Supporting Information for: “Understanding the many-body expansion for large systems. III. Critical role of four-body terms, counterpoise corrections, and cutoffs”

Kuan-Yu Liu and John M. Herbert
Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210 USA
(Dated: July 28, 2017)

TABLE S1: Comparison of δE^{CP} and MBCP(2) for (H$_2$O)$_N$ clusters, $N = 6$–37.

<table>
<thead>
<tr>
<th>N</th>
<th>CP correction (Hartree)</th>
<th>δE^{CP}</th>
<th>MBCP(2) (kcal/mol/monomer)</th>
<th>difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>0.005</td>
<td>0.005</td>
<td>0.060</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>0.006</td>
<td>0.006</td>
<td>0.027</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>0.007</td>
<td>0.007</td>
<td>0.024</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>0.008</td>
<td>0.008</td>
<td>0.020</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>0.009</td>
<td>0.009</td>
<td>0.020</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>0.011</td>
<td>0.011</td>
<td>0.041</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>0.012</td>
<td>0.013</td>
<td>0.047</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>0.013</td>
<td>0.014</td>
<td>0.033</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>0.014</td>
<td>0.015</td>
<td>0.041</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>0.016</td>
<td>0.017</td>
<td>0.035</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>0.017</td>
<td>0.019</td>
<td>0.062</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>0.018</td>
<td>0.020</td>
<td>0.044</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>0.019</td>
<td>0.021</td>
<td>0.051</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>0.021</td>
<td>0.022</td>
<td>0.041</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>0.022</td>
<td>0.023</td>
<td>0.048</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>0.024</td>
<td>0.026</td>
<td>0.050</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>0.025</td>
<td>0.026</td>
<td>0.042</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>0.026</td>
<td>0.028</td>
<td>0.053</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>0.027</td>
<td>0.029</td>
<td>0.051</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>0.028</td>
<td>0.029</td>
<td>0.034</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>0.030</td>
<td>0.032</td>
<td>0.042</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>0.032</td>
<td>0.034</td>
<td>0.049</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>0.033</td>
<td>0.036</td>
<td>0.056</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>0.034</td>
<td>0.035</td>
<td>0.041</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>0.037</td>
<td>0.040</td>
<td>0.051</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>0.038</td>
<td>0.041</td>
<td>0.060</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>0.040</td>
<td>0.042</td>
<td>0.050</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>0.042</td>
<td>0.044</td>
<td>0.048</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>0.043</td>
<td>0.046</td>
<td>0.048</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>0.044</td>
<td>0.047</td>
<td>0.046</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>0.046</td>
<td>0.049</td>
<td>0.059</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>0.046</td>
<td>0.049</td>
<td>0.043</td>
<td></td>
</tr>
</tbody>
</table>

* herbert@chemistry.ohio-state.edu
TABLE S2: Interaction energies (in kcal/mol) arising from sub-clusters separated by 8–9Å, for the four structural motifs in (H₂O)₂₀ clusters.

<table>
<thead>
<tr>
<th>Isomer</th>
<th>fused cubes</th>
<th>dodecahedra</th>
<th>face-sharing pentagonal prisms</th>
<th>edge-sharing pentagonal prisms</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>−0.544</td>
<td>0.000</td>
<td>−0.917</td>
<td>−0.455</td>
</tr>
<tr>
<td>2</td>
<td>−1.251</td>
<td>0.000</td>
<td>−2.064</td>
<td>−0.455</td>
</tr>
<tr>
<td>3</td>
<td>−0.737</td>
<td>0.000</td>
<td>−1.992</td>
<td>−0.454</td>
</tr>
<tr>
<td>4</td>
<td>0.521</td>
<td>0.241</td>
<td>−0.963</td>
<td>0.033</td>
</tr>
<tr>
<td>5</td>
<td>−0.565</td>
<td>0.000</td>
<td>−1.335</td>
<td>0.513</td>
</tr>
<tr>
<td>6</td>
<td>−0.579</td>
<td>0.000</td>
<td>−0.942</td>
<td>−0.455</td>
</tr>
<tr>
<td>7</td>
<td>−2.001</td>
<td>0.000</td>
<td>−0.916</td>
<td>−0.454</td>
</tr>
<tr>
<td>8</td>
<td>−0.738</td>
<td>0.000</td>
<td>−1.986</td>
<td>−0.028</td>
</tr>
<tr>
<td>9</td>
<td>−1.300</td>
<td>0.000</td>
<td>−1.986</td>
<td>−0.454</td>
</tr>
<tr>
<td>10</td>
<td>0.024</td>
<td>0.000</td>
<td>−0.917</td>
<td>−4.422</td>
</tr>
<tr>
<td>11</td>
<td>−0.615</td>
<td>0.000</td>
<td>−0.917</td>
<td>−0.028</td>
</tr>
<tr>
<td>12</td>
<td>−1.813</td>
<td>0.000</td>
<td>−1.064</td>
<td>0.031</td>
</tr>
<tr>
<td>13</td>
<td>−1.328</td>
<td>0.000</td>
<td>−1.799</td>
<td>0.032</td>
</tr>
<tr>
<td>14</td>
<td>−2.920</td>
<td>0.000</td>
<td>−2.064</td>
<td>−0.248</td>
</tr>
<tr>
<td>15</td>
<td>−0.076</td>
<td>0.216</td>
<td>−2.057</td>
<td>−0.029</td>
</tr>
<tr>
<td>16</td>
<td>0.508</td>
<td>0.000</td>
<td>−2.063</td>
<td>0.032</td>
</tr>
<tr>
<td>17</td>
<td>−0.753</td>
<td>0.000</td>
<td>−0.942</td>
<td>−0.028</td>
</tr>
<tr>
<td>18</td>
<td>−2.004</td>
<td>0.000</td>
<td>−2.057</td>
<td>−4.111</td>
</tr>
<tr>
<td>19</td>
<td>−0.951</td>
<td>0.000</td>
<td>−1.852</td>
<td>−0.028</td>
</tr>
<tr>
<td>20</td>
<td>−0.747</td>
<td>0.000</td>
<td>−1.828</td>
<td>−0.378</td>
</tr>
</tbody>
</table>