtain results of
acceptable accuracy. Regarding what is “acceptable,” Ouyang
and Bettens41 note that for molecular dynamics applications
at room temperature, each atom has (3/2)kBT ≈ 0.9 kcal/mol
of thermal energy, hence it makes little sense in that context
to demand that single-point energies be orders-of-magnitude
more accurate than this value. A “dynamic accuracy” criterion
of 0.1 × (3/2)kB × (298 K) = 0.09 kcal/mol per fragment was
suggested in Ref. 41, and we adopt this as our target accuracy.
This level of accuracy will ultimately require four-body cal-
culations, for which precision problems manifest for N & 30
unless thresholds are set tight enough to significantly slow
down performance.28

To put this in perspective, a complete four-body calcula-
tion on the largest system considered here, (H2O)37, consists
of 74 518 distinct subsystems including 66 045 tetramers. At
theωB97X-V/aTZ level that is used herein to examine relative
energies of cluster isomers, the use of “tight” versus “’loose”
thresholds45 (as defined in Ref. 28) increases the computation
time for each water tetramer (368 basis functions) by a factor
of two when running on a single processor. Precision problems
can be circumvented, and the entire calculation significantly
streamlined, by the introduction of thresholds for neglecting
subsystem calculations that are unlikely to contribute sig-
nificantly. This possibility, and the limits of its accuracy, is
explored in the current work.

II. THEORY AND METHODS
A. Many-body expansion

The MBE expresses the total energy for a system of N
fragments as

E =
N∑

I=1

EI +
N∑

I=1

∑
J<I

∆EIJ +
N∑

I=1

∑
J<I

∑
K<J

∆EIJK + · · ·. (1)

The two- and three-body corrections are

∆EIJ = EIJ − EI − EJ , (2a)

∆EIJK = EIJK − ∆EIJ − ∆EIK − ∆EJK

− EI − EJ − EK. (2b)
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An n-body approximation, which we will denote as MBE(n),
truncates Eq. (1) at terms involving n fragments. If taken lit-
erally, however, Eq. (1) involves some redundant calculations
because, e.g., the monomer energy EI appears in ∆EIJ , ∆EIJK ,
etc. Non-redundant formulas with appropriate combinatorial
coefficients, for MBE(n) with arbitrary n, can be found in
Ref. 27.

B. Counterpoise corrections

Define the interaction energy by removing the one-body
contribution from the total energy,

Eint = E −
N∑

I=1

EI . (3)

The usual Boys-Bernardi CP correction for molecular dimers42

resembles the two-body correction ∆EIJ performed in the
dimer basis set. We might indicate this as

∆ECP
IJ = EIJ

IJ − EIJ
I − EIJ

J . (4)

Following previous literature,28,38,46 the subscripts denote
real monomers (as above) whereas the superscripts denote
where the basis functions are placed. Generalizing this to
N monomers affords a generalization of the Boys-Bernardi
idea,43,44 and a CP-corrected interaction energy

ECP
int = EIJK · · ·N

IJK · · ·N −

N∑
I=1

EIJK · · ·N
I . (5)

The quantity defined in this equation has been called the “site–
site function counterpoise correction,”43 but we refer to it
simply as the Boys-Bernardi CP correction, since it naturally
generalizes the original dimer approach.42

The CP-corrected interaction energy in Eq. (5) can alter-
natively be expressed as

ECP
int = EIJK · · ·N

IJK · · ·N −
∑

I

EI
I +

∑
I

(
EI

I − EIJK · · ·N
I

)
= Euncorr

int + δECP, (6)

where the “uncorrected” interaction energy is

Euncorr
int = EIJK · · ·N

IJK · · ·N −
∑

I

EI
I (7)

and the CP correction is

δECP =
∑

I

(
EI

I − EIJK · · ·N
I

)
. (8)

Equation (8) defines the N-body CP correction,43,44 which
has sometimes been criticized for its failure to account for
“basis-set extension” effects,40,46,47 although the good agree-
ment between CP calculations and the alternative (and for-
mally more complete) Valiron-Mayer function counterpoise
corrections40,46 suggests that any neglected effects are rather
small.28,38 The complete Valiron-Mayer approach also rapidly
becomes intractable beyond just a few monomers. In view of
this, we take Eq. (8) to define the counterpoise correction,
in the spirit of Boys and Bernardi.43,44 Even this procedure,
however, requires N + 1 calculations in the supersystem basis
set, for a system of N fragments. Even more calculations are

required in the case of the generalized MBE,23 for which CP
corrections have also been formulated.28

To circumvent this, and in view of Eq. (6), we approximate
the CP-corrected total energy through a standard MBE(n) cal-
culation applied to the supersystem energy EIJK · · ·N

IJK · · ·N in Eq. (7)
in conjunction with an n-body approximation to the summand
in Eq. (8). We call this a many-body counterpoise (MBCP)
correction,33,38 truncated at order n, or MBCP(n) for short.
Formulas for δEMBCP(n)

I , which is the n-body approximation
to the Ith summand in Eq. (8), were derived previously through
n = 4.33,38 The two leading terms are

δEMBCP(2)
I = (N − 1)EI

I −

N∑
J,I

EIJ
I (9)

and

δEMBCP(3)
I = δEMBCP(2)

I − 1
2 (N − 2)(N − 1)EI

I

+ (N − 2)
N∑

J,I

EIJ
I −

N∑
J,I

N∑
K>J
K,I

EIJK
I . (10)

Summing Eq. (9) and/or (10) over all monomers I affords the
MBCP(n) approximation, for n = 2 or 3.

Our original idea38 was to combine the MBE(n) approxi-
mation for the supersystem energy EIJK · · ·N

IJK · · ·N with the MBCP(n)
approximation for the CP corrections EIJK · · ·N

I , for a consis-
tent order-by-order truncation to the CP-corrected interaction
energy. In practice, however, we find that the MBCP(n) cor-
rections are quite small for n > 2 (see Table S1 in the supple-
mentary material). In the present work, we therefore include
only the MBCP(2) correction.

An alternative way to interpret BSSE was introduced by
Valiron and Mayer46 and later adopted by others.39–41 Within
this formulation, one writes

ECP
int =

∑
IJ

∆EIJK · · ·N
IJ +

∑
IJK

∆EIJK · · ·N
IJK + · · · (11)

and then imagines that the total BSSE arises from two contribu-
tions: basis-set imbalance error (BSIE) and basis-set extension
error (BSEE). This terminology, as well as arguments about
whether BSEE is neglected by the Boys-Bernardi CP correc-
tion, has existed for a long time,47 but in our opinion the dis-
tinction between the two effects is ambiguous and ill-defined.
A recent attempt to distinguish the two effects, within the con-
text of the MBE, can be found in Ref. 41, where it is stated
that BSIE originates in the unbalanced comparison of n-body
results, computed using subsystem basis sets, to supersys-
tem results computed using the supersystem basis set. BSEE,
according to this analysis, arises because subsystem calcula-
tions are stabilized by basis functions on nearby monomers.
The latter “is important as these extension effects improve
the quality of the total energy or binding energy by maxi-
mizing the flexibility of the wave function at the given basis
set.”41 However, the quality of the subsystem calculations also
improves if they are performed using the supersystem basis
set, so it seems to us that BSIE and BSEE are inextricably
entangled.

With Eq. (11) in mind, however, Ouyang and Bettens41

introduced a CP scheme that is formally more general than
our MBCP(n) approach, and in particular conforms more

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-147-028791
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-147-028791
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closely to the Valiron-Mayer idea.40,46 Nevertheless, our
MBCP(n) approach is recovered as a low-order approxima-
tion to their “many-ghost, many-body expansion,” and it is
found that MBCP(2) is sufficient to converge the CP correc-
tion,41 as we have already suggested above. This provides fur-
ther justification for the approximate CP correction employed
here.

C. Cost-reduction strategies

Reducing the number of subsystem calculations is crucial
for obtaining good efficiency. One “dirty secret” of fragment-
based approaches is that often quite large system sizes are
required before the total computational time (measured in
processor-hours) is actually less than the cost of the super-
system calculation.14,28 This is especially true when CP cor-
rections are introduced, as these require a very large number
of additional calculations.28 It is true that the wall time (or
time-to-solution) of the fragment-based calculation can be dra-
matically reduced via parallelization, although methods that
rely on self-consistent updating of embedding charges will suf-
fer some reduction in parallel scalability. Thresholds designed
to eliminate unimportant subsystem calculations a priori not
only reduce the cost, but by significantly reducing the number
of subsystems they can also reduce finite-precision problems.

1. Distance-based thresholds

We examine smooth distance-based cutoffs to discard
some of the subsystems, based on a switching function

f (x) =




1, if x < 0

1 − x3(10 − 15x + 6x2), if 0 ≤ x ≤ 1

0, if x > 1

. (12)

Let Rmax denote the largest inter-fragment distance within a
particular subsystem, measured in the present work in terms
of the fragment centers of mass. (For fragments significantly
larger than H2O, inter-fragment atom–atom distances are
likely a better choice for Rmax, but the choice makes little
difference here.) The cutoff procedure is characterized by two
parameters: R cut1, the distance for the onset of the threshold,
and w, which indicates the width of the switching region or in
other words how quickly f (x) switches between 0 and 1. Given
these two parameters, we take

x = (Rmax − R cut1)/w (13)

in Eq. (12). If Rmax ≥ R cut1+w, then f (x) = 0 and the subsystem
in question is neglected. [One could imagine adopting some
small but non-zero drop tolerance for f (x), say, on the order of
the integral drop tolerance, but we have not done so here and
do not expect that it would make much difference in clusters
of this size.] For subsystems with Rmax < R cut1 +w, the energy
is computed and then scaled by f (x) for use in the MBE. Each
fragment in this work consists of a single H2O molecule and
we will test various combinations of R cut1 and w. For brevity
in the discussion that follows, we will use the notation (nr , nw)
to indicate particular choices of the thresholds, where nr and
nw are a pair of integers that specify the values of R cut1 and
w, respectively, in Ångstroms.

Recent MBE calculations on alanine polypeptides have
demonstrated that distance-based screening alone may arti-
ficially exclude certain important subsystems, namely, those
characterized by a cooperative arrangement of dipole moments
across length scales longer than the cutoff distance.21 To
account for this, we introduce a second distance parame-
ter R cut2 < R cut1, in the spirit of the connectivity-based
analysis in Ref. 21. To understand the role of this second
cutoff, consider the “connectivity diagrams” of trimers and
tetramers that are illustrated in Fig. 1. In these diagrams,
we connect with a line any pair of fragments that are sep-
arated by a distance less than R cut2, whereas we imagine
that disconnected fragments are separated by more than R cut1

and therefore these configurations are excluded by the R cut1

cutoff.
Figures 1(a)–1(c) exhaust all of the possible topologies for

trimers, and Figs. 1(d)–1(i) show all possibilities for tetramers.
Note that configurations (c) and (i), in which all inter-fragment
distances are less than R cut2 (and therefore less than R cut1

as well), are always included and are shown only for com-
pleteness. In each of the remaining configurations, there is at
least one inter-fragment distance greater than R cut1, so each is
excluded by the cutoff procedure of Eqs. (12) and (13).

Examining the trimer configurations, we wish to exclude
configuration (a), which consists of a dimer of fragments
plus a well-separated monomer, while retaining configuration
(b), which might exhibit an energetically important chain-
of-dipoles interaction but is excluded by the R cut1 cutoff
procedure on the basis of its end-to-end distance. For the
tetrameric cases, the configurations in Figs. 1(d) and 1(e)
consist of strongly interacting dimers or trimers plus another

FIG. 1. Pictorial representations of all
possible “connectivities” for trimers and
tetramers of fragments (red circles).
Solid blue lines indicate inter-fragment
distances less than R cut2, and the vari-
ous cases are grouped according to how
many of these there are. Fragments not
connected by blue lines are farther apart
than R cut1. Trimers (a) and (b), and
tetramers (d)–(h), are excluded by the
R cut1 threshold [Eqs. (12) and (13)],
but when we additionally employ the
R cut2 criterion only configurations in
the shaded boxes are excluded.
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weakly interacting dimer or monomer(s). Since the strongly
interacting dimers and trimers are already included in the
two- and three-body calculations, respectively, we expect
configurations (d) and (e) to make only minor contributions
at the four-body level. As such, in these proof-of-concept cal-
culations, we will use the R cut2 threshold to retain tetramers
otherwise excluded by R cut1 only if they exhibit four or more
inter-fragment distances less than R cut2. This excludes the
cases in Figs. 1(d) and 1(e), as well as one of the cases shown
in Fig. 1(f). The R cut2 threshold, introduced in Ref. 21, has not
yet been implemented in a smooth way nor will we attempt
to do so now. Rather, we merely present results with R cut2 in
order to compare the accuracy against those obtained using the
smooth R cut1 threshold alone.

2. Energy-based thresholds

For systems where the individual fragments are sub-
stantially larger than H2O, the distance-based thresholding
discussed above may become less effective in reducing the
number of subsystem calculations. Ouyang and Bettens21

recently described an elegant, energy-based thresholding pro-
cedure in which classical multipole interactions are used as a
priori estimates of the magnitude of higher-order terms in the
MBE. (The monomer multipoles are available from the one-
body calculations.) Trimers with classical interaction energies
smaller than 0.25 kJ/mol, and tetramers with classical interac-
tions <0.1 kJ/mol, were excluded from quantum calculations
at the MBE(3) and MBE(4) levels, respectively. This pro-
cedure is quite new and has yet to be implemented in our
code nor has it been implemented anywhere in conjunction
with smoothing functions. Nevertheless, we can estimate its
effectiveness after-the-fact by first computing all subsystem
energies at the quantum level then using those results to discard
certain subsystems according to the aforementioned energetic
criteria.

3. Multi-level approaches

As compared to simply dropping well-separated subsys-
tems outright, a more sophisticated approach might treat these
small contributions to the MBE at a lower level of theory. We
test two different approaches for doing so, taking the lower-
level theory to be Hartree-Fock (HF) theory in either case.
In the first scheme, we smoothly turn on a HF calculation
using the switching function 1 � f (x), as the higher-level DFT
method is turned off using the function f (x) [see Eq. (12)].
For any particular subsystem, the energy formula that is
used is

Esubsys = f (x)EDFT
subsys + [1 − f (x)]EHF

subsys. (14)

For subsystems that exist in the switching region, meaning that
R cut1 ≤ Rmax ≤ R cut1 + w, it is necessary to perform both the
HF and the DFT calculations.

The second approach is an ONIOM-type formalism,48

inspired by the fragment-based methods introduced by
Raghavachari and co-workers,13,16,17,49,50 who use a supersys-
tem calculation performed at an inexpensive level of theory in
order to capture long-range induction effects that would oth-
erwise be omitted in a low-order n-body calculation. This is
an alternative way to account for the cooperative, long-range

arrangements of fragment dipole moments. The subsystem
energy formula used in this case is

Esubsys =
(
EDFT

subsys − EHF
subsys

)
f (x) + EHF

supersys. (15)

Considering all subsystems, the terms EDFT
subsys f (x) together

constitute an n-body DFT calculation with smooth cutoffs, and
subtracting EHF

subsysf (x) prevents double-counting of the low-
level calculations on the “model system” (to use ONIOM ter-
minology48) in the presence of a low-level calculation EHF

supersys
on the “real system.” Note that the supersystem term in Eq. (15)
is the same for each subsystem, so need only be computed
once.

III. RESULTS AND DISCUSSION
A. Computational details

In Sec. III B, we examine how distance-based thresh-
olds affect the accuracy of interaction energies computed for
a sequence of water clusters, (H2O)N =6–37. These structures
were originally obtained from Ref. 51, where they were put
forward as putative global minima (at each cluster size) on the
TIP4P potential surface. They are used here without further
optimization.

We use the affordable B3LYP/aug-cc-pVDZ (B3LYP/aDZ)
level of theory, with an SCF convergence threshold τSCF = 10−7

a.u. and a drop tolerance τints = 10−14 a.u. These are “tight”
convergence thresholds, as defined in Paper II,28 whereas
looser thresholds may lead to precision problems in the
MBE.27 Both thresholds, especially τints, are significantly
tighter than the default settings in common electronic structure
programs.

In Sec. III B, we examine relative energies of four different
structural motifs of (H2O)20. These structures have also been
considered in previous work on the MBE33 and are taken from
the extensive basin-hopping Monte Carlo search in Ref. 52.
For these calculations, we employ a higher-quality level of
theory, namely, ωB97X-V53/aug-cc-pVTZ (ωB97X-V/aTZ),
with τSCF and τints as above.

The SG-1 quadrature grid54 is used for all calculations, as
higher-quality grids have been examined and found to make
little difference in the context of the MBE.27 All calculations
were performed using Q-Chem, v. 4.2.55

B. Interaction energies

Except where otherwise specified, in what follows we
define the error in an n-body approximation to the interaction
energy according to

error = Eint(n-body) − Eint(supersystem), (16)

where one or both energies may be CP corrected, depending
on the context. [For total interaction energies we report errors
in size-intensive, per-monomer units, but Eq. (16) fixes the
convention for the sign of the errors.] Errors will be compared
to the dynamic accuracy threshold discussed above,41 i.e., 10%
of (3/2)kBT per monomer at T = 298 K, or in other words
0.09 kcal/mol/monomer.

Data comparing the full CP correction at the B3LYP/aDZ
level versus its MPCP(2) approximation are shown for
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FIG. 2. Signed errors per monomer in three- and four-body total interaction
energies for clusters (H2O)6–37, at the B3LYP/aDZ level of theory. The n-body
calculations labeled “no CP” are computed without MBCP corrections and
compared to uncorrected supersystem energies, whereas those labeled “with
CP” include MBCP(2) corrections and are compared to supersystem energies
that include the full Boys-Bernardi CP correction.

(H2O)N=6–37 in Table S1 of the supplementary material. Dif-
ferences between δECP and its MBCP(2) approximation are
smaller than 0.07 kcal/mol/monomer across the whole data
set, with an average error of 0.04 kcal/mol/monomer. This is
consistent with other results demonstrating that the higher-
order MBCP(n) corrections are small.41 As such, we will limit
the CP corrections to MBCP(2) in what follows, despite our
original intention of using a consistent MBE(n)+MBCP(n)
approximation to ECP

int .

1. Role of CP correction

In Figs. 2 and 3, we examine size-dependent errors in
MBE(3) and MBE(4) results and their MBCP(2)-corrected
counterparts, in two different ways. In Fig. 2, the uncor-
rected MBE(n) results are compared to uncorrected super-
system interaction energies (i.e., none of the calculations
includes any CP correction), whereas the MBCP(2)+MBE(n)
results are compared to supersystem interaction energies
that include the full Boys-Bernardi CP correction, i.e.,
δECP in Eq. (8). Figure 3 compares both MBE(n) and
MBCP(2)+MBE(n) results to supersystem energies that
include δECP.

At the three-body level, errors are somewhat smaller when
we ignore the issue of BSSE altogether, but grow larger when
we attempt to account for it, whereas the opposite is true at

FIG. 3. Signed errors per monomer in three- and four-body total interaction
energies for clusters (H2O)6–37, at the B3LYP/aDZ level of theory. All of the n-
body calculations, whether CP-corrected or not, are compared to supersystem
calculations that include the full Boys-Bernardi CP correction.

the four-body level. These observations make sense in light of
two facts: first, BSSE is always overstabilizing; and second,
for water clusters, the non-pairwise terms often constitute sta-
bilizing many-body induction effects. As such, the uncorrected
MBE(3) results benefit from some error cancellation wherein
neglected four-body terms are partially offset by BSSE, as
observed in our previous work exploring extrapolations to
the basis-set limit.33 Note that the error in the CP-corrected
interaction energy is

error(CP) = ECP
int −

(
EIJK · · ·N

IJK · · ·N −
∑

I

EIJK · · ·N
I

)
, (17)

whereas the error in the uncorrected case is

error(uncorr) = Euncorr
int −

(
EIJK · · ·N

IJK · · ·N −
∑

I

EI
I

)
. (18)

Adding δECP, as defined in Eq. (8), to Eq. (17) results in pre-
cisely the right side of Eq. (18), which shows that the two
definitions of error in Eqs. (17) and (18) are simply offset by
the magnitude of the CP correction.

Examining Fig. 3, where all of the supersystem calcu-
lations include the full Boys-Bernardi correction and should
therefore represent our best (or at least, most complete) bench-
marks, we see that only the MBCP(2)-corrected n-body results
are acceptable and lie essentially within our target accuracy
of 0.09 kcal/mol/monomer for both n = 3 and n = 4. Uncor-
rected MBE(3) results do not afford the target accuracy, and
give rise to an error of ≈ − 0.6 kcal/mol/monomer that is
roughly constant as a function of cluster size. Errors in uncor-
rected MBE(4) results actually become larger as the cluster
size increases.

2. Effects of cutoffs

To obtain a decent guess as to what might constitute a rea-
sonable distance cutoff R cut1, we examine the convergence of
the total interaction energies at the MBE(4) level for (H2O)6–37,
in Fig. 4. These particular data do not apply any smoothing
function but instead use a sharp drop criterion as a function
of distance. A 6 Å cutoff recovers 97% of the total interaction
energies, so in the interest of erring on the conservative side,
we take this as our minimum value of R cut1 and also examine

FIG. 4. Fraction of the cumulative interaction energy for water clusters
(B3LYP/aDZ level) that is recovered by a four-body approximation, as a
function of a sharp distance cutoff for the subsystem calculations. Interaction
energies are not CP corrected, and the data point at each distance represents
an average over cluster sizes from N = 6–37.

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-147-028791
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FIG. 5. Signed errors per monomer in CP-corrected (a) three-body and (b)
four-body approximations to the total interaction energy for a sequence of
water clusters, employing different values for the switching function param-
eters (nr , nw ). Subsystem calculations include the MBCP(2) counterpoise
correction [Eq. (9)] but are compared to supersystem results including the full
counterpoise correction [Eq. (5)].

R cut1 = 7 and 8 Å along with w = 1, 2, and 3 Å. [In the (nr , nw)
notation introduced above, this means nr = 6, 7, or 8 and nw
= 1, 2, or 3.] Errors as a function of cluster size are plot-
ted in Fig. 5, for both three- and four-body expansions. All
calculations are CP-corrected.

It is obvious that neither MBE(3) nor MBE(4) has con-
verged to the target accuracy until the cutoffs are pushed to
(nr , nw) = (8, 1), although (7, 2) comes close. Note that it is
not easy to draw a direct connection between the choice of (nr ,
nw) and the number of subsystems that will be included in the
calculation. For instance, in the present examples, the (6, 3),
(7, 2), and (8, 1) combinations involve the same subsystems
but different values of f (x), so the accuracy of each scheme
is a bit different. Nevertheless, there is a clear trend in Fig. 5
that errors are reduced as we progress from (6,3) → (7,2) →
(8,1) thresholding, leading us to conclude that subsystems with
inter-fragment distances in the range of 6–9 Å are important
in providing long-range stabilization.

Notice from Fig. 5 that errors are larger for the clus-
ter sizes N = 31, 32, and 34–37, anomalies that may result
from a qualitative structural transition that occurs between N
= 30 and 31, where the structures transition to large cages
with cubic structures rather than pentaprismic structures.56

(Recall that our cluster structures are putative global min-
ima at each value of N.51) In view of recent work by Ouyang
and Bettens aimed at identifying important many-body inter-
actions in polypeptides,21 it may be the case that the sort of
cooperative, chain-like interactions amongst fragment dipole
moments that were identified in Ref. 21 are more important for
the qualitatively different structures at N > 30 than they are
for the slightly smaller N ≤ 30 structures. To investigate this

TABLE I. Error statistics (maximum error and mean unsigned errors) for
CP-corrected MBE(4) approximations to ECP

int , using various thresholds (nr ,
nw), in conjunction with the R cut2 threshold, R cut2 < R cut1. Statistics include
all (H2O)N clusters, N = 6–37.

Error (kcal/mol/monomer)

R cut2
(6,1) (7,1) (8,1)

(Å) Maximum MUE Maximum MUE Maximum MUE

4 0.64 0.17 0.31 0.08 0.16 0.06
5 0.54 0.12 0.30 0.09 0.16 0.06
6 0.40 0.10 0.24 0.08 0.17 0.06
7 . . . . . . 0.17 0.07 0.15 0.06
8 . . . . . . . . . . . . 0.14 0.06

possibility, we introduce the second threshold parameter R cut2,
as discussed in Sec. II C 1. Error statistics employing both R cut1

and R cut2 are summarized in Table I. For the (nr , nw) = (7, 1)
and (8, 1) schemes, errors converge by R cut2 = 7 Å, and they
converge to values not worse than what we encountered prior
to introducing R cut2 (see Table I).

Figure 6 plots the signed errors for three- and four-body
approximations using the (nr , nw) = (6, 1), (7,1), and (8,1)
schemes but this time with R cut2 = 7 Å. At the three-body
level, the errors are reduced for the (6,1) and (7,1) schemes
as compared to results where the R cut2 threshold is absent.
At the four-body level, (7,1) results with R cut2 = 7 Å are
close to the target accuracy of 0.09 kcal/mol/monomer. There-
fore, in Fig. 7, we examine (7,1) results with R cut2 = 7 Å
more closely, plotting them alongside results obtained with
no cutoffs whatsoever, as a reference, and also results in
which energy rather than distance cutoffs are employed. Fol-
lowing the recommendation in Ref. 21, for the energy-based
scheme, we discard all trimers whose interaction energies
are <0.25 kJ/mol and all tetramers whose interaction ener-
gies are <0.10 kJ/mol. (The energy-based scheme retains all
dimers, whereas the distance-based scheme discards suffi-
ciently distant dimers.) Results demonstrate that both cutoff
strategies faithfully track the reference calculations, at both
the three- and four-body levels. Absolute errors, with respect
to a CP-corrected supersystem calculation, are not much larger
than 0.2 kcal/mol/monomer for any of the clusters examined
here.

FIG. 6. Signed errors per monomer for three- and four-body approximations
to the total interaction energies, in conjunction with MBCP(2) counterpoise
corrections, for (H2O)N clusters. Various (nr , nw ) combinations are used, with
R cut2 = 7 Å in each case.
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FIG. 7. Signed errors per monomer in three- and four-body approximations to
the total interaction for (H2O)6–37, including MBCP(2) corrections. The “dis-
tance cutoff” results use the thresholds (nr , nw ) = (7, 1) along with R cut2 = 7 Å.
The “energy cutoff” results do not employ any distance-based thresholding
but discard all trimers whose interaction energies are <0.25 kJ/mol and all
tetramers whose interaction energies are <0.10 kJ/mol.

C. Relative energies

We next examine three- and four-body expansions as
applied to predicting relative energies of (H2O)20 isomers.
Cluster geometries, consisting of twenty low-energy isomers
each from the four families of isomers on the (H2O)20 potential
surface, were taken from Ref. 52 without further optimization.
These structures have been used by us in previous work,28,33

and examples of the four classes of isomers are depicted
in Fig. 8. Benchmark energies were computed at the CP-
correctedωB97X-V/aTZ level, and error with respect to these
benchmarks is defined as

error = En-body
rel − Esupersys

rel . (19)

Both energies in Eq. (19) are CP-corrected, using MBCP(2)
in the n-body case and a full Boys-Bernardi correction in the
supersystem case. Our target accuracy for these calculations is
“chemical accuracy” of 1 kcal/mol with respect to a supersys-
tem calculation performed using the same density functional
and basis set.

Errors in the relative isomer energies are plotted in
Fig. 9, using (nr , nw) cutoffs but not the R cut2 threshold, as the

FIG. 8. Examples of the four families of (H2O)20 isomers.

latter only becomes important in larger clusters. To achieve the
target accuracy of 1 kcal/mol requires the use of our most con-
servative thresholding strategy, (nr , nw) = (8, 1), in which case
there are only three isomers out of 80 where the error exceeds 1
kcal/mol. A detailed examination (see Table S2 in the supple-
mentary material) reveals that, within the isomers belonging
to a given family, these three outliers exhibit the largest stabi-
lization energies arising from sub-clusters separated by 8–9 Å.
The contrast is especially apparent for isomers 10 and 18 of
the edge-sharing pentagonal prism motif, where the 8–9 Å sub-
clusters contribute �4.42 and �4.11 kcal/mol, respectively, to
the total interaction energy, whereas this value does not exceed
�0.45 kcal/mol for any other isomer in this family, and in a few
cases, it is actually repulsive. (The difference lies primarily in
the arrangement of monomer dipole moments, which in the
case of isomers 10 and 18 makes all of the two-body inter-
actions attractive, whereas for other isomers about half of the
two-body interactions in the 8–9 Å range are repulsive.) The
contrast is not quite as stark in the case of fused-cube isomer

FIG. 9. Signed errors for relative
energies of (H2O)20 cluster isomers,
employing MBE(4)+MBCP(2) and
various (nr , nw ) thresholds. Energies
were computed at the ωB97X-V/aTZ
level. Each panel presents data for a
different family of isomers (see Fig. 8),
but all 80 isomers are plotted on a
common energy scale even thought the
vertical axes differ between panels.

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-147-028791
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-147-028791
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FIG. 10. Signed errors for relative
energies of (H2O)20 cluster isomers,
employing MBE(4)+MBCP(2) and var-
ious (nr , nw ) thresholding schemes.
Energies up to the R cut1 cutoff were
computed at the ωB97X-V/aTZ level
and supplemented with HF/aTZ for the
long-range interactions, according to
Eq. (14). Each panel presents data for
a different family of isomers (see Fig.
8), but all 80 isomers are plotted on a
common energy scale even thought the
vertical axes differ between panels.

14, although the 8–9 Å interactions are still ≈1 kcal/mol more
stabilizing than for any of the other fused-cube isomers. For
the other two families of isomers there are no such outliers, and
as such the results with (8,1) thresholds are more consistent in
these cases.

These (H2O)20 clusters are too small to benefit from the
alternative R cut2 threshold introduced above, so to improve
the results we turn to two other ad hoc strategies described in
Sec. II C 3. The first approach gradually turns on a HF/aTZ
calculation at long range, as the switching function is turning
off the DFT calculation; see Eq. (14). Results in Fig. 10 using
(8,1) thresholds show that the relative energies are more con-
sistent across isomers than when the long-range interactions
are simply neglected, although for the fused-cube isomers the
errors are ≈0.5 kcal/mol greater, even while the aforemen-
tioned outlier is eliminated. Nevertheless, this hybrid scheme
comes close to achieving the desired accuracy of 1 kcal/mol,
at least with (8,1) thresholds. For (7,1) thresholds, the errors

remain fairly consistent across isomers but are increased
to ∼1.5 kcal/mol. Errors for the (6,1) scheme are clearly
unacceptable.

As an alternative to low-level calculations of just the
long-range subsystems, we also examine an ONIOM-type
approach [Eq. (15)] using a DFT-based MBE as the high-
level calculation (ωB97X-V/aTZ) and HF/aTZ as a low-level
supersystem calculation. Results are shown in Fig. 11 and are
extremely accurate in comparison to either of the previous two
approaches. (Note the much smaller energy scale in Fig. 11 ver-
sus either of Fig. 9 or 10.) In this case, errors in relative energies
do not exceed 0.5 kcal/mol, even when (6,1) thresholding is
employed. This eliminates a great many subsystems as com-
pared to (8,1) thresholds. For example, at the (6,1) level, we
must retain 144, 536, and 1160 subsystems for n = 2, 3, and 4,
respectively, as compared to 190, 1,140, and 4845 subsystems
when no thresholds are employed. For the (8,1) scheme, very
few subsystems can be neglected in (H2O)20. Granted, this

FIG. 11. Signed errors for relative
energies of (H2O)20 cluster isomers,
employing MBE(4)+MBCP(2) and var-
ious (nr , nw ) thresholds. Energies up
to the R cut1 cutoff were computed at
the ωB97X-V/aTZ level and corrected
using a HF/aTZ calculation for the
entire supersystem, using the ONIOM-
style correction in Eq. (15). Each panel
presents data for a different family of
isomers (see Fig. 8), but all 80 iso-
mers are plotted on a common energy
scale even though the vertical axes differ
between panels.
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FIG. 12. Relative energies of twenty isomers from each of four motifs of
(H2O)20, computed at theωB97X-V/aTZ level using the (8,1) cutoff scheme.
Except for the dodecahedral isomers, the difference between CP-corrected
and uncorrected results is indistinguishable within the thickness of the lines.

reduction comes at the expense of introducing a single super-
system calculation at the HF level, though as the high-level
method becomes even more expensive—a correlated wave
function calculation, for example, rather than DFT—the cost of
the low-level supersystem calculation may not be so egregious.
As such, this composite approach may have a useful domain
of applicability, even if it becomes intractable as N → ∞. (We
return to this issue below, with timings.)

Finally, we revisit the relative energies of the (H2O)20 iso-
mers examined in Ref. 33. New data at the ωB97X-V/aTZ
level are plotted in Fig. 12, using an (8,1) cutoff scheme.
Although δECP is around 2.80 kcal/mol for the edge-sharing-
pentagonal-prism, face-sharing-pentagonal-prism, and fused-
cube isomers, this sizable correction is about the same for
all isomers and the CP-corrected relative energies for these
three families cannot be distinguished from the uncorrected
energies. On the other hand, δECP ≈ 2.55 kcal/mol for
dodecahedral isomers, so this correction matters at the level
of ≈0.25 kcal/mol when trying to establish the energies of
the dodecahedra relative to those of the other isomers. We
observed the same phenomenon at the MP2 level in pre-
vious work,33 namely, that CP correction matters only for
predicting the energies of the dodecahedral isomers relative
to those of the other three families. (It is also true that δECP

was a bit larger than 1 kcal/mol in those previous calcula-
tions,33 consistent with the observation that BSSE is typically
larger in post-Hartree–Fock calculations as compared to DFT
calculations.)

D. Computational cost

Our analysis suggests that fragments separated by
6–9 Å are indispensable in obtaining accurate total interac-
tion energies. For distance-based thresholding, this places a
fairly strong limit on the number of subsystems that can be
discarded while maintaining faithful accuracy with respect
to the supersystem calculation. For example, the number of
subsystems that must be retained for (H2O)37, using (7,1)
thresholds with or without R cut2 = 7 Å, is listed in Table II.
The reduction is quite dramatic when R cut2 is not considered,
but only moderate when it is. Similar trends are reflected in

TABLE II. Number of subsystems required for an MBE(4) calculation on
the (H2O)37 cluster considered here, using the (7,1) thresholding scheme for
R cut1 with and without R cut2 = 7 Å. The number of subsystems required for
energy-based thresholding (Ecut) is also shown.

Subsystem Full R cut1 R cut1 + R cut2 Ecut
a

Monomers 37 37 37 37
Dimers 666 504 504 666
Trimers 7 770 3 751 5 141 908
Tetramers 66 045 17 856 38 278 999

Total 74 518 22 310 43 923 2 573

aThe energy-based scheme does not cull monomers or dimers.

Fig. 13, which plots the fraction of the subsystems that are
retained in the MBE(3) and MBE(4) approximations using
various cutoffs, where the data are averaged over all water
clusters (H2O)6–37. For MBE(4) with (7, 1) thresholds, which
was sufficient to obtain high-accuracy interaction energies
for clusters with N ≤ 30, more than 60% of the subsys-
tems can be discarded, although this fraction drops to about
25% upon inclusion of the R cut2 = 7 Å criterion that was
necessary in larger clusters. Note that the fraction of sub-
systems that can be discarded will increase as system size
grows.

The energy-based cutoff scheme is far more successful,
essentially by construction, and eliminates 96.5% of the sub-
system calculations as compared to an MBE(4) calculation
with no cutoffs whatsoever. As compared to the (7,1) distance-
based cutoff scheme, the energy-based scheme requires only
11.5% as many sub-cluster calculations. At present, our imple-
mentation of this approach is “cheating,” given that we have
computed all of the sub-cluster energies a priori at the QM
level and then thrown out the ones with sufficiently small
interaction energies, a posteriori, but this suffices to demon-
strate the promise of the energy-based approach. In Ref. 21, the
energy-based scheme was introduced by Ouyang and Bettens
based on classical multipole approximations to the sub-cluster
energies, and it remains to implement a proper energy-based
thresholding scheme using smooth cutoffs. Such efforts are
underway in our group.

FIG. 13. Fraction of subsystem calculations required for various MBE(n)
approximations and thresholding schemes, averaged over (H2O)N=6−37. Note
that any (nr , nw ) combination with the same value of nr + nw results in the
same subsystems, so we label the cutoffs in terms of R cut1 + w.
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TABLE III. Timing data for MBE(4) calculations of (H2O)37 (without CP
corrections) at the B3LYP/aDZ level using the (7,1) thresholding scheme for
R cut1 with and without R cut2 = 7 Å. These are the same calculations as used
to count the number of subsystems in Table II. Wall times reflect the cost to
run on a single 28-core node,57 so except for the supersystem calculation the
wall time should decrease linearly with the number of nodes.

Time (h)

Method CPU Wall

MBE(4), no cutoffs 1601.7 58.4
MBE(4), R cut1 496.3 18.1
MBE(4), R cut1 + R cut2 951.4 34.6
MBE(4), Ecut 252.1 9.4
Supersystem 15.4 0.9

Actual timing data for a supersystem and various MBE(4)
calculations on (H2O)37, at the B3LYP/aDZ level and without
CP corrections, are presented in Table III. These calculations
reflect the subsystem counts that appear in Table II. All cal-
culations were threaded across 28 processors within a single
node,57 and we note that the ratio of CPU time to wall time
is ≈27 for each of the MBE(4) calculations, indicating near-
perfect parallel scalability across a single node. (The parallel
speedup is only about 17× for the supersystem calculation.)
Note also that the wall times reported in Table III for the
MBE(4) calculations reflect what would be required if only
a single node were used. As such, the time-to-solution should
decrease linearly as the number of nodes is increased, up to a
very large number of nodes given the very large number of sub-
systems. At the same time, it is worth mentioning that for this
particular calculation where the supersystem includes 1517
basis functions, ten times as many processors are required to
make the MBE(4) wall time competitive with that of the super-
system calculation, even with our most aggressive thresholding
scheme.

Lastly, one might object to our use of a supersystem HF
calculation in the ONIOM-style procedure as this destroys the
linear-scaling nature of the MBE. It bears note, however, that
the prefactor on the O(N) scaling of MBE(n) is extremely
large unless the number of processors available amounts to a
significant fraction of the number of subsystems. Batches of
processors numbering in the thousands or tens of thousands
may be unavailable on commodity clusters, and where they
are available at supercomputer centers the queue times may
be quite long for such requests. Furthermore, Raghavachari
and co-workers have shown that there is a useful mid-size
regime where a low-level supersystem remains tractable but
a high-level calculation would not be. For systems in this
size range, the combination of high-level fragment calcula-
tion with a low-level supersystem calculation can afford useful
results.13,16,17,50

To put this in perspective, Table IV shows timing data for
calculations on one isomer of (H2O)20 using a variety of thresh-
olds and also lists the time required for a HF/aTZ supersystem
calculation. As above, all calculations are multithreaded across
all 28 cores of one node.57 As in the (H2O)37 example, wall
times for the MBE(4) calculations should decrease linearly
with the number of nodes. The supersystem HF/aTZ calcula-
tion takes 2.0 h on a single node, as compared to 17.4 h for

TABLE IV. Timing data (in hours) for (H2O)20, edge-sharing pentagonal
prism isomer 10, with all calculations multithreaded across a single 28-core
node.57 For the short-range DFT + long-range HF method of Eq. (14), the
total time is the sum of the two MBE(4) timings (HF + DFT), whereas the
ONIOM-style method in Eq. (15) also includes the supersystem HF time.

(6,1) (7,1) No thresholds

Method CPU Wall CPU Wall CPU Wall

MBE(4), HFa 280.4 12.4 630.7 27.2 738.4 35.4
MBE(4), DFTb 424.6 17.4 970.1 39.0 1291.5 51.5
Supersystem, HFa . . . . . . . . . . . . 39.0 2.0

aHartree-Fock/aTZ.
bωB97X-V/aTZ.

a MBE(4) calculation at the ωB97X-V/aTZ level, even with
relatively loose (6,1) thresholds, which afford acceptable accu-
racy within the ONIOM-style paradigm. Thus, the lower-level
supersystem calculation is cheaper (in terms of wall time) than
the higher-level MBE(4) calculation until the latter is run on
9 nodes or 252 processors. This example demonstrates that
a supersystem calculation of this size (1840 basis functions)
need not be an overwhelming bottleneck, in many hardware
configurations.

IV. CONCLUSIONS

We have demonstrated the performance of distance-based,
connectivity-based, and energy-based cutoffs in the context
of the many-body expansion, for total interaction energies of
water clusters (H2O)6–37 and for relative energies of many
different isomers of (H2O)20. To achieve an accuracy better
than 0.1 kcal/mol/monomer, or in other words 10% of kBT
(at T = 300 K) in the total interaction energy, without simply
relying on error cancellation, requires a four-body expansion
with counterpoise corrections. The latter can be approximated
at the two-body level. This alone is a significant conclusion,
given the paucity of fragment-based calculations that include
four-body terms, or the even smaller number that include coun-
terpoise corrections. Only fairly conservative distance-based
thresholds achieve this level of accuracy, resulting in only
about a 30% reduction in the number of subsystem calculations
required, for the systems considered here, but the energy-based
thresholds suggested in Ref. 21 seem much more promising in
this respect.

Regardless of the details of the thresholding scheme, this
work demonstrates that four-body calculations in large sys-
tems are both feasible and accurate, without resort to charge
embedding. The intuitive appeal of embedding notwithstand-
ing, there are reasons to avoid it because it hinders paral-
lelization and also significantly complicates the formulation
of analytic energy derivatives.58–60 Absent embedding, the
MBE is perfectly scalable up to a very large number of proces-
sors; derivatives are straightforward; and the method is stable
even in large, augmented basis sets such as aug-cc-pVDZ and
aug-cc-pVTZ, for which some fragment-based methods that
employ embedding may experience problems.61,62 Neverthe-
less, it is worth acknowledging that a large number of proces-
sors is required in order for the four-body approximation to
outperform an efficient SCF implementation, even for systems
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involving 1500–1800 basis functions and small fragments.
This remains true even in light of preliminary results using
a very promising energy-based thresholding scheme21 that
appears to achieve a far more dramatic reduction in the num-
ber of subsystem calculations, as compared to distance-based
thresholding.

SUPPLEMENTARY MATERIAL

See supplementary material for additional data for coun-
terpoise corrections and (H2O)20 interaction energies.
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